# Strong-interaction effects in light antiprotonic atoms

**Detlev Gotta** 

Institut für Kernphysik, Forschungszentrum Jülich

Antiproton-nucleus interactions and related phenomena, ECT Trento, 21.6.2019

- EXOTIC ATOMS
- STRONG INTERACTION
- EXPERIMENT
- **RESULTS**
- RECENT DEVELOPMENTS
- OUTLOOK & SUMMARY

# **EXOTIC ATOMS**

# ATOM



$$V_{Coulomb} = -\frac{Ze^2}{r}$$

quantisation of action:  $E \cdot t = 2\pi\hbar$  $a_n = \frac{\hbar c}{m_{red} c^2 \alpha} \cdot \frac{n^2}{Z^2}$  $a_{Bohr} = \frac{\hbar c}{m_{red} c^2 \alpha}$  $B_n = -m_{red} c^2 \alpha^2 \cdot \frac{Z^2}{2n^2}$ 50

# **EXOTIC ATOM**

### replace electrons by heavier negatively charged particles



### **ATOMIC BINDING ENERGY**



### **ATOMIC BINDING ENERGY**



### ATOMIC BINDING ENERGY



# including STRONG INTERACTION



# HADRONIC ATOM



$$\Delta E_{strong} = \epsilon - i \frac{\Gamma}{2} = \int \Psi_{nl}^{\dagger} U_{strong} \Psi_{nl} \, \mathrm{d} V \quad \propto \quad a_{l} \in \mathbb{C}$$

 $\Delta E_{strong} \quad reduces \ to \ complex \ numbers \qquad - \ scattering \ length \ a_s \ for \ s-waves \\ - \ scattering \ volume \ a_p \ for \ p-waves$ 

scattering experiment at threshold = relative energy  $\approx 0$ 

### ATOMIC CASCADE



 $\Gamma \cdot \Delta t \cong \hbar$ 

 $\varepsilon > 0$  (<0) = attractive (repulsive) interaction

### First X-rays from pionic and antiprotonic atoms

#### Rochester 1952

### **CERN 1970**

X-Rays from Mesic Atoms\*

M. CAMAC, A. D. MCGUIRE, J. B. PLATT, AND H. J. SCHULTE University of Rochester, Rochester, New York (Received August 18, 1952)

### **NaI(Tl)** inorganic scintillator

OBSERVATION OF ANTIPROTONIC ATOMS

A. BAMBERGER, U. LYNEN, H. PIEKARZ\*, J. PIEKARZ\*\*, B. POVH and H. G. RITTER Max-Planck-Institut für Kernphysik, Heidelberg, Germany and CERN, Geneva, Switzerland

and

G. BACKENSTOSS, T. BUNACIU, J. EGGER\*\*\*, W. D. HAMILTON ‡ and H. KOCH Institut für Experimentelle Kernphysik der Universität und des Kernforschungszentrums, Karlsruhe, Germany and CERN, Geneva, Switzerland

Received 28 August 1970



FIG. 1. Pulse-height spectrum from carbon.



Fig. 2. Antiprotonic X-ray spectrum of  $_{81}$ Tl obtained from  $14 \times 106$  stopped antiprotons measured with a 10 cm<sup>3</sup> Ge(Li)-detector.

Energy (keV)

### **ELECTRONIC & ANTIPROTONIC X-RAYS - XENON**

### What happens when an antiproton meets 54 electrons?



# **HISTORY**

## strong-interaction effects in $Z \le 8$

| pre - LEAR experiments 1974 - 1980 |             |              |                                                |                |                 |    |   |   |
|------------------------------------|-------------|--------------|------------------------------------------------|----------------|-----------------|----|---|---|
|                                    |             |              | Si(Li), Ge                                     | targets        | <sup>₄</sup> He | Li | N | 0 |
| LEAR experiments 1983 - 1996       |             |              |                                                |                |                 |    |   |   |
|                                    | ~           | PS176        | Si(Li), Ge                                     |                | ⁴He             | Li | N | 0 |
|                                    | 1988        | <b>PS171</b> | XDC                                            | H <sub>2</sub> |                 |    |   |   |
|                                    | 983 -       | PS174        | Si(Li), GSPC                                   | $H_2 D_2$      | ⁴He             |    |   |   |
|                                    | -           | <b>PS175</b> | cyclotron trap<br><mark>Si(Li), Ge, XDC</mark> | $H_2 D_2 ^3He$ | e ⁴He           |    |   |   |
|                                    | 1984 - 1996 | PS207        | cyclotron trap<br>crystal spectrometer<br>CCDs | $H_2 D_2$      |                 |    |   |   |

# **STRONG INTERACTION**

### **THEORETICAL DESCRIPTION**



Buck, Dover, Richard, Ann. Phys. (NY) 121 (1979) 47 Klempt, Bradamante, Martin, Richard, Phys. Rep. 368 (2002) 119 - review

### **NN POTENTIAL** – real part

G-parity for fermion-antifermion systems

$$\boldsymbol{\eta}_{\mathbf{G}} = \left(-1\right)^{\mathbf{L} + \mathbf{S} + \mathbf{I} + 1}$$

### quantum numbers

### meson contribution



spectroscopic notation:  ${}^{2I+1, 2S+1}L_j$ 



### bound states?

...

would lead to anomalous behavior of shift and width

### but: annihilation - many bound states disappear

Lacombe, Loiseau, Moussallam, Vinh Mau, Phys. Rev C 29 (1984) 1800,

# Antiprotonic Hydrogen and Deuterium

### 2p hyperfine splitting





old

new

**bound-state QED** + **strong interaction** 

### **PROTONIUM - hyperfine transitions**



### 3d – 2p HYPERFINE TRANSITIONS



**HFS QED old** 

### $A \leq 4$ nuclei

hadronic effects in s, p, and d waves

| <b>ρ</b> ρ      | s-wave           | spin-spin interaction <sup>1</sup> S <sub>0</sub> / <sup>3</sup> S <sub>1</sub> |
|-----------------|------------------|---------------------------------------------------------------------------------|
| ₽d              | <mark>р</mark> п | isospin                                                                         |
| pp, pd          | p-wave           | <i>spin-orbit interaction nuclear bound states</i>                              |
| <b>ρ</b> Α(Ν,Ζ) |                  | annihilation strength<br>baryon-antibaryon asymmetry                            |
| X-ray ener      | gies             | bound-state QED                                                                 |

# **EXPERIMENT I**

general considerations for stopped antiprotons  $Z \leq 2$ 

### ATOMIC CASCADE

### isolated hydrogen atom





### **LINE YIELDS** strong density dependence



### **ANTIPROTONIC HYDROGEN**

PS175: K. Heitlinger et al., Z. Phys. A 342 (1992) 359

#### Lyman and Balmer series

direct measurement crystal spectrometer two different energy ranges n Balmer series pH 30mbar pD Balmer series Si (Li)-1 4000 α 30 mbar α Si (Li) from high n states 2000 KQ Κα ? 0 10 10 12 2 12 14 E/keV 2 1 6 E/keV *Γ* ≈ 1 keV *Γ* ≈ 30-500 meV  $Y_{x} \approx 50\%$  $Y_x \approx 1\%$ 

# **EXPERIMENT II**

PS 175 + PS 207 - X-ray source + X-ray detector

PS 207 - X-ray source + crystal spectrometer + X-ray detector

### **CYCLOTRON TRAP** concentrates particles



"wind up" range curve

in (weakly) focusing magnetic field

#### increase in stop density

| pions (PSI) |        | Χ | 200       |
|-------------|--------|---|-----------|
| antiprotons | (LEAR) | Χ | 1.000.000 |

- $\Rightarrow$  high X ray line yields
- $\Rightarrow$  bright X ray source



gain  $\approx 10^6$  compared with linear stop arrangement

stop efficiency  $\approx 80\%$  @ 30 mbar

cyclotron trap: L.M. Simons, Phys. Scripta T22 (1988) 90, Hyperfine Int. 81 (1993) 253

# DEGRADERS and CRYOGENIC TARGET inside

### CYCLOTRON TRAP II

super-conducting split coil magnet



### **DEGRADERS** and **CRYOGENIC TARGET**

### inside CYCLOTRON TRAP II

stop efficiency 80% @ 30 mbar

super-conducting split coil magnet



### **PRINCIPLE** of **SET-UP**



L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253



## **BRAGG CRYSTAL**

*spherically bent radius of curvature 2985.4 mm* 

energy range quartz, Si E = 1.7 – 15 keV

energy determination  $\Delta E/E \ge 1-2 \cdot 10^{-6}$ 

energy resolution  $\Delta E/E \cong 10^{-4}$ 



## **DETECTOR** crystal spectrometer Large - Area Focal Plane Detector

CCD: charge-coupled device  $AE \approx 150 \text{ eV}$  @ 4 keV  $\varepsilon_{\rm X} \approx 90\%$ allows background suppression 2 × 3 array of 24 mm × 24 mm devices CCD = Charge-Coupled Device 300µm  $\sim\sim\sim\sim$ cooling (LN<sub>2</sub>) storage area ADC Si  $\Delta E/E$  like Si(Li) charge (ADC) ↑ flexible boards **Si** Kα image area 1.740 keV pile up (2x) pixel size pile up (3x) 40 μ*m* × 40 μ*m* p<sup>3</sup>He(5-4) .687 keV N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

### pixel distance

#### manufacturer

| @ | 20°C   | 40.0 $\mu m$ $\pm$    | 0.17       | ' <b>nn</b> |
|---|--------|-----------------------|------------|-------------|
| @ | -100°C | 39.9775 $\mu$ m $\pm$ | <i>0.6</i> | nn          |


# **RESULTS from LEAR**

- PS 175
- PS 176
- PS 207

# **NUCLEON-ANTINUCLEON**

## **SPIN-SPIN and SPIN-ORBIT INTERACTION**

#### **EXPERIMENT - PROTONIUM** 1s state



LEAR PS207: M. Augsburger et al., Nucl. Phys. A 658 (1999) 149





#### **EXPERIMENT - PROTONIUM 2p state**

cyclotron trap + crystal spectrometer

 $\Delta E = 290 \pm 9 \text{ meV}$ 



#### **EXPERIMENT - ANTIPROTONIC DEUTERIUM**



ground state transitionweak signalspin average $\varepsilon_{1s} = -1050 \pm 250 \text{ eV}$  $\Gamma_{1s} = -1000 \pm 750 \text{ eV}$ LEAR PS207: M.. Augsburger et al., NP A 658 (1999) 149

$$Y_{K\alpha} = (5 \pm 1) \cdot 10^{-4}$$

2p stateHFS not resolvablespin average $\varepsilon_{2p} = -243 \pm 26 \text{ meV}$  $\Gamma_{2p} = 489 \pm 30 \text{ meV}$ LEAR PS207: D.Gotta et al., NP A 660 (1999) 283 $\Delta E = 333 \pm 34 \text{ meV}$ 

#### **EXPERIMENT - ANTIPROTONIC HELIUM**



Folie 42

#### **EXPERIMENT - ANTIPROTONIC HELIUM**



| spi                      | in avera   | age E  | Г                    |     |  |
|--------------------------|------------|--------|----------------------|-----|--|
| р³Не                     | 2р         | - 17±5 | <b>25 ± 9</b>        | eV  |  |
|                          | <b>3d*</b> |        | <b>2.14 ± 0.18</b>   | meV |  |
| p <sup>⊐</sup> He        | 2р         | - 18±2 | <b>45</b> ± <b>5</b> | eV  |  |
|                          | 3d*        |        | <b>2.36</b> ± 0.10   | meV |  |
| * from intensity balance |            |        |                      |     |  |

- <sup>3</sup>He HFS up to 10 eV
- <sup>4</sup>He HFS 1-3 eV unresolvable
- single nucleon annihilation ?  $\Gamma_{A(Z,N)} \propto Z \cdot \Gamma_{pn} + N \cdot \Gamma_{pp}$

#### **EXPERIMENT - ANTIPROTONIC LITHIUM**



isotope effects ?

Folie 44

#### **EXPERIMENT - ANTIPROTONIC OXYGEN**

PS176 Th. Köhler et al., Phys. Lett. B 176 (1986) 327 D. Rohmann et al, Z. Phys. A 325 (1986) 261



| spi                            | n avera | ge ε            | Г             |  |  |
|--------------------------------|---------|-----------------|---------------|--|--|
| рО                             | 2p sta  | ate not accessi | ble by X-rays |  |  |
|                                |         |                 |               |  |  |
| <mark>р</mark> <sup>16</sup> О | 3d      | – 112 ± 20      | 495± 47 eV    |  |  |
| <sup>—</sup> <sup>17</sup> O   | 3d      | - 140 ± 47      | 540±150 eV    |  |  |
| <mark>p</mark> 18 <b>O</b>     | 3d      | - 195 ± 21      | 640± 43 eV    |  |  |
| isotope effects visible        |         |                 |               |  |  |

#### target H<sub>2</sub>O

\* <sup>16</sup>O and <sup>18</sup>O contributions

# **ANNIHILATION STRENGTH**

#### ATOM DATA $\Leftrightarrow$ LOW-ENERGY SCATTERING



hydrogen atom data (Trueman formula)



data: LEAR - PS201(OBELIX)



K. Protasov et al., Eur. Phys. J. A 7 (2001) 429 supplemantary data: PS176

#### saturation ?

seen also in optical potential analyses

 $U_{opt} \propto \mathbf{a} \cdot \rho(\mathbf{r})$ 

A. Gal, E. Friedman and C.J. Batty, Phys. Lett. B491 (2000) 219

qualitatively – strong annihilation suppresses wave function inside matter

e.g.  $\varepsilon_{1s} < 0$  for  $\overline{p}p$ 

 $\bar{p}^{4}He \rightarrow {}^{3}He,T,D + X$ 

primordial nuclei abundancy

# ANNIHILATION STRENGTH and ISOSPIN

### Relative annihilation on p,n - isospin I = 0,1



### Relative annihilation on p,n - isospin I = 0,1

relation to hadronic line width

| $\widetilde{\Gamma}(\overline{\mathbf{p}}^{3}\mathbf{He})$                | $2 + \mathbf{R}^{\mathbf{bound}}$           |
|---------------------------------------------------------------------------|---------------------------------------------|
| $\overline{\widetilde{\Gamma}(\overline{\mathbf{p}}^{4}\mathbf{He})}^{-}$ | $\overline{2+2\mathbf{R}^{\mathbf{bound}}}$ |

$$\mathbf{R}^{\mathbf{bound}}$$
 from  $\Gamma(\mathbf{\overline{p}}^{3,4}\mathbf{He})$  if  $\frac{\Delta\Gamma}{\Gamma} \approx \%$ 

 $\widetilde{\Gamma} = \Gamma$  corrected for different overlap ( $\approx \%$ )



# **RECENT DEVELOPMENTS**

mainly from pionic X-ray measurements (PSI)

- R-94.01  $\pi/\mu$  mass ratio
- R-97.02 pion mass
- R-98.01 pionic & muonic hydrogen
- R-06.03 pionic deuterium

DETECTOR

#### **PROTONIUM** ground state again



M. Augsburger et al., NP A 658 (1999) 149

#### again **PROTONIUM ground state**



#### FAST CCDs

#### for direct measurements

#### fully depleted fast CCD (pnCCD)

- $-t = 300 500 \,\mu m$
- high efficiency up to 25 keV
- 64/128 channels parallel
- 400/1000 frames/s
- 150/75 µm pixel size



A. Ackens et al., IEEE vol. 46 (1999) 1995 H. Gorke et al., AIP conf. proc. 793 (2005) 341 FZJ + MPI - Munich



#### Possible set-up (at AD) I



Possible set-up II

antiproton trap + gas jet + fast CCDs

"eat up" antiprotons

HΥ

1 m

#### pnCCD raw data PSI 2006



## **BRAGG CRYSTAL**

#### again **PROTONIUM 2p - state**



### **BRAGG CRYSTAL**



Folie 61

#### 2p HYPERFINE SPLITTING - bound state QED

#### any splitting observable ?





#### old

new

S. Boucard and P. Indelicato, to be published Veitia, Pachucki, Phys. Rev A 69 (2004) 042501

discussion see D. Gotta, Prog.Part.Nucl.Phys. 52 (2004) 133

LEAR PS207: D. Gotta et al., Nucl. Phys. A 660 (1999) 283

$$\Gamma_{2\mathbf{p}}^{\overline{\mathbf{p}}\mathbf{D}} \approx 13 \cdot \Gamma_{2\mathbf{p}}^{\overline{\mathbf{p}}\mathbf{H}}$$

reasonable from larger overlap

$$\Gamma \propto \int \Im \mathbf{U}_{\mathbf{had}} \left| \Psi_{\mathbf{n}\ell} \right|^2 \, \mathbf{dV}$$

#### **SPECTROMETER RESPONSE**

#### new approach (PSI) ECRIT



#### ECRIT = Electron Cyclotron Resonance Ion Trap

#### **Superconducting coils**

cyclotron trap

#### permanent hexapole

- . AECR-U type
- . 1 Tesla at the hexapole wall
- . open structure

large mirror ratio = 4.3  $B_{max} / B_{min}$  !

S. Biri, L. Simons, D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 K. Stiebing, Frankfurt – design assistance

#### **CRYSTAL SPECTROMETER** and **PSI ECRIT**

Electron Cyclotron Resonance Ion Trap = cyclotron trap (4) + hexapole magnet (2)



#### **CRYSTAL SPECTROMETER** and **PSI ECRIT**

Electron Cyclotron Resonance Ion Trap = cyclotron trap (4) + hexapole magnet (2)







#### Asymmetric cut crystals



## **ATOMIC CASCADE IN HYDROGEN**

## **PIONIC OR ANTIPROTONIC HYDROGEN**



## **MUONIC HYDROGEN**



#### **COULOMB DE-EXCITATION**



results - model free determination of Coulomb Doppler contributions

- ${}^{1}S_{0} / {}^{3}S_{1}$  population = 1 : (2.94 ± 0.24)
  - statistical 1:3 QED 183 meV

D. Covita, PhD thesis Coimbra (2008) D. Covita et al., Phys. Rev. Lett. 102 (2009) 023401

- ∆E<sub>HFS</sub>

= 194 ± 12 meV

#### **ANTIPROTONIC HYDROGEN** - series limit

high np states populated in contrast to  $\mu$ H,  $\pi$ H



#### Coulomb de-excitation state dependent !

$$n_{\max} \approx \sqrt[3]{\frac{2n_f^2}{(\Delta E/E_{\infty}-n_f)}}$$

$$n_{max} \approx 40$$
 for  $\Delta E = 300 \text{ meV}$ 

| n <sub>max</sub> : | resolvable state |
|--------------------|------------------|
| n <sub>f</sub> :   | final state      |

| <b>⊿E</b> :        | energy resolution |        |      |        |        |
|--------------------|-------------------|--------|------|--------|--------|
| $E_{\infty-n_f}$ : | transition        | energy | from | series | lim it |
**OUTLOOK** 



| antiproton "beams                                        | <i>"</i>                                                                                                                                   |                           |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| AD MUSASHI<br>FLAIR                                      | antiproton trap → DC extraction → gas cell<br>direct measurements<br>high intensity DC beams<br>direct measurements + crystal spectrometer |                           |  |  |  |  |
|                                                          | future option                                                                                                                              | traps and gas jets        |  |  |  |  |
| X-ray detector direct measurement                        |                                                                                                                                            | fast pnCCDs               |  |  |  |  |
| MOS CCDs 3 frames / minute                               | → pixel size 75 $\mu$ m<br>→ 600 frames / s                                                                                                |                           |  |  |  |  |
| crystal spectrometer                                     |                                                                                                                                            |                           |  |  |  |  |
| 2 – 3 keV ultimate resolution<br>asymmetric cut crystals |                                                                                                                                            | ∆E = 300* → 200 (100) meV |  |  |  |  |
| 10 keV "bad" resolution                                  |                                                                                                                                            | 300* → "1 eV"             |  |  |  |  |
| * PSI ECRIT                                              |                                                                                                                                            |                           |  |  |  |  |

#### CRYSTAL SPECTROMETER JOHANN SET-UP



| count rate ≈ beam | × stop<br>efficiency | x line yield x spectrometer<br>efficiency     |  |  |  |
|-------------------|----------------------|-----------------------------------------------|--|--|--|
| ~                 | ca. %                | × ca. % × 10 <sup>-8</sup> - 10 <sup>-6</sup> |  |  |  |
| ~                 | 1 - 100 / hour       |                                               |  |  |  |

| fast CC<br>crystal<br>asymme | D<br>spectron<br>trically cut E              | neter<br>Bragg d | crystals | $\Delta E$ $300^* \rightarrow$ $300^* \rightarrow$ | 150 eV<br>150 meV                       | ΔΩ × ε<br>10 <sup>-3</sup><br>10 <sup>-6</sup> |
|------------------------------|----------------------------------------------|------------------|----------|----------------------------------------------------|-----------------------------------------|------------------------------------------------|
|                              |                                              |                  | yield    | counts                                             | <b>p</b> <sub>stopped</sub>             |                                                |
| ₽Н 1                         | S <sub>0</sub> / <sup>3</sup> S <sub>1</sub> | Κα               | 1%       | 200 000                                            | <b>2</b> .10 <sup>10</sup>              | CCD                                            |
| pD                           |                                              | Κα               | 0.1%     | 20 000                                             | <b>2</b> ·10 <sup>10</sup>              | CCD                                            |
| <b>р</b> Н 2                 | p HFS                                        | Lα               | 50%      | 20 000                                             | <b>4</b> .10 <sup>10</sup>              | cry spec                                       |
| р <sup>3,4</sup> Не          | 2р                                           | Lα               | 25%**    | 20 000<br>5000                                     | 2.10 <sup>8</sup><br>1.10 <sup>10</sup> | 1. step CCD<br>2. step cry spec                |

\* PS 207

\*\* 50% 3d annihilation

# **SUMMARY**

### **PIONIC HYDROGEN STORY**



### ANTIPROTONIC HYDROGEN STORY s-wave



## still a lot to do !

**THANK YOU**