EW Radiative Corrections: Context

M.J. Ramsey-Musolf *U Mass Amherst*

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

Collaborators: M. Gorchtein, H. Patel, C. Seng

PRL 121 (2018) 241804 [1807.10197], 1812.03352

Beta Decay Workshop ECT* April 2019

Goals For This Talk

- Provide a brief BSM context & basic formalism
- Introduce the dispersion relation framework
- Set the stage for following talks & discussion

Outline

- I. Context & Formalism
- II. Wγ Box: Dispersion Relations
- III. Questions for the Day

I. Context

Weak Decays: CKM Unitarity

$$d \to u e^{-} \overline{v}_{e}$$

$$s \to u e^{-} \overline{v}_{e}$$

$$b \to u e^{-} \overline{v}_{e}$$

$$egin{pmatrix} (u & c & t) egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{pmatrix} egin{pmatrix} d \ s \ b \ \end{pmatrix}$$

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

$$0.94906 \pm 0.00041$$

$$0.05031 \pm 0.00022$$

$$0.00002$$

$$\Delta_{\rm CKM} = -0.0006 \pm 0.0005$$

Precision ~ BSM Mass Scale

Precision Goal:

$$\delta \Delta_{CKM} \sim O(10^{-4})$$

Heavy BSM Physics:

$$\Delta_{CKM} \sim C (v/\Lambda)^2$$

$$\Lambda \sim 10 \text{ TeV (tree)}$$

$$\Lambda < 1 \text{ TeV (loop)}$$

Ultralight BSM Physics:

$$\Delta_{CKM} \sim \varepsilon^2 (\alpha/4\pi)$$
 $\varepsilon < 1 (loop)$

Error Budget

Error Budget

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

 0.94906 ± 0.00041

Radiative Correction

Factor of 2 reduction using disp relations

Thanks: J. Hardy

Error Budget

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

 0.94906 ± 0.00041

Radiative Correction

Factor of 2 reduction using disp relations

Nuclear Correction

Increase due to previously omitted contributions

Thanks: J. Hardy

Radiative Corrections

Dominant source of uncertainty:

Long distance

Sensitive to hadronic & nuclear dynamics

Radiative Corrections & Ft Values

Corrected ft values:

$0^+ o 0^+$ Dispersion Corrections: $\delta_{ m NS}$

Towner & Hardy, PRC 91 (2015) 2, 025501

Radiative Corrections & V_{ud}

Superallowed

$$|V_{ud}|^2 = \frac{2984.43s}{\mathcal{F}t(1 + \Delta_R^V)}$$

Hadronic & short distance part of $M_{\gamma W}$

Neutron

II. Wγ Box: Dispersion Relations

Electroweak virtual Compton amplitude:

$$T_{\gamma W}^{\mu\nu} = \left[-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right] T_1 + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{(p \cdot q)} T_2 + \underbrace{\frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)}T_3}$$

Radiative correction:

$$\Box_{\gamma W}^{VA} = 4\pi\alpha \text{Re} \int \frac{d^4q}{(2\pi)^4} \frac{M_W^2}{M_W^2 + Q^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M\nu}$$

$$\Box_{\gamma W}^{VA} = \frac{1}{2} \left(\Delta_R^V \right)_{\gamma W}^{VA}$$

Dispersion relation:

Write T₃ as integral over discontinuity along cut

$$T_3^{(I)}(\nu, Q^2) = \frac{2}{i} \int_0^\infty d\nu' \left[\frac{1}{\nu' - \nu} + \frac{\xi^I}{\nu' + \nu} \right] F_3^{(I)}(\nu', Q^2)$$

Electroproduction structure functions:

$$W_{\gamma W}^{(I)\mu\nu} = \frac{1}{8\pi} \sum_{X} (2\pi)^4 \delta^4(p + q - p_X) \langle p | J_{em}^{(I)\mu} | X \rangle \langle X | J_W^{\nu} | n \rangle$$
$$= \left[-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right] F_1^{(I)} + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{(p \cdot q)} F_2^{(I)} + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)} F_3^{(I)}$$

$$d\sigma \propto L_{\mu\nu} W^{\mu\nu}$$

Radiative Correction:

Nachtmann Moments:

$$M_3^{(0)}(N,Q^2) = \frac{N+1}{N+2} \int_0^1 \frac{dx \xi^N}{x^2} \left[2x - \frac{N\xi}{N+1} \right] F_3^{(0)}$$
$$\xi = 2x \left(1 + \frac{4M^2 x^2}{Q^2} \right)^{-1}$$

Radiative Correction:

- Relate $F_3^{(0)}$ and $M_3^{(0)}$ to data and/or
- Compute $F_3^{(0)}$ and $M_3^{(0)}$ using same methods used to describe semileptonic scattering processes with nucleon & nuclear targets

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Single nucleon: PRL 121 (2008) 241804

 $\Delta_R^{\ V} = 0.02361(38) \rightarrow 0.02467 (22)$

Leptoproduction: Had & Nuc Response

New work 21

Impact on δ_{NS}

$$\Delta \,\delta_{NS} = \frac{\alpha}{\pi} \left(C_{QE} - q_S^{(0)} q_A C_B \right) = -(4.6 \pm 0.9) \times 10^{-4}$$

Our new work: QE response

Towner & Hardy

Features:

- Few x 10^{^-4}
- Error bar?
- Refinements?

Other Nuclear Corrections

Nuclei

Free nucleons

Low-lying transitions

Part of δ_{NS}

Questions for the Day

- How robust is the quoted uncertainty on the new value of Δ_R^V ?
- What additional tests (theory, experiment) are available?
- What is the roadmap to refined computation of $\delta_{\rm NS}$ (QE) ?
- How important are contributions from other region of the low-E nuclear response? How to compute & how to test computations?