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Goals For This Talk 

•  Provide a brief BSM context & basic formalism  

•  Introduce the dispersion relation framework 

•  Set the stage for following talks & discussion 
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Weak Decays: CKM Unitarity   
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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron ! decay. We also revisit

earlier studies of the corrections to the ratio Re=" of pion leptonic decay rates !½#þ ! eþ $ð%Þ% and
!½#þ ! "þ $ð%Þ%. In both cases, we observe that the magnitude of the corrections can be on the order of

10& 3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=" can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.

DOI: 10.1103/PhysRevD.87.035012 PACS numbers: 14.80.Ly

I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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CKM unitarity: Vud the main contributor  
to the sum and to the uncertainty

� ���� ���� ��������	
�����������
 �� ��
��������������������������


 
 
 ��
�������	
�
��	��

���	
��

�
����

������	�����������




���������������
��
������ ����
�����	
��



����	
��
������

������


����

����

���


��
��
���

��
��

�� ���!��� "�
����#���$������$� %��&�����$������$�

'�""�%(�)(*(�)�+,������*%-�'./��%0(*"0(1��
�

�����

��2��

�����

���&���
���������� �

�����$� ���&���
!���$��

 �$�

��

� ��������
���������
��


|Vud|2 = 0.94906± 0.00041

|Vub|2 = 0.00002

|Vus|2 = 0.05031± 0.00022

0+-0+ nuclear decays

K decays

B decays

|Vud|2 + |Vus|2 + |Vub|2 = 0.9994± 0.0005
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Precision ~ BSM Mass Scale 

Precision Goal: 

 δ ΔCKM ~ O(10-4) 

Ultralight BSM Physics: 

ΔCKM ~ ε2  ( α /4π )   ε < 1 (loop) 

ΔCKM ~ C  ( v/Λ )2  

Heavy BSM Physics: 
Λ ∼ 10 TeV (tree) 

Λ < 1 TeV (loop) 
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the scenario that best accounts for the collider signatures
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muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron ! decay. We also revisit

earlier studies of the corrections to the ratio Re=" of pion leptonic decay rates !½#þ ! eþ $ð%Þ% and
!½#þ ! "þ $ð%Þ%. In both cases, we observe that the magnitude of the corrections can be on the order of

10& 3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=" can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.

DOI: 10.1103/PhysRevD.87.035012 PACS numbers: 14.80.Ly

I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:

*sbauman@physics.wisc.edu
† erler@fisica.unam.mx
‡mjrm@physics.wisc.edu
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Radiative Corrections 

γ
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ν e
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Radiative Corrections & Ft Values 

Corrected ft values: 
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 0+ ! 0+ Dispersion Corrections: δNS 

Towner & Hardy, PRC 91 (2015) 2, 025501  

bF : scalar currents 

Input for Vud & CKM 
unitarity test 
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Radiative Corrections & Vud 
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II. Wγ Box: Dispersion Relations 
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Dispersion Relations 
4

1 is given by

Tµ⌫
�W =

1

2

Z
dxeiq·xhp|T [Jµ

em(x)J⌫
W (0)]|ni (13)

with the following definitions of the electromagnetic and
charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ū�µ(1� �5)d. (14)

Notice that the definition of Tµ⌫
�W above follows that in

the seminal paper by Sirlin [3]. The apparent extra
factor of 1/2 is due to the di↵erence in the normalization
of the charged weak current: Sirlin defined Jµ

w = ūL�µdL
(in the Vud = 1 limit) whereas our definition is two times
larger, as the later is a more common definition in modern
theory and experimental papers.

As the box diagram contains only one heavy bo-
son propagator, it receives contribution from the loop
momentum q at all scales, ranging from infrared (i.e.
q ⇠ me) to ultraviolet. The infrared-singular piece
in T�W , together with the electron and proton wave-
function renormalization, as well as the real-photon
bremsstrahlung diagrams, give rise to the Fermi function
F (�) and the outer-correction ḡ(Em) which are known
analytically. In the meantime, most parts of the inner
corrections from T�W to gV are either exactly known
due to current algebra, or depend only on physics at high
scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves
the vector-axial vector correlator in Tµ⌫

�W . Following a no-
tation similar to that in Ref. [4], we define its correction
to the tree-level W exchange Fermi amplitude as

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ ,

(15)

so that it is straightforwardly connected to the universal
radiative correction �V

R via

⇤V A
�W =

1

2

�
�V

R

�V A

�W
. (16)

The explicit expression of ⇤V A
�W is given by:

⇤V A
�W = 4⇡↵Re
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M2
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where Q2 = �q2, ⌫ = p·q/M withM the average nucleon
mass, and T3(⌫, Q2) the parity-odd spin-independent in-
variant amplitude of the forward Compton tensor Tµ⌫

�W

defined through:

Tµ⌫
�W =


�gµ⌫ +

qµq⌫

q2
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T1 +
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FIG. 2: The contour in the complex ⌫ plane.

with p̂µ = pµ � qµ(p · q)/q2. Notice that since ⇤V A
�W is

insensitive to physics at the scale q ⇠ me, we have set
me, k ! 0 as well as mn = mp = M to arrive Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels,

T3 = T (0)
3 + T (3)

3 . (19)

We apply Cauchy’s theorem to the definite isospin am-

plitudes T (I)
3 (⌫, Q2) (I = 0, 3) accounting for their singu-

larities in the complex ⌫ plane. These lie on the real
axis: poles due to a single nucleon intermediate state

in the s� and u-channels at ⌫ = ±⌫B = ±
Q2

2M , respec-
tively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where
⌫⇡ = (2Mm⇡+m2

⇡+Q2)/(2M), m⇡ being the pion mass.
The contour is constructed such as to go around all these
singularities, and is closed at infinity, see Fig. 2. The
discontinuity of the forward amplitude in the physical
region (i.e. ⌫ > 0) is given by the generalization of the
DIS structure functions to the �W -interference in the
standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2)

= 4⇡F (I)
3 (⌫, Q2) (20)

where
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0+(f) Electroweak virtual Compton amplitude:  
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1 is given by
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with the following definitions of the electromagnetic and
charged weak current:
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ū�µu�
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3
d̄�µd

Jµ
W = ū�µ(1� �5)d. (14)

Notice that the definition of Tµ⌫
�W above follows that in

the seminal paper by Sirlin [3]. The apparent extra
factor of 1/2 is due to the di↵erence in the normalization
of the charged weak current: Sirlin defined Jµ

w = ūL�µdL
(in the Vud = 1 limit) whereas our definition is two times
larger, as the later is a more common definition in modern
theory and experimental papers.

As the box diagram contains only one heavy bo-
son propagator, it receives contribution from the loop
momentum q at all scales, ranging from infrared (i.e.
q ⇠ me) to ultraviolet. The infrared-singular piece
in T�W , together with the electron and proton wave-
function renormalization, as well as the real-photon
bremsstrahlung diagrams, give rise to the Fermi function
F (�) and the outer-correction ḡ(Em) which are known
analytically. In the meantime, most parts of the inner
corrections from T�W to gV are either exactly known
due to current algebra, or depend only on physics at high
scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves
the vector-axial vector correlator in Tµ⌫

�W . Following a no-
tation similar to that in Ref. [4], we define its correction
to the tree-level W exchange Fermi amplitude as

TW + TV A
�W = �
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so that it is straightforwardly connected to the universal
radiative correction �V

R via
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The explicit expression of ⇤V A
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where Q2 = �q2, ⌫ = p·q/M withM the average nucleon
mass, and T3(⌫, Q2) the parity-odd spin-independent in-
variant amplitude of the forward Compton tensor Tµ⌫

�W

defined through:

Tµ⌫
�W =
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FIG. 2: The contour in the complex ⌫ plane.

with p̂µ = pµ � qµ(p · q)/q2. Notice that since ⇤V A
�W is

insensitive to physics at the scale q ⇠ me, we have set
me, k ! 0 as well as mn = mp = M to arrive Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels,

T3 = T (0)
3 + T (3)

3 . (19)

We apply Cauchy’s theorem to the definite isospin am-

plitudes T (I)
3 (⌫, Q2) (I = 0, 3) accounting for their singu-

larities in the complex ⌫ plane. These lie on the real
axis: poles due to a single nucleon intermediate state

in the s� and u-channels at ⌫ = ±⌫B = ±
Q2

2M , respec-
tively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where
⌫⇡ = (2Mm⇡+m2

⇡+Q2)/(2M), m⇡ being the pion mass.
The contour is constructed such as to go around all these
singularities, and is closed at infinity, see Fig. 2. The
discontinuity of the forward amplitude in the physical
region (i.e. ⌫ > 0) is given by the generalization of the
DIS structure functions to the �W -interference in the
standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2)

= 4⇡F (I)
3 (⌫, Q2) (20)

where
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1 is given by
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dxeiq·xhp|T [Jµ

em(x)J⌫
W (0)]|ni (13)

with the following definitions of the electromagnetic and
charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ū�µ(1� �5)d. (14)

Notice that the definition of Tµ⌫
�W above follows that in

the seminal paper by Sirlin [3]. The apparent extra
factor of 1/2 is due to the di↵erence in the normalization
of the charged weak current: Sirlin defined Jµ

w = ūL�µdL
(in the Vud = 1 limit) whereas our definition is two times
larger, as the later is a more common definition in modern
theory and experimental papers.

As the box diagram contains only one heavy bo-
son propagator, it receives contribution from the loop
momentum q at all scales, ranging from infrared (i.e.
q ⇠ me) to ultraviolet. The infrared-singular piece
in T�W , together with the electron and proton wave-
function renormalization, as well as the real-photon
bremsstrahlung diagrams, give rise to the Fermi function
F (�) and the outer-correction ḡ(Em) which are known
analytically. In the meantime, most parts of the inner
corrections from T�W to gV are either exactly known
due to current algebra, or depend only on physics at high
scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves
the vector-axial vector correlator in Tµ⌫

�W . Following a no-
tation similar to that in Ref. [4], we define its correction
to the tree-level W exchange Fermi amplitude as

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A
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�
ūep/(1� �5)v⌫ ,

(15)

so that it is straightforwardly connected to the universal
radiative correction �V

R via

⇤V A
�W =

1
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�V

R
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. (16)

The explicit expression of ⇤V A
�W is given by:
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�W = 4⇡↵Re
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(2⇡)4
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M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(17)

where Q2 = �q2, ⌫ = p·q/M withM the average nucleon
mass, and T3(⌫, Q2) the parity-odd spin-independent in-
variant amplitude of the forward Compton tensor Tµ⌫

�W

defined through:

Tµ⌫
�W =


�gµ⌫ +

qµq⌫

q2

�
T1 +
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(p · q)
T2 +

i✏µ⌫↵�p↵q�
2(p · q)

T3,

(18)

14

W Wγγ

q q q q

p ppp

Optical theorem: ),(4),(Dis 2)0(
3

2)0(
3 QFQT νπν =

( ) ),(
2

)()2(
4
1 2)0(

30,
44 QF

m
qpi

nJXXJppqp
N

AWEM
X

X ν
ν

ε
δπ

π
βα

µναβ
νµ =−+∑

ν wrt odd is  since n termsubtractioconstant  No )0(
3T

Dispersive Approach: Formalism

FIG. 2: The contour in the complex ⌫ plane.

with p̂µ = pµ � qµ(p · q)/q2. Notice that since ⇤V A
�W is

insensitive to physics at the scale q ⇠ me, we have set
me, k ! 0 as well as mn = mp = M to arrive Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels,

T3 = T (0)
3 + T (3)

3 . (19)

We apply Cauchy’s theorem to the definite isospin am-

plitudes T (I)
3 (⌫, Q2) (I = 0, 3) accounting for their singu-

larities in the complex ⌫ plane. These lie on the real
axis: poles due to a single nucleon intermediate state

in the s� and u-channels at ⌫ = ±⌫B = ±
Q2

2M , respec-
tively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where
⌫⇡ = (2Mm⇡+m2

⇡+Q2)/(2M), m⇡ being the pion mass.
The contour is constructed such as to go around all these
singularities, and is closed at infinity, see Fig. 2. The
discontinuity of the forward amplitude in the physical
region (i.e. ⌫ > 0) is given by the generalization of the
DIS structure functions to the �W -interference in the
standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2)

= 4⇡F (I)
3 (⌫, Q2) (20)

where

Radiative correction: 
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Dispersion Relations 

γ

W

0+(i) 

0+(f) Dispersion relation:  

5

W (I)µ⌫
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1
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(2⇡)4�4(p+ q � pX) hp| J (I)µ
em |Xi hX| J⌫

W |ni =


�gµ⌫ +

qµq⌫

q2

�
F (I)
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p̂µp̂⌫

(p · q)
F (I)
2 +

i✏µ⌫↵�p↵q�
2(p · q)

F (I)
3 ,

(21)

(we define Wµ⌫
�W with a coe�cient of (8⇡)�1 instead of

the more common (4⇡)�1 to keep in sync with our def-
inition of Tµ⌫

�W that contains a factor 1/2) and for the

sake of a unified description, within F (I)
i we keep both

the �-functions at the nucleon poles, and the disconti-
nuities along the multi-particle cuts. The full function

T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

2

i

1Z

0

d⌫0


1

⌫0 � ⌫
+

⇠I

⌫0 + ⌫

�
F (I)
3 (⌫0, Q2),

(22)

modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at

⇤V A (0)
�W =

↵

⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (23)

where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
3 ,

1Z

0

d⌫
(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2) =

3

2Q2
M (0)

3 (1, Q2). (24)

The definition of the Nachtmann moments of F3 reads

[15, 16]

M (0)
3 (N,Q2) =

N + 1

N + 2

1Z

0

dx⇠N

x2


2x�

N⇠

N + 1

�
F (0)
3 ,

(25)

where we introduced the Nachtmann variable ⇠ = 2x/(1+p
1 + 4M2x2/Q2). This gives our master formula

⇤V A
�W =

3↵

2⇡

Z 1

0

dQ2M2
W

Q2[M2
W +Q2]

M (0)
3 (1, Q2). (26)

In the old result by MS this connection was not written
explicitly,

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (27)

and we simply note the correspondence,

F (Q2) =
12

Q2
M (0)

3 (1, Q2). (28)

This is the first essentially new result of our work.
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FIG. 3: The W 2�Q
2 diagram showing approximate kinemat-

ical regions which are dominated by various physical mecha-
nisms, as indicated on the plot.

We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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with the following definitions of the electromagnetic and
charged weak current:
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W = ū�µ(1� �5)d. (14)

Notice that the definition of Tµ⌫
�W above follows that in

the seminal paper by Sirlin [3]. The apparent extra
factor of 1/2 is due to the di↵erence in the normalization
of the charged weak current: Sirlin defined Jµ

w = ūL�µdL
(in the Vud = 1 limit) whereas our definition is two times
larger, as the later is a more common definition in modern
theory and experimental papers.

As the box diagram contains only one heavy bo-
son propagator, it receives contribution from the loop
momentum q at all scales, ranging from infrared (i.e.
q ⇠ me) to ultraviolet. The infrared-singular piece
in T�W , together with the electron and proton wave-
function renormalization, as well as the real-photon
bremsstrahlung diagrams, give rise to the Fermi function
F (�) and the outer-correction ḡ(Em) which are known
analytically. In the meantime, most parts of the inner
corrections from T�W to gV are either exactly known
due to current algebra, or depend only on physics at high
scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves
the vector-axial vector correlator in Tµ⌫

�W . Following a no-
tation similar to that in Ref. [4], we define its correction
to the tree-level W exchange Fermi amplitude as
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so that it is straightforwardly connected to the universal
radiative correction �V

R via
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The explicit expression of ⇤V A
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where Q2 = �q2, ⌫ = p·q/M withM the average nucleon
mass, and T3(⌫, Q2) the parity-odd spin-independent in-
variant amplitude of the forward Compton tensor Tµ⌫

�W

defined through:
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FIG. 2: The contour in the complex ⌫ plane.

with p̂µ = pµ � qµ(p · q)/q2. Notice that since ⇤V A
�W is

insensitive to physics at the scale q ⇠ me, we have set
me, k ! 0 as well as mn = mp = M to arrive Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels,

T3 = T (0)
3 + T (3)

3 . (19)

We apply Cauchy’s theorem to the definite isospin am-

plitudes T (I)
3 (⌫, Q2) (I = 0, 3) accounting for their singu-

larities in the complex ⌫ plane. These lie on the real
axis: poles due to a single nucleon intermediate state

in the s� and u-channels at ⌫ = ±⌫B = ±
Q2

2M , respec-
tively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where
⌫⇡ = (2Mm⇡+m2

⇡+Q2)/(2M), m⇡ being the pion mass.
The contour is constructed such as to go around all these
singularities, and is closed at infinity, see Fig. 2. The
discontinuity of the forward amplitude in the physical
region (i.e. ⌫ > 0) is given by the generalization of the
DIS structure functions to the �W -interference in the
standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2)

= 4⇡F (I)
3 (⌫, Q2) (20)

where

Write T3 as integral 
over discontinuity 
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Electroproduction structure functions: 
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(we define Wµ⌫
�W with a coe�cient of (8⇡)�1 instead of

the more common (4⇡)�1 to keep in sync with our def-
inition of Tµ⌫

�W that contains a factor 1/2) and for the

sake of a unified description, within F (I)
i we keep both

the �-functions at the nucleon poles, and the disconti-
nuities along the multi-particle cuts. The full function
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at
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⇤V A (3)
�W = 0, (23)

where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
3 ,
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2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

FIG. 3: The W 2�Q
2 diagram showing approximate kinemat-

ical regions which are dominated by various physical mecha-
nisms, as indicated on the plot.

We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
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the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
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We let the data guide us to evaluate the integral in Eq.
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full spectrum in energy, and then sample all values of
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low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at
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where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
3 ,
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The definition of the Nachtmann moments of F3 reads

[15, 16]
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where we introduced the Nachtmann variable ⇠ = 2x/(1+p
1 + 4M2x2/Q2). This gives our master formula
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In the old result by MS this connection was not written
explicitly,
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↵
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M2
W +Q2
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and we simply note the correspondence,

F (Q2) =
12

Q2
M (0)

3 (1, Q2). (28)

This is the first essentially new result of our work.

2W

2Q

( )2πmM +2M

Bo
rn

Parton + pQCD

Nπ Res.
+B.G

Regge
+VMD

2GeV2~

2GeV5~

FIG. 3: The W 2�Q
2 diagram showing approximate kinemat-

ical regions which are dominated by various physical mecha-
nisms, as indicated on the plot.

We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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Deep Inelastic 
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
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G2
FME

⇡ (1 +Q2/M2
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
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†
|Xi hX| J⌫

W |pi =
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3 + ...
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W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫
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(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
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The first term is then absorbed in �V
R , while the second

term makes part of �NS :
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Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:
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and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,
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Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =
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The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Single nucleon: PRL 121 (2008) 241804 

ΔR
V = 0.02361(38) ! 0.02467 (22) 
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.

Elastic 

Discrete 
Levels 

Quasi- 
Elastic Hadronic 

Resonances Regge/ 
Deep Inelastic 

GDR 

FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now

7
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)

⇥


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
.

The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)
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• The strength of the nuclear response in the QE
regime is significantly larger than that due to low-
lying nuclear excitations, and covers a broader
range of excitation energy than the latter. Thus,
one might expect that the QE region generally has
a more significant impact on the dispersion integral,
as well. To address the nuclear modification of the
free nucleon contribution in a controlled manner,
the QE knock-out contribution has to be explicitly
included.

• The dynamics in which the same nucleon partici-
pates in the transition to a state involving a quasi-
free nucleon and spectator nucleus are those of the
QE response, whose peak at ! ⇠ Q2/2M can lie
significantly above the low-lying nuclear excitation
spectrum. In the �W -box this contribution cor-
responds to (i) the virtual W+ knocking out one
neutron from the initial nucleus, converting it to
a proton and a spectator nucleus, corresponding
to a subset of intermediate states |ni in the nu-
clear Green’s function and (ii) reabsorbtion of the
quasifree proton into the final nucleus by emitting
a virtual photon.

• The significant store of data for QE electron-
nucleus scattering implies that, to a first approxi-
mation, one may obtain an adequate description of
the QE response using the free-nucleon form factors
without any quenching factors applied. Inclusion
of subdominant e↵ects arising from nuclear correla-
tions and two-body currents may yield O(10�30%)
corrections [47].

• Finally, the QE contribution to �W -box requires
a quasi-free active nucleon between the � and W
couplings rather than a bound nucleon inside an
excited nuclear state; compare Fig. 9b) and a), re-
spectively. The Q2-dependence under the integral
in the box with the low-lying excited nuclear state
as in Fig. 9a), on the other hand, depends on nu-
clear form factors which are known to drop much
faster than the free nucleon form factors, so the as-
sumption that the integral over form factors should
simply rescale as the charges is not justified.

With these observations in mind, we propose an alter-
native method of addressing the modification of the free
nucleon Born contribution by explicitly accounting for
the QE contribution shown in Fig. 9b). This approach
entails (1) employing the dispersion relation framework
to evaluate the contribution from the QE component of
TA
µ⌫ to �NS , and (2) replacing the Towner and Hardy

computation of the same-nucleon contribution to �NS by
our computation of the QE contribution. We defer a
treatment of the contributions from low-lying nuclear ex-
citations to a future, state-of-the-art many-body compu-
tation. We expect that such a computation will take into
account the underlying many-body dynamics responsi-

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[40, 46] , diagram a) with the initial (final) nucleus A (A0),
and an excited nuclear state Ã accessed via a Gamow-Teller
transition from the initial nucleus and via a magnetic transi-
tion from the final nucleus. Panel b) shows the quasielastic
picture with a single-nucleon knockout.

ble for the quenching of spin-flip transition strengths in
low-lying nuclear transitions.
We now turn to the dispersion representation of the

�W -box correction in Eq. (23) with the nuclear structure

function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (64)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. and concentrate on the
quasielastic part only. Instead of defining the quench-
ing via a simple rescaling of the Born we will directly
calculate CQE from a dispersion representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

⌫min

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2), (65)

with the limits of the ⌫-integration being ⌫min, the
threshold for the quasielastic breakup specified in
Eq. (69) below and ⌫⇡ = (Q2 + (M + m⇡)2 � M2)/2M
the threshold for pion production. Then, we estimate the
modification of the Born contribution discussed above, as

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (66)

For purposes of this exploratory calculation, we de-
scribe the quasielastic peak in the �W box contribution
to a superallowed �+ decay process A ! A0e+⌫e in the
plane-wave impulse approximation (PWIA). In this pic-
ture, a nucleus first splits into an on-shell spectator nu-
cleus A00 and an active o↵-shell nucleon, and the latter
interacts with the gauge bosons. The e↵ective scatter-
ing process proceeds as AW�

! nA00
! A0�, see Fig.

9b). The active nucleon carries an o↵-shell momentum
k before interacting with the gauge boson. To describe
its distribution in the nucleus we adopt the Fermi gas
model, which assumes a uniform distribution of nucleon

�CKM = �0.0006± 0.0005 (1)
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GFVud
p
2
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢
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The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Low-lying transitions Part of δNS  
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Questions for the Day 

•  How robust is the quoted uncertainty on the 
new value of ΔR

V ? 

•  What additional tests (theory, experiment) are 
available ? 

•  What is the roadmap to refined computation of 
δNS (QE) ? 

•  How important are contributions from other 
region of the low-E nuclear response ? How to 
compute & how to test computations ? 


