Calculation of Standard Model β spectra

Leendert Hayen

ECT* Workshop, April 8th 2019

IKS, KU Leuven, Belgium

Trento is enthousiastic for symmetry breaking

ACFI Workshop, Nov 1-3 2018

Table of contents

Introduction

Beta spectrum shape

Current status

Neutron V_{ud} calculation

Challenges

β decay context: Colliders

Drought at LHC leaves limited number of viable theories standing

FCC is still rather far away, if it comes

β decay context: (B)SM

Standard Model internal consistency test through CKM unitarity

- \bullet Superallowed $0^+ \to 0^+$ decays
- T = 1/2 mirror decays
- Neutron decay (see later)

β decay context: (B)SM

Standard Model internal consistency test through CKM unitarity

- ullet Superallowed $0^+ o 0^+$ decays
- T = 1/2 mirror decays
- Neutron decay (see later)

BSM: Since EFT entered scene directly compare high and low energy:

- Competitive for scalar & tensor currents
- Complementary for right-handed currents

Significant experimental progress, new & improved techniques

 Atomic traps: Jerusalem, TRIUMF, CERN, ANL, TAM, CENPA

\overline{eta} decay horizon

Significant experimental progress, new & improved techniques

 Atomic traps: Jerusalem, TRIUMF, CERN, ANL, TAM, CENPA

• CRES: Project 8, He6

Significant experimental progress, new & improved techniques

- Atomic traps: Jerusalem, TRIUMF, CERN, ANL, TAM, CENPA
- CRES: Project 8, He6
- High-precision spectrum shapes: NCSL, LANL, CENPA, . . .

Significant experimental progress, new & improved techniques

- Atomic traps: Jerusalem, TRIUMF, CERN, ANL, TAM, CENPA
- CRES: Project 8, He6
- High-precision spectrum shapes: NCSL, LANL, CENPA, . . .

Great for theory!

Significant experimental progress, new & improved techniques

- Atomic traps: Jerusalem, TRIUMF, CERN, ANL, TAM, CENPA
- CRES: Project 8, He6
- High-precision spectrum shapes: NCSL, LANL, CENPA, . . .

Great for theory!

Push both in β decay fundamentals and nuclear structure calculations

β decay context: Outside the box

Landscape has changed significantly past 10-20 years

- Neutrino physics: oscillations, reactor anomaly
- Astrophysics: β decay lifetimes, r-process
- Big Bang Nucleosynthesis: mass abundances

β decay context: Outside the box

Landscape has changed significantly past 10-20 years

- Neutrino physics: oscillations, reactor anomaly
- Astrophysics: β decay lifetimes, r-process
- Big Bang Nucleosynthesis: mass abundances

Knowledge of Standard Model β decay spectra plays a significant role in all of them

β decay context: Outside the box

Landscape has changed significantly past 10-20 years

- Neutrino physics: oscillations, reactor anomaly
- Astrophysics: β decay lifetimes, r-process
- Big Bang Nucleosynthesis: mass abundances

Knowledge of Standard Model β decay spectra plays a significant role in all of them

Different regimes, overlapping challenges

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \left\langle f \right| \mathcal{O}_j \left| i \right\rangle \left\langle e \right| \mathcal{O}_j [\mathcal{C}_j + \mathcal{C}_j \gamma_5] \left| \nu \right\rangle + h.c.$$

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \langle f | \mathcal{O}_j | i \rangle \langle e | \mathcal{O}_j [C_j + C_j \gamma_5] | \nu \rangle + h.c.$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the **others**?

General Hamiltonian

$$\mathcal{H} = \sum_{j=V,A,S,P,T} \langle f | \mathcal{O}_j | i \rangle \langle e | \mathcal{O}_j [C_j + C_j' \gamma_5] | \nu \rangle + h.c.$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the **others**?

QCD influences \rightarrow *induced* currents, influenced through **nuclear** structure?

BSM Observables in β decay

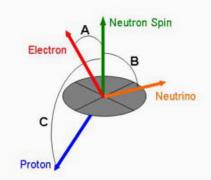
Typical BSM searches through correlations

$$\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \propto 1 + a_{\beta\nu} \frac{\vec{p_{e}} \cdot \vec{p_{\nu}}}{E_{e}E_{\nu}} + b_{F} \frac{m_{e}}{E_{e}} + A \frac{\vec{p_{e}}}{E_{e}} \langle \vec{I} \rangle + \dots$$

Measure effective correlations

$$\tilde{X} = \frac{X}{1 + b_F \langle \frac{m_e}{F_e} \rangle}$$

Sensitivity to full spectrum!



BSM Observables in β decay

Typical BSM searches through correlations

$$\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \propto 1 + a_{\beta\nu}\frac{\vec{p_{e}}\cdot\vec{p_{\nu}}}{E_{e}E_{\nu}} + b_{F}\frac{m_{e}}{E_{e}} + A\frac{\vec{p_{e}}}{E_{e}}\langle\vec{I}\rangle + \dots$$

Sensitivity comes from b_F

$$b_F = \pm \frac{1}{1 + \rho^2} \left[\text{Re} \left(\frac{C_S + C_S'}{C_V} \right) + \rho^2 \text{Re} \left(\frac{C_T + C_T'}{C_A} \right) \right]$$

because it's linear in coupling constants

BSM Observables in β decay

Typical BSM searches through correlations

$$\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \propto 1 + a_{\beta\nu} \frac{\vec{p_{e}} \cdot \vec{p_{\nu}}}{E_{e}E_{\nu}} + b_{F} \frac{m_{e}}{E_{e}} + A \frac{\vec{p_{e}}}{E_{e}} \langle \vec{I} \rangle + \dots$$

Sensitivity comes from b_F

$$b_F = \pm \frac{1}{1 + \rho^2} \left[\text{Re} \left(\frac{C_S + C_S'}{C_V} \right) + \rho^2 \text{Re} \left(\frac{C_T + C_T'}{C_A} \right) \right]$$

because it's linear in coupling constants

 \rightarrow measure β spectrum directly & fit for $1/\textit{E}_{\rm e}$

Exploring the Standard Model and Beyond via the allowed β spectrum shape:

$$rac{dN}{dE_e} \propto 1 + rac{b_{ extsf{Fierz}}}{E_e} rac{m_e}{E_e} + b_{WM} E_e$$

b_{Fierz}: Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings

 b_{WM} : Weak Magnetism (main induced current), poorly known for A>60, forbidden decays

Exploring the Standard Model and Beyond via the allowed β spectrum shape:

$$rac{dN}{dE_e} \propto 1 + rac{b_{\mathsf{Fierz}}}{E_e} + b_{WM} E_e$$

b_{Fierz}: Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings

 b_{WM} : Weak Magnetism (main induced current), poorly known for A>60, forbidden decays

This requires knowledge of the theoretical spectrum shape to $\leq 10^{-3}$ level!

Beta spectrum shape

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

- 1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
- 2. QCD adds extra terms in weak vertex: induced currents

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

- 1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
- 2. QCD adds extra terms in weak vertex: induced currents

Large scale gap to cross

 $\mathsf{Quark} \to \mathsf{Nucleon} \to \mathsf{Nucleus} \to \mathsf{Atom} \to \mathsf{Molecule}$

Active participation of QED, QCD & WI \rightarrow Complicated system

Weak Hamiltonian is modified

- 1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
- 2. QCD adds extra terms in weak vertex: induced currents

Large scale gap to cross

 $\mathsf{Quark} o \mathsf{Nucleon} o \mathsf{Nucleus} o \mathsf{Atom} o \mathsf{Molecule}$

Whole slew of approximations introduced

Standard Model Calculation: Quark

Starting from the Standard Model $SU(2)_L \times U(1)_Y$ EW sector

$$\mathcal{M} = \frac{g^2}{8} V_{ud} \bar{u} \gamma^{\mu} (1 - \gamma^5) d \frac{g_{\mu\nu} - q_{\mu} q_{\nu} / M_W^2}{q^2 - M_W^2} \bar{e} \gamma^{\nu} (1 - \gamma^5) \nu$$

Standard Model Calculation: Quark

Starting from the Standard Model $SU(2)_L \times U(1)_Y$ EW sector

$${\cal M} = rac{g^2}{8} V_{ud} ar u \gamma^\mu (1-\gamma^5) drac{g_{\mu
u} - q_\mu q_
u/M_W^2}{q^2 - M_W^2} ar e \gamma^
u (1-\gamma^5)
u$$

Since $q \ll M_W$, identify Fermi coupling constant

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

Moving to the nucleon system, we face

$$\langle p|\bar{u}\gamma^{\mu}(1-\gamma^5)d|n\rangle$$

Moving to the nucleon system, we face

$$\langle p|\bar{u}\gamma^{\mu}(1-\gamma^5)d|n\rangle$$

Symmetries to the rescue! CVC & PCAC define new *nucleon* currents

$$V^{\mu}+A^{\mu}pprox g_{V}(q^{2})\gamma^{\mu}(1-\lambda\gamma^{5})$$

where $g_V(q^2) \approx 1$ and λ from the lattice

Great progress from lattice QCD, including scalar & tensor charges

Strong interaction introduces extra terms into the vertex \rightarrow Construct all Lorentz invariants

$$\langle p|V^{\mu}|n\rangle = \bar{p} \left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M} \sigma^{\mu\nu} q_{\nu} + i \frac{g_{S}}{2M} q^{\mu} \right] n$$
$$\langle p|A^{\mu}|n\rangle = \bar{p} \left[g_{A}\gamma^{\mu}\gamma^{5} + \frac{g_{T}}{2M} \sigma^{\mu\nu} q_{\nu}\gamma^{5} + i \frac{g_{P}}{2M} q^{\mu}\gamma^{5} \right] n$$

Strong interaction introduces extra terms into the vertex \rightarrow Construct all Lorentz invariants

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$
$$\langle p|A^{\mu}|n\rangle = \bar{p}\left[g_{A}\gamma^{\mu}\gamma^{5} + \frac{g_{T}}{2M}\sigma^{\mu\nu}q_{\nu}\gamma^{5} + i\frac{g_{P}}{2M}q^{\mu}\gamma^{5}\right]n$$

Introduction of recoil $(\sim q/M)$ terms

Strong interaction introduces extra terms into the vertex \rightarrow Construct all Lorentz invariants

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$
$$\langle p|A^{\mu}|n\rangle = \bar{p}\left[g_{A}\gamma^{\mu}\gamma^{5} + \frac{g_{T}}{2M}\sigma^{\mu\nu}q_{\nu}\gamma^{5} + i\frac{g_{P}}{2M}q^{\mu}\gamma^{5}\right]n$$

Introduction of recoil $(\sim q/M)$ terms

CVC requires
$$g_S=0$$
 & $g_M=\mu_p^{an}-\mu_n=4.7$

Nucleus is spherical system \rightarrow multipole decomposition, $elementary\ particle$

Nucleus is spherical system \rightarrow multipole decomposition, elementary particle

Relativistic generalization in Breit frame

$$\langle f|V^0+A^0|i\rangle\propto\sum_{LM}(-)^{J_f-M_f}\left(\begin{array}{ccc}J_f&L&J_i\\-M_f&M&M_i\end{array}\right)(Y_L^M)^*F_L(q^2)$$

Nucleus is spherical system \rightarrow multipole decomposition, elementary particle

Relativistic generalization in Breit frame

$$\langle f|V^0+A^0|i\rangle\propto\sum_{LM}(-)^{J_f-M_f}\left(egin{array}{ccc}J_f&L&J_i\\-M_f&M&M_i\end{array}
ight)(Y_L^M)^*F_L(q^2)$$

Conservation of angular momentum limits # terms

Require transformation from form factors to matrix elements

Require transformation from form factors to matrix elements

Immediately faced with several issues:

Weak current in strongly bound system?

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions
- Final state interactions

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions
- Final state interactions

Here the going gets rough \rightarrow severe approximations

Weak current in strongly bound system?

→ Impulse approximation, non-interacting nucleons

Weak current in strongly bound system?

- → Impulse approximation, non-interacting nucleons
 - Neglects meson exchange
 - Nucleon-nucleon interaction present in many-body methods

Weak current in strongly bound system?

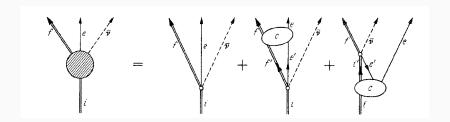
- → Impulse approximation, non-interacting nucleons
 - Neglects meson exchange
 - Nucleon-nucleon interaction present in many-body methods

Relativistic nuclear wave functions

- → Non-relativistic nucleons
 - expand operator to $\mathcal{O}(v/c)$
 - Incomplete wave function basis, core polarization

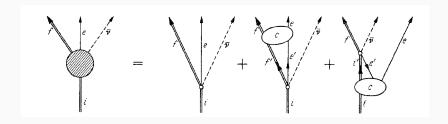
Final state interactions

1. Coulomb interaction



Final state interactions

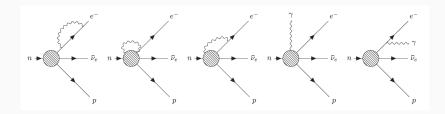
1. Coulomb interaction



 \rightarrow Fermi function, induced Coulomb terms

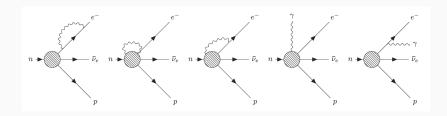
Final state interactions

2. EW Radiative corrections



Final state interactions

2. FW Radiative corrections



+ higher orders, γW boxes: talks by M. Gorshteyn, C. Y. Seng, M. Ramsey-Musolf

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Changes

- Available phase space
- Final state interactions
- Opens new decay modes (bound & exchange)

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Changes

- Available phase space
- Final state interactions
- Opens new decay modes (bound & exchange)

Require atomic wave functions

- Central & static potential
- Sudden approximation

Standard Model Calculation: Molecule

Similar as atomic system, but changes

- Available phase space
- Molecular excitation, ionization
- Recoil correction & distribution

Standard Model Calculation: Molecule

Similar as atomic system, but changes

- Available phase space
- Molecular excitation, ionization
- Recoil correction & distribution

Enter quantum chemistry

- Born-Oppenheimer approximation
- MOLCAO

Current status

Significant effort to rediscover & renew formalisms

Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries

Ayala Glick-Magid ^a, Yonatan Mishnayot ^{a,b,c}, Ish Mukul ^b, Michael Hass ^b, Sergey Vaintraub ^c, Guy Ron ^a, Doron Gazit ^{a,*}

Significant effort to rediscover & renew formalisms

Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries

Ayala Glick-Magid ^a, Yonatan Mishnayot ^{a,b,c}, Ish Mukul ^b, Michael Hass ^b, Sergey Vaintraub ^c, Guy Ron ^a, Doron Gazit ^{a,*}

PHYSICAL REVIEW C 95, 024327 (2017)

Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor

M. Haaranen, J. Kotila, and J. Suhonen

Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä, Finland

(Received 10 November 2016; published 28 February 2017)

Significant effort to rediscover & renew formalisms

Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries

Ayala Glick-Magid ^a, Yonatan Mishnayot ^{a,b,c}, Ish Mukul ^b, Michael Hass ^b, Sergey Vaintraub ^c, Guy Ron ^a, Doron Gazit ^{a,*}

PHYSICAL REVIEW C 95, 024327 (2017)

Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor

M. Haaranen, J. Kotila, and J. Suhonen

Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä, Finland

(Received 10 November 2016; published 28 February 2017)

Relativistic Theory and Ab Initio Simulations of Electroweak Decay Spectra in Medium-Heavy Nuclei and of Atomic and Molecular Electronic Structure

Active participation of QED, QCD & WI \rightarrow Complicated system

Large scale gap to cross:

 $\mathsf{Quark} \to \mathsf{Nucleon} \to \mathsf{Nucleus} \to \mathsf{Atom} \to \mathsf{Molecule}$

Active participation of QED, QCD & WI \rightarrow Complicated system

Large scale gap to cross:

 $\mathsf{Quark} \to \mathsf{Nucleon} \to \mathsf{Nucleus} \to \mathsf{Atom} \to \mathsf{Molecule}$

$$N(W)dW = \frac{G_V^2 V_{ud}^2}{2\pi^3} F_0(Z, W) L_0(Z, W) U(Z, W) R_N(W, W_0, M)$$

$$\times Q(Z, W, M) R(W, W_0) S(Z, W) X(Z, W) r(Z, W)$$

$$\times C(Z, W) D_C(Z, W, \beta_2) D_{FS}(Z, W, \beta_2)$$

$$\times pW(W_0 - W)^2 dW$$

LH *et al.*, Rev. Mod. Phys. 90 (2018) 015008 LH, Severijns, Comp. Phys. Comm. 10.1016/j.cpc.2019.02.012

Order of magnitude estimates

Nuclear structure sensitivity in shape factor

$$C(Z,W) \sim 1 \pm \frac{4}{3} \frac{W}{M_N} \frac{\boldsymbol{b}}{Ac} \pm \frac{4\sqrt{2}}{21} \alpha ZWR\boldsymbol{\Lambda} - \frac{1}{3WMc} (\pm 2\boldsymbol{b} + \boldsymbol{d})$$

Order of magnitude estimates

Nuclear structure sensitivity in shape factor

$$C(Z,W) \sim 1 \pm \frac{4}{3} \frac{W}{M_N} \frac{\boldsymbol{b}}{Ac} \pm \frac{4\sqrt{2}}{21} \alpha ZWR\boldsymbol{\Lambda} - \frac{1}{3WMc} (\pm 2\boldsymbol{b} + \boldsymbol{d})$$

Fill in typical numbers to obtain

Matrix element	Name	Slope (% MeV ⁻¹)
Ь	Weak Magnetism	0.5
d	Induced Tensor	0.1
Λ	Induced Pseudoscalar	0.1

Weak magnetism is generally more stable than others

 \rightarrow essential to get this right

Nuclear matrix elements

Overview

$$b = A(g_M \mathcal{M}_{GT} + g_V \mathcal{M}_L)$$
$$d = A(g_A \mathcal{M}_{\sigma L} + g_T \mathcal{M}_{GT})$$
$$\Lambda \propto \mathcal{M}_{1y}$$

Nuclear matrix elements

Overview

$$b = A(g_M \mathcal{M}_{GT} + g_V \mathcal{M}_L)$$

 $d = A(g_A \mathcal{M}_{\sigma L} + g_T \mathcal{M}_{GT})$
 $\Lambda \propto \mathcal{M}_{1y}$

where

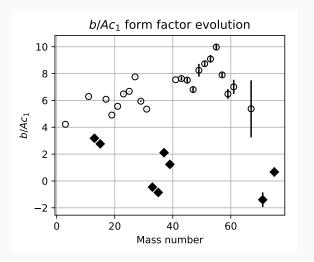
$$\mathcal{M}_{L} = \langle \beta || \sum_{i} \tau_{i} \vec{l_{i}} || \alpha \rangle$$

$$\mathcal{M}_{\sigma L} = \langle \beta || \sum_{i} \tau_{i} i \vec{\sigma_{i}} \times \vec{l_{i}} || \alpha \rangle$$

$$\mathcal{M}_{1y} \propto \langle \beta || \sum_{i} \tau_{i} r^{2} C_{121}^{nn'k} \sigma_{i,n} Y_{2}^{n'}(\hat{r_{i}}) || \alpha \rangle$$

Weak magnetism

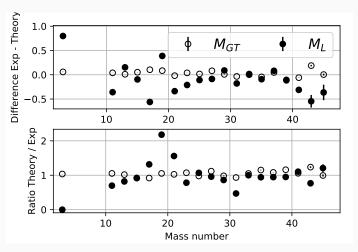
Mirror nuclei have CVC-determined WM



open: I + 1/2, closed: I - 1/2

Weak magnetism

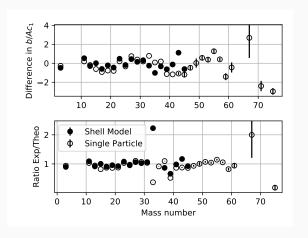
How does shell model perform right now?



'Easy' matrix elements only accurate to 10--20%

Weak magnetism

How does shell model perform right now?



$$\Delta b/Ac=1
ightarrow 0.1\%~{
m MeV^{-1}}$$

Induced tensor

Still large discrepancies for d/Ac

PHYSICAL REVIEW C 95, 035501 (2017)

 2_1^+ to 3_1^+ γ width in 22 Na and second class currents

S. Triambak, ^{1,2,*} L. Phuthu, ¹ A. García, ³ G. C. Harper, ³ J. N. Orce, ¹ D. A. Short, ³ S. P. R. Steininger, ³ A. Diaz Varela, ⁴ R. Dunlop, ⁴ D. S. Jamieson, ⁴ W. A. Richter, ¹ G. C. Ball, ⁵ P. E. Garrett, ⁴ C. E. Svensson, ⁴ and C. Wredb. ^{3,6}

$$21(6) \ge d/Ac \ge 3(6)$$

Factor 7 differences depending on shell model results \rightarrow killer!

Induced tensor

Immediate response last workshop (Alex Brown)

```
      3+ to 2+
      USDB
      USDA
      USD

      M(s-tau) (c<sub>1</sub>)
      0.042
      0.012
      0.027

      M(l-tau) (part of b)
      -1.07
      -1.00
      -1.00

      M(d-tau)
      0.062
      0.081
      0.066
```

Relative phases look robust but s-tau is not very uncertain

so we should look at b/d (not b/c and d/c)

Alex Brown, ND2013, NYC, March 4, 2013

Induced tensor

Immediate response last workshop (Alex Brown)

```
    3+ to 2+
    USDB
    USDA
    USD

    M(s-tau) (c1)
    0.042
    0.012
    0.027

    M(l-tau) (part of b)
    -1.07
    -1.00
    -1.00

    M(d-tau)
    0.062
    0.081
    0.066
```

Relative phases look robust but s-tau is not very uncertain

so we should look at b/d (not b/c and d/c)

Alex Brown, ND2013, NYC, March 4, 2013

General lesson: when looking at allowed transitions, make sure \mathcal{M}_{GT} is large and stable

Neutron is extremely well-studied system, ideal system for V_{ud}

$$|V_{ud}|^2 \tau_n \left(f_V + 3f_A \lambda^2 \right) = \frac{2\pi^3}{G_F^2 m_e^5 g_V^2} \frac{1}{1 + RC}$$

Neutron is extremely well-studied system, ideal system for V_{ud}

$$|V_{ud}|^2 \tau_n \left(f_V + 3f_A \lambda^2 \right) = \frac{2\pi^3}{G_F^2 m_e^5 g_V^2} \frac{1}{1 + RC}$$

From β decay perspective, need 3 things

• Neutron lifetime

Neutron is extremely well-studied system, ideal system for V_{ud}

$$|V_{ud}|^2 \tau_n \left(f_V + 3f_A \lambda^2 \right) = \frac{2\pi^3}{G_F^2 m_e^5 g_V^2} \frac{1}{1 + RC}$$

From β decay perspective, need 3 things

- Neutron lifetime
- λ

Neutron is extremely well-studied system, ideal system for V_{ud}

$$|V_{ud}|^2 \tau_n \left(f_V + 3f_A \lambda^2 \right) = \frac{2\pi^3}{G_F^2 m_e^5 g_V^2} \frac{1}{1 + RC}$$

From β decay perspective, need 3 things

- Neutron lifetime
- λ
- Theory calculations for $f_{V,A}$ and RC

Neutron is extremely well-studied system, ideal system for V_{ud}

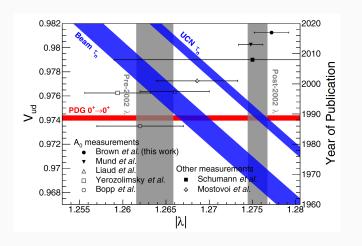
$$|V_{ud}|^2 \tau_n \left(f_V + 3f_A \lambda^2 \right) = \frac{2\pi^3}{G_F^2 m_e^5 g_V^2} \frac{1}{1 + RC}$$

From β decay perspective, need 3 things

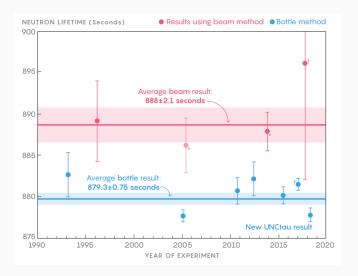
- Neutron lifetime
- λ
- Theory calculations for $f_{V,A}$ and RC

Clearly, all trivial things

Major decades-long community efforts



Major decades-long community efforts



Well, at least $f_{V,A}$ are well-known, right? RIGHT?

Well, at least $f_{V,A}$ are well-known, right? RIGHT?

Seminal work by Wilkinson in 1982, exhaustively listed all corrections: found $\Delta f_{V,A} \simeq 10^{-6}$, $f_V = 1.6887(2)$

Well, at least $f_{V,A}$ are well-known, right? RIGHT?

Seminal work by Wilkinson in 1982, exhaustively listed all corrections: found $\Delta f_{V,A} \simeq 10^{-6}$, $f_V = 1.6887(2)$

One particular case appears forgotten, however...

Recap:

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$

Recap:

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$

gives rise to spectrum shape contribution

$$\left(\frac{\mathrm{d}N}{\mathrm{d}W_e}\right)^{\mathrm{WIII}} \propto \frac{4}{3M} \frac{g_M}{g_A \mathcal{M}_{GT}} p_e W_e (W_0 - W_e)^2 \times \left(W_e - \frac{W_0}{2} - \frac{m_e^2}{2W_e}\right)$$

represents vector-axial vector spacelike cross term

Recap:

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$

gives rise to spectrum shape contribution

$$\left(\frac{\mathrm{d}N}{\mathrm{d}W_e}\right)^{\mathrm{wm}} \propto \frac{4}{3M} \frac{g_M}{g_A \mathcal{M}_{GT}} p_e W_e (W_0 - W_e)^2$$
$$\times \left(W_e - \frac{W_0}{2} - \frac{m_e^2}{2W_e}\right)$$

represents vector-axial vector spacelike cross term

However cross terms do not contribute to decay rate!

Recap:

$$\langle p|V^{\mu}|n\rangle = \bar{p}\left[g_{V}\gamma^{\mu} + \frac{g_{M} - g_{V}}{2M}\sigma^{\mu\nu}q_{\nu} + i\frac{g_{S}}{2M}q^{\mu}\right]n$$

gives rise to spectrum shape contribution

$$\left(\frac{\mathrm{d}N}{\mathrm{d}W_e}\right)^{\mathrm{WIII}} \propto \frac{4}{3M} \frac{g_M}{g_A \mathcal{M}_{GT}} p_e W_e (W_0 - W_e)^2$$
$$\times \left(W_e - \frac{W_0}{2} - \frac{m_e^2}{2W_e}\right)$$

represents vector-axial vector spacelike cross term

However cross terms do not contribute to decay rate!

Except...

Weinberg, Phys Rev 115 (1959) 481

V-A cross terms contribute due to Coulomb interaction, i.e. $\mathcal{O}(\alpha Z)$

V-A cross terms contribute due to Coulomb interaction, i.e. $\mathcal{O}(\alpha Z)$

Leads to Wilkinson's result, $\Delta f_{wm} \sim 10^{-6}$ for neutron

V-A cross terms contribute due to Coulomb interaction, i.e. $\mathcal{O}(\alpha Z)$

Leads to Wilkinson's result, $\Delta f_{wm} \sim 10^{-6}$ for neutron

There is one more thing: Coulomb corrections on weak magnetism gives non-negligible terms $\mathcal{O}(\alpha Z/MR)$ besides expected $\mathcal{O}(\alpha Z(q/M)qR)$

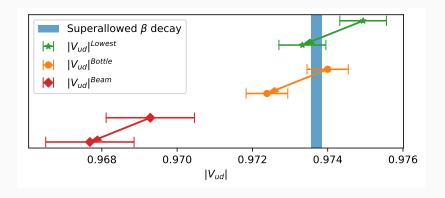
$$\frac{f_A}{f_V} = 1 + \frac{4}{5} \frac{\alpha Z}{MR} \frac{g_M}{g_A} = 1.0040(2)$$

Plot twist!

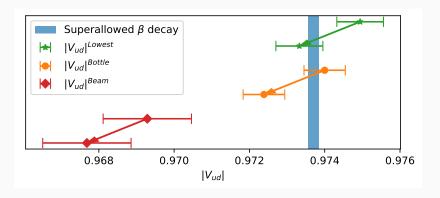
Wilkinson Nucl Phys A 377 (1982) 474; Bottino *et al.* Phys Rev C 9 (1974) 2052; Holstein Phys Rev C 10 (1974) 1215

Using
$$\Delta_R = 0.02467(22)$$
, $\lambda = 1.27510(66)$
$$|V_{ud}|^2 \tau_n \left(1 + 3 \frac{f_A}{f_V} \lambda^2\right) = 4903.5(1.1) s$$

Using
$$\Delta_R = 0.02467(22)$$
, $\lambda = 1.27510(66)$
$$|V_{ud}|^2 \tau_n \left(1 + 3 \frac{f_A}{f_V} \lambda^2\right) = 4903.5(1.1) s$$



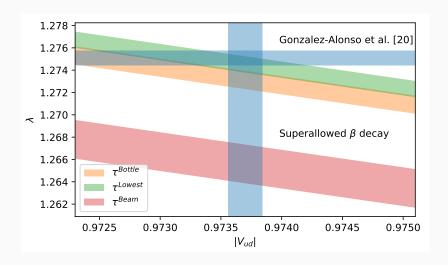
Using
$$\Delta_R = 0.02467(22)$$
, $\lambda = 1.27510(66)$
$$|V_{ud}|^2 \tau_n \left(1 + 3 \frac{f_A}{f_V} \lambda^2\right) = 4903.5(1.1) s$$



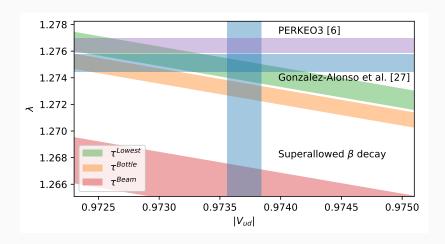
Yikes!

Seng et al., PRL 121 (2019) 241804; PPNP 104 (2019) 165

Using the new f_A/f_V



Using the new f_A/f_V , including latest PERKEO3



Assume superallowed V_{ud} , predict 'Standard Model' au_n

$$\lambda = 1.27510(66) \longrightarrow \tau_n^{SM} = 877.0(8) s$$

Assume superallowed V_{ud} , predict 'Standard Model' au_n

$$\lambda = 1.27510(66) \longrightarrow \tau_n^{SM} = 877.0(8) s$$

Also impacts Big Bang Nucleosynthesis, helium mass abundance

$$\frac{\Delta Y_p}{Y_p} \approx 0.73 \frac{\Delta \tau_n}{\tau_n}.$$

Shift in neutron lifetime leads to

$$\Delta Y_p = -5.1 \cdot 10^{-4}$$

 $3 \sigma \text{ shift!}$

At $\mathcal{O}(10^{-3})$, nuclear structure is main culprit

- Nuclear matrix elements only precise to 10-20%
- Generally: large meson exchange corrections on induced currents
- Isospin multiplet decays are way to go: WM from CVC, induced tensor = 0
- Major ab initio efforts underway

At
$$\leq \mathcal{O}(10^{-4})$$
, everything breaks

At $\leq \mathcal{O}(10^{-4})$, everything breaks , but not in the same place!

- Low energy: Atomic & Molecular effects (exchange)
- Endpoint: Final state interactions, excitations
- Radiative corrections: higher order, model dependence
- Low Z: recoil corrections to matrix elements
- High Z: everything electromagnetic

Spectrum shape measurements are valuable tests for S, T currents

Spectrum shape measurements are valuable tests for S, T currents

Developments in BSM β searches have large outside influence

Spectrum shape measurements are valuable tests for S, T currents

Developments in BSM β searches have large outside influence

Nuclear structure generally is main current generation bottleneck

Spectrum shape measurements are valuable tests for S, T currents

Developments in BSM β searches have large outside influence

Nuclear structure generally is main current generation bottleneck

Further, radiative & recoil corrections become bottleneck even for nuclear-structure-favorable transitions

Spectrum shape measurements are valuable tests for S, T currents

Developments in BSM β searches have large outside influence

Nuclear structure generally is main current generation bottleneck

Further, radiative & recoil corrections become bottleneck even for nuclear-structure-favorable transitions

Exciting (unnerving?) developments happening in β decay fundamentals