ECT\* Workshop on "Precise beta decay calculations for searches of new physics" Trento, Apr 8-12 2019

## BSM searches and beta decay

#### Vincenzo Cirigliano Los Alamos National Laboratory



## Outline

- New physics in beta decays: generalities and EFT framework
- Constraints on non-standard charged current interactions
  - global analysis of beta decays
  - collider input: LEP, LHC
  - comparison of sensitivities & complementarity
- Summary and outlook

#### Semileptonic processes: SM and beyond

• In the SM, W exchange  $\Rightarrow$  V-A currents, universality



#### Semileptonic processes: SM and beyond

• In the SM, W exchange  $\Rightarrow$  V-A currents, universality



Broad sensitivity to BSM scenarios

#### Semileptonic processes: SM and beyond

• In the SM, W exchange  $\Rightarrow$  V-A currents, universality



- Broad sensitivity to BSM scenarios
- Experimental and theoretical precision at <0.1% level  $\Rightarrow$  probe effective scale  $\Lambda$  in the 5-10 TeV range

## Connecting scales — EFT

To connect UV physics to neutron and nuclear beta decays, use EFT



## Connecting scales — EFT

To connect UV physics to neutron and nuclear beta decays, use EFT



• New physics effects are encoded in ten quark-level couplings



 Quark-level version of Lee-Yang effective Lagrangian, allows us to connect nuclear & high energy probes

VC, Gonzalez-Alonso, Jenkins 0908.1754

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

• New physics effects are encoded in ten quark-level couplings

VC, Gonzalez-Alonso, Jenkins 0908.1754

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

• New physics effects are encoded in ten quark-level couplings

$$\mathcal{L}_{CC} = -\frac{G_F^{(\beta)}}{\sqrt{2}} V_{ud} \times \left[ \left( 1 + \epsilon_L \right) \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \ \epsilon_R \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \ \epsilon_S \ \bar{\ell} (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma_5 d \right. \\ \left. + \ \epsilon_T \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \ \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

$$+ \ \epsilon_i \longrightarrow \tilde{\epsilon}_i \quad (1 - \gamma_5) \nu_\ell \ \vec{u} \gamma^\mu (1 + \gamma_5) \nu_\ell$$

$$+ \ \epsilon_i \longrightarrow \tilde{\epsilon}_i \quad (1 - \gamma_5) \nu_\ell \ \vec{u} \gamma^\mu (1 - \gamma_5) \nu_\ell$$

VC, Gonzalez-Alonso, Jenkins 0908.1754

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

• Work to first order in rad. corr. and new physics

$$\mathcal{L}_{CC} = -\frac{G_F^{(\mu)}}{\sqrt{2}} V_{ud} \left(1 + \delta_{RC}\right) \left(1 - \frac{\delta G_F^{(\mu)}}{G_F^{(\mu)}}\right) \left(1 + \epsilon_L + \epsilon_R\right)$$

$$\times \left[ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu \left(1 - (1 - 2 \epsilon_R) \gamma_5\right) d \right]$$

$$+ \epsilon_S \ \bar{\ell} (1 - \gamma_5) \nu_\ell \ \bar{u} d$$

$$- \epsilon_P \ \bar{\ell} (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma_5 d$$

$$+ \epsilon_T \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \ \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

$$SM \text{ rad. corr.}$$

$$\gamma \text{ large log''} \left( \alpha/\pi \right) \times \log(M_Z/\mu)$$

Note: besides the pre-factor,  $\epsilon_R$  appears in nuclear decays in the combination  $\overline{g}_A = g_A \times (I - 2\epsilon_R)$ 

Marciano-Sirlin 1981 Sirlin 1982

## How do we probe the $\epsilon_{\alpha}$ ? (1)

I. Differential decay distribution

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[ A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957



a(g<sub>A</sub>), A(g<sub>A</sub>), B(g<sub>A</sub>, g<sub> $\alpha$ </sub>  $\epsilon_{\alpha}$ ), ... isolated via suitable experimental asymmetries



## How do we probe the $\epsilon_{\alpha}$ ? (1)

I. Differential decay distribution

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[ A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957



a(g<sub>A</sub>), A(g<sub>A</sub>), B(g<sub>A</sub>, g<sub> $\alpha$ </sub>  $\epsilon_{\alpha}$ ), ... isolated via suitable experimental asymmetries



Theory input:

Nucleon matrix elements (gv,A,S,T from lattice QCD), including O(q/MN)
 Nuclear matrix elements (including recoil order terms O(q/MN))
 Radiative corrections

## Nucleon charges from lattice QCD

With estimates of all systematic errors  $(m_q, a, V, excited states)$ 



## How do we probe the $\epsilon_{\alpha}$ ? (2)



### Global analysis: input

Experimental precision between ~0.01% and few %

| Ft (0+→0+) \ | alues |
|--------------|-------|
|--------------|-------|

| Parent          | $\mathcal{F}t$ (s) |
|-----------------|--------------------|
| $^{10}C$        | $3078.0\pm4.5$     |
| <sup>14</sup> O | $3071.4\pm3.2$     |
| $^{22}Mg$       | $3077.9\pm7.3$     |
| $^{26m}Al$      | $3072.9 \pm 1.0$   |
| $^{34}Cl$       | $3070.7 \pm 1.8$   |
| $^{34}Ar$       | $3065.6\pm8.4$     |
| $^{38m}$ K      | $3071.6 \pm 2.0$   |
| $^{38}Ca$       | $3076.4 \pm 7.2$   |
| $^{42}Sc$       | $3072.4\pm2.3$     |
| $^{46}V$        | $3074.1 \pm 2.0$   |
| $^{50}Mn$       | $3071.2 \pm 2.1$   |
| $^{54}Co$       | $3069.8 \pm 2.6$   |
| $^{62}$ Ga      | $3071.5 \pm 6.7$   |
| $^{74}$ Rb      | $3076.0 \pm 11.0$  |
|                 |                    |

#### Correlation coefficients

| Parent           | Type           | Parameter    | Value             |
|------------------|----------------|--------------|-------------------|
| <sup>6</sup> He  | $GT/\beta^-$   | a            | $-0.3308(30)^{a}$ |
| $^{32}Ar$        | $F/\beta^+$    | $\tilde{a}$  | 0.9989(65)        |
| $^{38m}$ K       | $F/\beta^+$    | $\tilde{a}$  | 0.9981(48)        |
| $^{60}$ Co       | $GT/\beta^-$   | Ã            | -1.014(20)        |
| $^{67}Cu$        | $GT/\beta^-$   | Ã            | 0.587(14)         |
| $^{114}$ In      | $GT/\beta^{-}$ | Ã            | -0.994(14)        |
| $^{14}O/^{10}C$  | $F-GT/\beta^+$ | $P_F/P_{GT}$ | 0.9996(37)        |
| $^{26}Al/^{30}P$ | $F-GT/\beta^+$ | $P_F/P_{GT}$ | 1.0030(40)        |
| <sup>8</sup> Li  | $GT/\beta^-$   | R            | 0.0009(22)        |
|                  |                |              |                   |
|                  |                |              |                   |
|                  |                |              |                   |

#### Neutron data

| Parameter      | Value                           |
|----------------|---------------------------------|
| $\tau_n$ (s)   | 879.75(76) <b>* (5 = 1.9!!)</b> |
| $a_n$          | -0.1034(37) *                   |
| $\tilde{a}_n$  | -0.1090(41)                     |
| $\tilde{A}_n$  | -0.11869(99) * (s = 2.6!!)      |
| $\tilde{B}_n$  | 0.9805(30) *                    |
| $\lambda_{AB}$ | -1.2686(47)                     |
| $D_n$          | -0.00012(20) *                  |
| $R_n$          | 0.004(13)                       |
|                | * Average                       |

Nuclei

## Global analysis: results (1)

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Standard Model fit ( $\lambda = g_A/g_V$ ) Experimental [pre Seng et al. 1807.10197, ...]  $|V_{ud}| = 0.97416(11)(19) = 0.97416(21)$   $\rho =$ 

 $\lambda = 1.27510(66)$ 

 $ho = -0.13 \ \chi^2_{
m min}/
u = 0.57.$ 

• Fit driven by  $\mathcal{F}$ t's  $(0^+ \rightarrow 0^+)$ and  $\tau_n$  (not  $A_n$ )



## Global analysis: results (1)

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Standard Model fit ( $\lambda = g_A/g_V$ )



• Fit driven by  $\mathcal{F}$ t's  $(0^+ \rightarrow 0^+)$ and  $\tau_n$  (not  $A_n$ )



### Global analysis: results (2)

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Fit including BSM couplings (driven by  $\mathcal{F}t$ 's (0<sup>+</sup>  $\rightarrow$  0<sup>+</sup>),  $\tau_n$ , and  $A_n$ )

$$\tilde{V}_{ud} \equiv V_{ud} (1 + \epsilon_L + \epsilon_R) \left( 1 - \frac{\delta G_F}{G_F} \right) \qquad \text{Ist error:} \\
experimental \\
2 \% \rightarrow ~0.5\% ** \\
\sim 0.2 \% \\
\sim 0.1 \% \\
\tilde{V}_{ud} = \frac{\tilde{V}_{ud}}{\epsilon_R} \\
\tilde{V}_{ud} = \frac{\tilde{V}_{ud}}{\epsilon$$

$$\rho = \begin{pmatrix}
1.00 & & \\
0.00 & 1.00 & \\
0.83 & 0.00 & 1.00 & \\
0.28 & -0.04 & 0.31 & 1.00
\end{pmatrix}$$

\*\* CalLat 1805.12030



## CKM unitarity test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$



$$V_{us} \text{ from } K \rightarrow \mu \nu$$

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$

$$V_{us} \text{ from } K \rightarrow \pi l \nu$$

#### CKM unitarity test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\text{CKM}}(\epsilon_i)$$



V<sub>us</sub> from 
$$K \rightarrow \mu\nu$$
  

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$
V<sub>us</sub> from  $K \rightarrow \pi l\nu$ 

Hint of something [ $\epsilon$ 's  $\neq$ 0] or SM theory input?

Worth a closer look: at the level of the best LEP EW precision tests, probing scale A~10 TeV

#### Cabibbo universality test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$



V<sub>us</sub> from K→ μν  

$$\Delta_{CKM} = -(14 \pm 4) * 10^{-4}$$
 ~3.5σ  
 $\Delta_{CKM} = -(22 \pm 5) * 10^{-4}$  ~4.5σ  
V<sub>us</sub> from K→ πlv

With new radiative correction ( $\Delta_R$ ) [Seng et al. 1807.10197]

• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 



• Model-independent statements possible in <u>"heavy BSM" scenarios</u>:  $M_{BSM} > TeV \rightarrow$  new physics looks point-like at collider

• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 

 $\mathcal{E}_{L,R}$  originate from SU(2)xU(1) invariant vertex corrections



• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 



• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 



• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 

ELR originate from SU(2)xU(1) invariant vertex corrections



 $\epsilon_{S,P,T}$  and one contribution to  $\epsilon_L$  arise from SU(2)xU(1) invariant 4-fermion operators





• Need to know high-scale origin of the various  $\varepsilon_{\alpha}$ 



- LEP / SLC:
  - Strong constraints (<0.1%) on L-handed vertex corrections (Z-pole)
  - Weaker constraints on 4-fermion interactions ( $\sigma_{had}$ )
- What about LHC?

Bhattacharya et al., 1110.6448,

VC, Graesser, Gonzalez-Alonso 1210.4553

• The effective couplings  $\epsilon_{\alpha}$  contribute to the process  $pp \rightarrow ev + X$ 



Bhattacharya et al., 1110.6448,

VC, Graesser, Gonzalez-Alonso 1210.4553

• The effective couplings  $\epsilon_{\alpha}$  contribute to the process  $pp \rightarrow ev + X$ 



 No excess events in transverse mass distribution: bounds on ε<sub>α</sub>

 $m_T \equiv \sqrt{2E_T^e E_T^\nu (1 - \cos \Delta \phi_{e\nu})}$ 

ATLAS: 1706.06786



Bhattacharya et al., 1110.6448,

VC, Graesser, Gonzalez-Alonso 1210.4553

• The effective couplings  $\epsilon_{\alpha}$  contribute to the process pp  $\rightarrow ev + X$ 



 No excess events in transverse mass distribution: bounds on ε<sub>α</sub>

$$m_T \equiv \sqrt{2E_T^e E_T^\nu (1 - \cos \Delta \phi_{e\nu})}$$

CMS: 1803.11133



Bhattacharya et al., 1110.6448,

VC, Graesser, Gonzalez-Alonso 1210.4553

• The effective couplings  $\epsilon_{\alpha}$  contribute to the process  $pp \rightarrow ev + X$ 



• By SU(2) gauge invariance,  $\epsilon_{\alpha}$  contribute also to  $pp \rightarrow e^+e^- + X$ 



## LHC sensitivity: vertex corrections

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

 Vertex corrections inducing ε<sub>L,R</sub> in the SM-EFT involve the Higgs field (due to SU(2) gauge invariance)



## LHC sensitivity: vertex corrections

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

 Vertex corrections inducing ε<sub>L,R</sub> in the SM-EFT involve the Higgs field (due to SU(2) gauge invariance)



• Can be probed at the LHC by associated Higgs + W production



#### Example $I: \varepsilon_L$ and $\varepsilon_R$ couplings

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751



Neutron decay:  $\lambda = g_A (I - 2 \epsilon_R)$ 

Constraint on ε<sub>R</sub> uses g<sub>A</sub> =1.271(13) (CalLat 1805.12030)



## Example $I: \varepsilon_L$ and $\varepsilon_R$ couplings

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

#### Several lessons:

- Beta decays can be quite competitive with collider
- Connection between CC and NC (gauge invariance!)
- Caveat: going beyond a 2-operator analysis relaxes some of these constraints (but not the one on  $\epsilon_R$  from  $\lambda$ )
- All in all, beta decays provide independent competitive constraints in a global analysis



#### Example 2: $\epsilon_s$ and $\epsilon_T$ couplings



#### Example 2: Es and ET couplings



LHC puts very strong constraints on 4-fermion interactions

Prospective beta decay measurements competitive, probing  $\Lambda_{S,T} \sim 5-10 \text{ TeV}$ 

# Reliability of EFT bounds @ LHC

- What if new interactions are not "contact" at LHC energy? How are the ε bounds affected?
- Explore classes of models generating ε<sub>s,T</sub> at tree-level.
   Low-energy vs LHC amplitude:



$$A_{\beta} \sim g_{1}g_{2}/M^{2} \equiv \epsilon$$
$$A_{LHC} \sim \epsilon F[\sqrt{s/M}, \sqrt{s/\Gamma(\epsilon)}]$$

• Study dependence of the ε bounds on the mediator mass M

#### s-channel mediator



#### t-channel mediator

- Scalar leptoquark  $S_0$  (3\*,1,1/3)
- $\epsilon_T = -1/4 \epsilon_S = -1/4 \epsilon_P$





#### t-channel mediator

Messages

ū

 For mediator mass >ITeV, LHC bounds on ɛ's based on contact interactions are "conservative": actual bound is stronger for s-channel resonance, comparable for t-channel

C

I/(

 For low mass mediators (m < 0.5 TeV), the LHC bounds on E's quickly deteriorate: limits based on contact interactions are unreliable (and EFT practitioners would never dream to extrapolate the validity to such low masses!!)



#### What if a bump is observed at LHC?

• If "bump" in m<sub>T</sub> is due to a scalar resonance coupling to  $e + V_e$ 



• ...then we a lower bound on  $\varepsilon_s$ :  $\beta$ -decays provide diagnosing power



## What if a bump is observed at LHC?

• If "bump" in m<sub>T</sub> is due to a scalar resonance coupling to  $e + V_e$ 



#### **Diagnosing power**

- Spin of resonance
- Nature of "MET" (is it  $V_e$ ?)
- Additional scalars? (suppression of ε<sub>s</sub> through interference)

#### Beta decays in specific models

- Model  $\rightarrow$  set overall size and pattern of effective couplings
- Beta decays can play very useful diagnosing role
- Qualitative picture: "DNA matrix"

| Can be made<br>quantitative,<br>including LHC<br>constraints on<br>each model |                    | ٤L | ε <sub>R</sub> | ٤ <sub>P</sub> | ٤s  | ٤ <sub>T</sub> |                                                                                                                          |
|-------------------------------------------------------------------------------|--------------------|----|----------------|----------------|-----|----------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                                               | LRSM               | x  | <              | x              | x   | x              |                                                                                                                          |
|                                                                               | LQ                 | √  | x              | √              | √   | √              | d LQ e<br>d V                                                                                                            |
|                                                                               | 2HDM               | x  | x              | <              | √   | x              | $H^{\dagger}$                                                                                                            |
|                                                                               | MSSM               | √  | 1              | 4              | 4   | 4              | $u \xrightarrow{\chi_k^+} \nu_I$ $\widetilde{d_i^-} \xrightarrow{I} \widetilde{L_j^-}$ $d \xrightarrow{\chi_m^0} \ell_I$ |
| YC                                                                            | DUR FAVOR<br>MODEL | TE | •••            |                | ••• |                | $W^+$ $\chi_i^0$ $\nu_I$<br>$\tilde{\nu}_J$ $\tilde{\nu}_J$ $\chi_i^ \ell_z$                                             |

#### Summary

- $\beta$  decays with sufficient th. and expt. precision (< 0.1%) are a very competitive probe of new physics
- Discovery potential depends on the underlying model. However, EFT shows that a discovery window exists well into the LHC era
  - Beta decays play unique role in probing vertex corrections  $\epsilon_L \epsilon_R$  (not enough precision at the LHC)
  - Beta decays can be competitive probes of scalar and tensor interactions if precision reaches < 0.1% ( $\epsilon_s \epsilon_T plots$ )
- Beyond "race to discovery", interesting complementarity with LHC in diagnosing what one has discovered