Antiproton-proton interaction from chiral effective field theory

Johann Haidenbauer

Forschungszentrum Jülich, Germany

ECT* Workshop, Trento, June 17-21, 2019

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

(Lingyun Dai, Xian-Wei Kang, Ulf-G. Meißner)

Electromagnetic form factors of the nucleon

Johann Haidenbauer Antiproton-proton interaction

・ 同 ト ・ ヨ ト ・ ヨ ト

p scattering measurements at LEAR

Measurement	Incoming p momentum (MeV/c)	Experiment
integrated cross sections		
$\sigma_{tot}(\bar{p}p)$	222-599 (74 momenta)	PS172
	181,219,239,261,287,505,590	PS173
$\sigma_{ann}(\bar{p}p)$	177-588 (53 momenta)	PS173
	38-174 (14 momenta)	PS201
pp elastic scattering		
$\rho = \operatorname{Re} f(0) / \operatorname{Im} f(0)$	233,272,550,757,1077	PS172
	181,219,239,261,287,505,590	PS173
$d\sigma/d\Omega$	679-1550 (13 momenta)	PS172
	181,287,505,590	PS173
	439,544,697	PS198
A _{0n}	497-1550 (15 momenta)	PS172
	439,544,697	PS173
D _{0n0n}	679-1501 (10 momenta)	PS172
p charge exchange		
$d\sigma/d\Omega$	181-595 (several momenta)	PS173
	546,656,693,767,875,1083,1186,1287	PS199
	601.5,1202	PS206
A _{0n}	546,656,767,875,979,1083,1186,1287	PS199
D_{0n0n}	546,875	PS199
K _{n00n}	875	PS199

Johann Haidenbauer Antiproton-proton interaction

æ

イロト イポト イヨト イヨト

Revival of Antinucleon-nucleon physics

• Near-threshold enhancement in the $\bar{p}p$ invariant-mass spectrum: $J/\psi \rightarrow \gamma \bar{p}p \rightarrow BES$ collaboration (2003, 2012) $B^+ \rightarrow K^+ \bar{p}p \rightarrow BaBar$ collaboration (2005) $e^+e^- \rightarrow \bar{p}p \rightarrow FENICE$ (1998), BaBar (2006, 2013) $(\bar{p}p \rightarrow e^+e^- \rightarrow PS170$ (1994))

 \Rightarrow new resonances, $\bar{p}p$ bound states, exotic glueball states ?

- Facility for Antiproton and Ion Research (FAIR)
 - PANDA Project

Study of the interactions between antiprotons and fixed target protons and nuclei in the momentum range of 1.5-15 GeV/c using the high energy storage ring HESR

PAX Collaboration

experiments with a polarized antiproton beam transversity distribution of the valence quarks in the proton $\bar{N}N$ double-spin observables

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

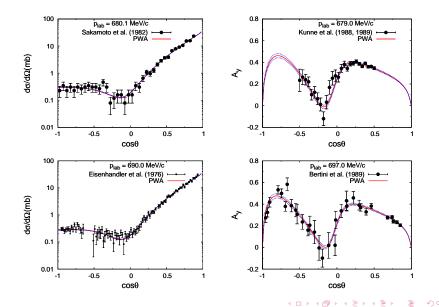
N partial-wave analysis

- R. Timmermans et al., PRC 50 (1994) 48
 - use a meson-exchange potential for the long-range part
 - apply a strong absorption at short distances (boundary condition) in each individual partial wave (≈ 1.2 fm)
 - 30 parameters, fitted to a selection of N
 N data (3646!)
 - However, resulting amplitudes are not explicitly given:

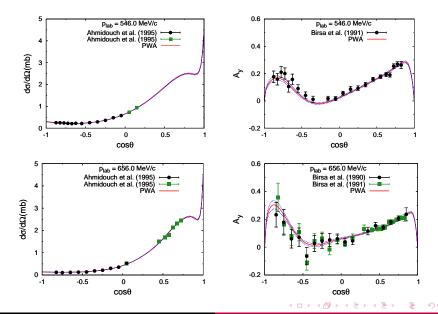
"It does not make much sense to present all these phase shifts, inelasticities and mixing parameters without a proper assessment of the uncertainties (statistical errors). This, however, requires a lot of work. Preliminary study shows that the phase-shift parameters for the ¹S₀ and ¹P₁ partial waves are not pinned down accurately at all above $p_{lab} \approx 400$ MeV/c."

Criticisms (J.-M. Richard, PRC 52 (1995) 1143)

- data pruning some NN scattering data are clearly incompatible but which are right and which are wrong?
- Prejudice in favor of pre-LEAR (pre 1980) data
- uniqueness of solution no Pauli principle, phase shifts are complex: 4 × more PW's than in NN! few polarization data, practically no double- or triple-scattering experiments

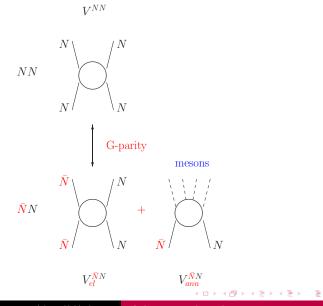

イロン 不得 とくほう 不良 とう

D. Zhou and R. Timmermans, PRC 86 (2012) 044003


- use now potential where the long-range part is fixed from chiral EFT (N²LO)
- somewhat larger number of $\overline{N}N$ data (3749!)
- none the less, same criticisms as before can be raised!
- now, resulting amplitudes and phase shifts are given!
- lowest momentum: $p_{lab} = 100 \text{ MeV/c} (T_{lab} = 5.3 \text{ MeV})$
- highest total angular momentum: J = 4

<ロト <回 > < 回 > < 回 > < 回 > <

N PWA: $\overline{\rho}\rho \rightarrow \overline{\rho}\rho$



$N PWA \bar{p}p \rightarrow \bar{n}n$

Johann Haidenbauer Antiproton-proton interaction

The *NN* interaction

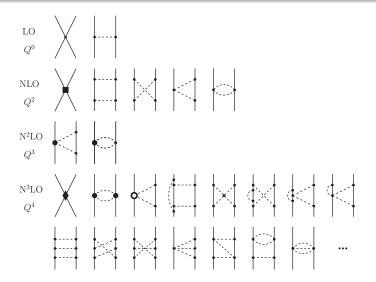
Johann Haidenbauer Antiproton-proton interaction

Traditional approach: meson-exchange

I) $V_{el}^{\bar{N}N}$... derived from an *NN* potential via G-parity (Charge conjugation plus 180° rotation around the *y* axis in isospin space) \Rightarrow

$$V^{NN}(\pi, \omega) = -V^{NN}(\pi, \omega) \quad \text{odd } \mathbf{G} - \text{parity}$$
$$V^{\bar{N}N}(\sigma, \rho) = +V^{NN}(\sigma, \rho) \quad \text{even } \mathbf{G} - \text{parity}$$

II) $V_{ann}^{\bar{N}N}$ employ a phenomenological optical potential, e.g.


$$V_{opt}(\mathbf{r}) = (U_0 + iW_0) e^{-\mathbf{r}^2/(2a^2)}$$

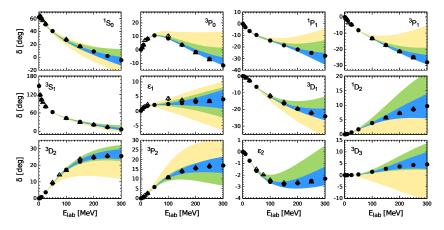
with parameters U_0 , W_0 , a fixed by a fit to $\overline{N}N$ data

examples: Dover/Richard (1980,1982), Paris (1982,...,2009), Nijmegen (1984), Jülich (1991,1995), ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

NN in chiral effective field theory

• 4N contact terms involve low-energy constants (LECs) ... parameterize unresolved short-range physics


⇒ need to be fixed by fit to experiments

Johann Haidenbauer

Antiproton-proton interaction

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

NN in chiral effective field theory

(see Reinert, Epelbaum, Krebs, EPJA 54 (2018) 86, for present status (N⁴LO))

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

The $\overline{N}N$ interaction in chiral EFT

•
$$V^{NN} = V_{1\pi} + V_{2\pi} + V_{3\pi} + \dots + V_{cont}$$

•
$$V_{el}^{NN} = -V_{1\pi} + V_{2\pi} - V_{3\pi} + ... + V_{cont}$$

• $V_{ann}^{\bar{N}N} = \sum_X V^{\bar{N}N \to X}$ $X \doteq \pi, 2\pi, 3\pi, 4\pi, ...$

• $V_{1\pi}$, $V_{2\pi}$, ... can be taken over from a chiral EFT study of the *NN* interaction

⇒ starting point: "improved chiral *NN* potential up to N³LO" by Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53

• V_{cont} has the same structure as in NN. However, the LECs have to be determined by a fit to $\overline{N}N$ data (phase shifts, inelasticites)!

no Pauli principle \rightarrow more partial waves, more contact terms

- V_{ann}^{NN} has no counterpart in NN
- Ling-Yun Dai, JH, Ulf-G. Meißner, JHEP 07 (2017) 078 (N³LO) Xian-Wei Kang, JH, Ulf-G. Meißner, JHEP 02 (2014) 113 (N²LO)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Annihilation potential

• experimental information:

- annihilation occurs dominantly into 4 to 6 pions (two-body channels like
- $\bar{\rho}\rho \rightarrow \pi^+\pi^-, \ \rho^{\pm}\pi^{\mp}$ etc. contribute in the order of \approx 1%)
- thresholds: for 5 pions: \approx 700 MeV for $\overline{N}N$: 1878 MeV
- \bullet produced pions have large momenta \rightarrow annihilation process depends very little on energy

• annihilation is a statistical process: properties of the individual particles (mass, quantum numbers) do not matter

- phenomenlogical models: bulk properties of annihilation can be described rather well by simple energy-independent optical potentials
- range associated with annihilation is around 1 fm or less
 → short-distance physics
- \Rightarrow describe annihilation in the same way as the short-distance physics in V_{el}^{NN} , i.e. by contact terms (LECs)

⇒ describe annihilation by a few effective (two-body) annihilation channels (unitarity is preserved!)

$$V^{\bar{N}N} = V_{el}^{\bar{N}N} + V_{ann,eff}^{\bar{N}N}; \quad V_{ann,eff}^{\bar{N}N} = \sum_{X} V^{\bar{N}N \to X} G_{X}^{0} V^{X \to \bar{N}N}$$
$$V^{\bar{N}N \to X} (p_{\bar{N}N}, p_{X}) \approx p_{\bar{N}N}^{L} (a + b p_{\bar{N}N}^{2} + ...); \quad p_{X} \approx \text{ const.}$$

イロン 不得 とくほ とくほ とうほ

Contributions of V_{cont} for $\overline{N}N$ up to N³LO

$$\begin{aligned} V^{L=0} &= & \tilde{C}_{\alpha} + C_{\alpha}(p^2 + p'^2) + D_{\alpha}^1 p'^2 p'^2 + D_{\alpha}^2 (p^4 + p'^4) \\ V^{L=1} &= & C_{\beta} \, p \, p' + D_{\beta} \, p \, p' (p^2 + p'^2) \\ V^{L=2} &= & D_{\gamma} \, p^2 p'^2 \end{aligned}$$

 $\tilde{c}_i \dots$ LO LECs [4], $c_i \dots$ NLO LECs [+14], $D_i \dots N^3$ LO LECs [+30], $p = |\mathbf{p}|; p' = |\mathbf{p}'|$ $V_{ann;eff}^{\bar{N}N}$

$$\begin{split} V_{ann}^{L=0} &= -i \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{2} + D_{\alpha}^{a} p^{4}) \, (\tilde{C}_{\alpha}^{a} + C_{\alpha}^{a} p^{\prime 2} + D_{\alpha}^{a} p^{\prime 4}) \\ V_{ann}^{L=1} &= -i \, (G_{\beta}^{a} p + D_{\beta}^{a} p^{3}) \, (G_{\beta}^{a} p^{\prime} + D_{\beta}^{a} p^{\prime 3}) \\ V_{ann}^{L=2} &= -i \, (D_{\gamma}^{a})^{2} p^{2} p^{\prime 2} \\ V_{ann}^{L=3} &= -i \, (D_{\alpha}^{a})^{2} p^{3} p^{\prime 3} \end{split}$$

 $\begin{array}{l} \alpha \ \dots \ ^{1}S_{0} \ \text{and} \ ^{3}S_{1} \\ \beta \ \dots \ ^{3}P_{0}, \ ^{1}P_{1}, \ \text{and} \ ^{3}P_{1} \\ \gamma \ \dots \ ^{1}D_{2}, \ ^{3}D_{2} \ \text{and} \ ^{3}D_{3} \\ \delta \ \dots \ ^{1}F_{3}, \ ^{3}F_{3} \ \text{and} \ ^{3}F_{4} \end{array}$

• unitarity condition: higher powers than what follows from Weinberg power counting appear!

same number of contact terms (LECs)

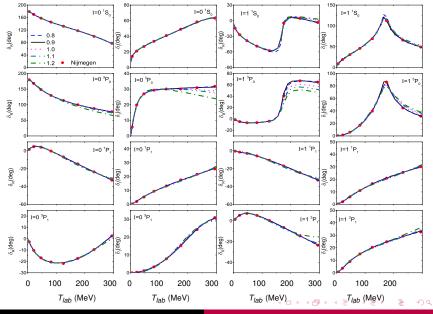
$$T^{L'L}(p',p) = V^{L'L}(p',p) + \sum_{L''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} \frac{V^{L'L''}(p',p'') T^{L''L}(p'',p)}{2E_p - 2E_{p''} + i\eta}$$

employ the regularization scheme of EKM (EPJA 51 (2015) 53)
 ⇒ local regulator for pion exchange, nonlocal regulator for contact terms:

$$V_{n\pi}(q) \to V_{n\pi}(r) \times f_{R}(r) \to V_{n\pi}^{reg}(q); \qquad (\vec{q} = \vec{p}' - \vec{p})$$

$$V_{cont} = V(p, p') \to V(p, p') \times f_{\Lambda}(p, p') = V_{cont}^{reg}$$

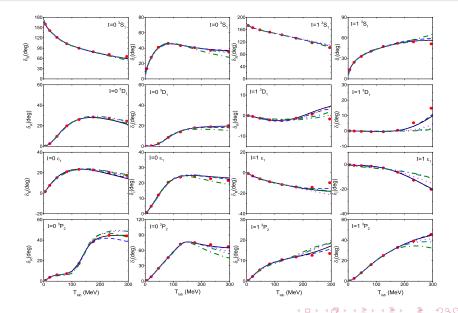
$$(f_{R}(r) = \left[1 - \exp(-r^{2}/R^{2})\right]^{6}; \quad f_{\Lambda}(p, p') = \exp(-(p^{2} + p'^{2})/\Lambda^{2}); \quad R = 0.8-1.2 \text{ fm}; \; \Lambda = 2/R)$$


• Fit to phase shifts and inelasticity parameters in the isospin basis

- Calculation of observables is done in particle basis:
 - \star Coulomb interaction in the $\overline{p}p$ channel is included
 - \star the physical masses of *p* and *n* are used

 $\overline{n}n$ channels opens at $p_{lab} = 98.7$ MeV/c ($T_{lab} = 5.18$ MeV)

イロト 不得 とくき とくきとうき


N phase shifts (N³LO)

Johann Haidenbauer

Antiproton-proton interaction

N phase shifts (N³LO)

Johann Haidenbauer

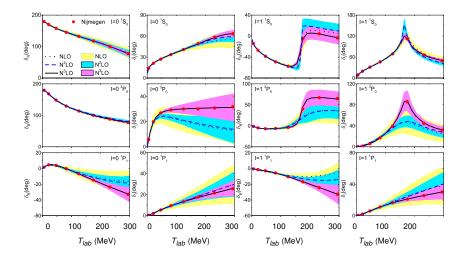
Antiproton-proton interaction

Uncertainty

 Uncertainty for a given observable X(p): (Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53)
 (S. Binder et al. [LENPIC coll.], PRC 93 (2016) 044002)

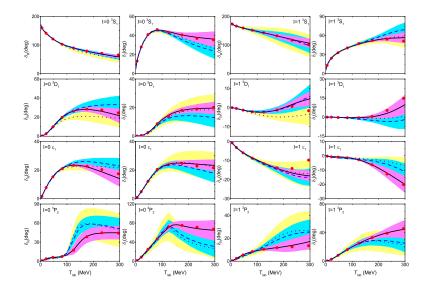
- estimate uncertainty via
 - · the expected size of higher-order corrections
 - · the actual size of higher-order corrections

$$\begin{split} \Delta X^{LO} &= \mathbf{Q}^{2} |X^{LO}| \quad (X^{NLO} \approx \mathbf{Q}^{2} X^{LO}) \\ \Delta X^{NLO} &= \max \left(\mathbf{Q}^{3} |X^{LO}|, \mathbf{Q}^{1} |\delta X^{NLO}| \right); \quad \delta X^{NLO} = X^{NLO} - X^{LO} \\ \Delta X^{N^{2}LO} &= \max \left(\mathbf{Q}^{4} |X^{LO}|, \mathbf{Q}^{2} |\delta X^{NLO}|, \mathbf{Q}^{1} |\delta X^{N^{2}LO}| \right); \quad \delta X^{N^{2}LO} = X^{N^{2}LO} - X^{NLO} \\ \Delta X^{N^{3}LO} &= \max \left(\mathbf{Q}^{5} |X^{LO}|, \mathbf{Q}^{3} |\delta X^{NLO}|, \mathbf{Q}^{2} |\delta X^{N^{2}LO}|, \mathbf{Q}^{1} |\delta X^{N^{3}LO}| \right); \quad \delta X^{N^{3}LO} = X^{N^{3}LO} - X^{N^{2}LO} \end{split}$$


expansion parameter Q is defined by

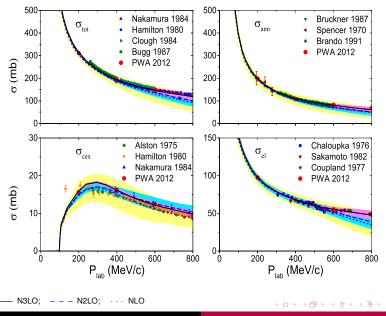
$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right); \quad p \dots \bar{N}N \text{ on } - \text{ shell momentum}$$

 Λ_b ... breakdown scale $\rightarrow \Lambda_b = 500 - 600$ MeV [for R = 0.8 - 1.2 fm] (EKM, 2015)


ヘロン 人間 とくほ とくほ とう

N phase shifts

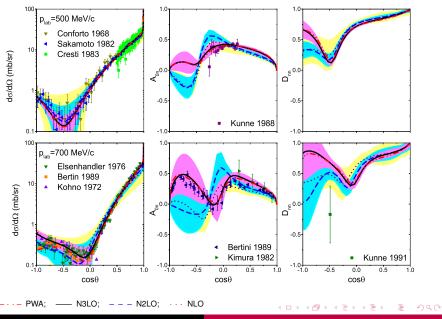
イロト 不同 トイヨト イヨト


N phase shifts

ヘロト 人間 とく ヨン 人 ヨトー

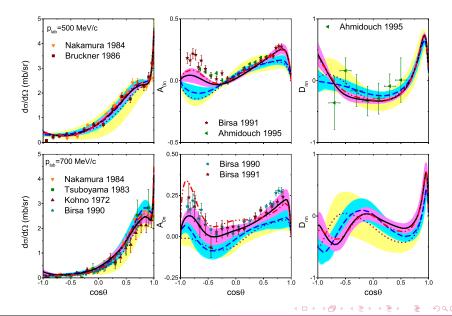
æ

integrated cross sections



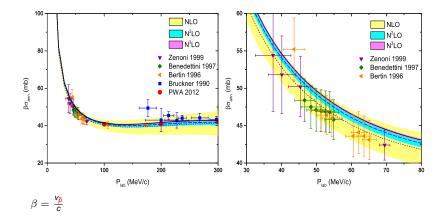
		$ar{p} p o ar{p} p$			$ar{p}p ightarrow ar{n}n$				
	<i>p_{lab}</i> (MeV/c)	200	400	600	800	200	400	600	800
	T _{lab} (MeV)	21.1	81.7	175	295	21.1	81.7	175	295
$^{1}S_{0}$	N ³ LO	15.9	8.0	4.1	2.0	0.7	0.1		
	PWA	15.7	7.9	4.1	2.1	0.7	0.1		
${}^{3}S_{1}$	N ³ LO	66.6	25.9	13.1	8.0	2.9	0.9	0.5	0.3
	PWA	66.1	26.0	13.2	8.8	3.0	1.0	0.5	0.2
${}^{3}P_{0}$	N ³ LO	4.9	5.4	5.1	3.6	1.5	0.8	0.1	
	PWA	4.9	5.4	5.0	3.5	1.5	0.8	0.1	
$^{1}P_{1}$	N ³ LO	1.0	2.5	4.4	5.6	0.8	0.1		
	PWA	0.9	2.5	4.5	5.6	0.8	0.1		
³ P ₁	N ³ LO	1.8	5.0	4.1	3.6	5.1	3.0	0.2	0.1
	PWA	1.8	4.9	4.0	3.5	4.9	2.9	0.2	0.1
${}^{3}P_{2}$	N ³ LO	7.0	17.1	14.1	9.9	1.0	1.5	0.4	0.1
	PWA	7.0	17.0	13.9	9.6	0.9	1.4	0.4	0.1

(N³LO with R = 0.9 fm)


ヘロン 人間 とくほど くほとう

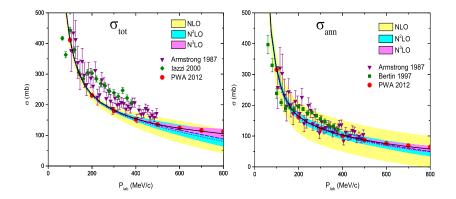
$\overline{\mathsf{qq}} \to \overline{\mathsf{qq}}$

Johann Haidenbauer Antiproton-proton interaction


$\overline{p}p \rightarrow \bar{n}n$

Johann Haidenbauer

Antiproton-proton interaction


annihilation cross section

• anomalous threshold behavior due to attractive Coulomb interaction

イロン イ団ン イヨン イヨン

p cross sections

イロン イロン イヨン イヨン

Hadronic level shifts in hyperfine states of $\bar{p}H$

Deser-Trueman formula:

$$\Delta E_{S} + i \frac{\Gamma_{S}}{2} = -\frac{4}{M_{p}r_{B}^{3}}a_{S}^{sc}\left(1 - \frac{a_{S}^{sc}}{r_{B}}\beta\right)$$
$$\Delta E_{P} + i \frac{\Gamma_{P}}{2} = -\frac{3}{8M_{p}r_{B}^{5}}a_{P}^{sc}$$

 r_B ... Bohr radius ... 57.6 fm; $\beta = 2(1 - \Psi(1)) \approx 3.1544$ a^{sc} ... Coulomb-distorted $\overline{\rho}p$ scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343: works well once Coulomb and *p-n* mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in $\overline{N}N$ and $\overline{K}N!$

 $\Delta E < 0 \Leftrightarrow$ repulsive shift

イロト イポト イヨト イヨト 二日

Hadronic level shifts in hyperfine states of $\bar{p}H$

	NLO	N ² LO	N ³ LO	N ² LO*	Experiment
	NLO	N LO			Lxperiment
E1 _{S0} (eV)	-448	-446	-443	-436	-440(75) [1]
Γ _{1 S0} (eV)	1155	1183	1171	1174	-740(150) [2] 1200(250) [1]
					1600(400) [2]
E3381 (eV)	-742	-766	-770	-756	-785(35) [1]
Г _{3<i>S</i>1} (eV)	1106	1136	1161	1120	-850(42) [3] 940(80) [1]
					770(150) [3]
E3 _{P0} (meV)	17	12	8	16	139(28) [4]
Γ _{3<i>P</i>0} (meV)	194	195	188	169	120(25) [4]
<i>E</i> _{1<i>S</i>} (eV)	-670	-688	-690	-676	-721(14) [1]
Г _{1<i>S</i>} (eV)	1118	1148	1164	1134	1097(42) [1]
E _{2P} (meV)	1.3	2.8	4.7	2.3	15(20) [4]
Γ _{2P} (meV)	36.2	37.4	37.9	27	38.0(2.8) [4]

Augsburger et al., NPA 658 (1999) 149;
 Heitlinger et al., ZPA 342 (1992) 359;

[2] Ziegler et al., PLB 206 (1988) 151; [4] Gotta et al., NPA 660 (1999) 283

ヘロト 人間 とく ヨン 人 ヨトー

3

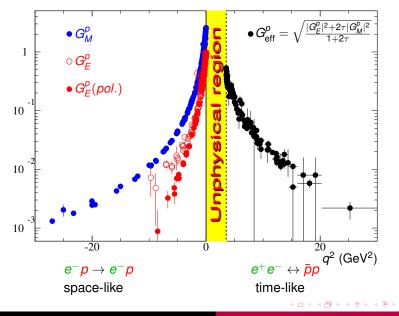
* Xian-Wei Kang et al., JHEP 02 (2014) 113

Evidence for $\bar{N}N$ bound states?

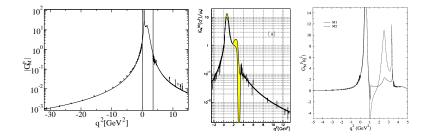
E _B , M _R (MeV)	N ² LO [1]	El-Bennich [2]	Entem [3]	Milstein [4]
¹¹ S ₀	-	-4.8-i26	-	22-i 33
³¹ S ₀ ¹³ S ₁	-37-i 47*	-	-	-
¹³ S ₁	$+(5.6 \cdots 7.7) - i(49.2 \cdots 60.5)$	-	-	-
¹¹ P ₁	-	1877±i 13	-	-
¹³ P ₀	$-(3.7 \cdots 0.2) - i(22.0 \cdots 26.4)$	1876±i5	1895±i17	-
³³ P ₀	-	1871±i11	-	-
¹³ P ₀ ³³ P ₀ ¹³ P ₁	-	1872±i 10	-	-
³³ P ₁	-	-4.5-i 9	-	-

Notation: ${}^{(2l+1)(2S+1)}L_J$ $M_p + M_{\bar{p}} = 1876.574 \text{ MeV}$

[1] Xian-Wei Kang et al., JHEP 02 (2014) 113; * needed for $J/\psi \rightarrow \gamma \bar{p} p$


- [2] B. El-Bennich et al., PRC 79 (2009) 054001
- [3] D.R. Entem & F. Fernández, PRC 73 (2006) 045214
- [4] A.I. Milstein & S.G. Salnikov, NPA 966 (2017) 54

BES 2005; BESIII 2011,2016: X(1835) ($J^{PC} = 0^{-+}, I = 0$)

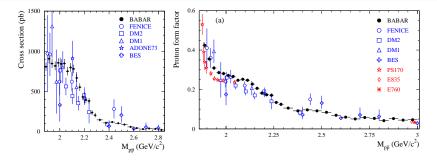

seen in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$: $M_R = 1836.5 \pm 3^{+5.6}_{-2.1}$ MeV, $\Gamma = 190 \pm 9^{+38}_{-36}$ MeV evidence (?) in $J/\psi \rightarrow \gamma \bar{p} \rho$: $M_R = 1832^{+19}_{-5} + 18_{-17}^{-11}$ MeV, $\Gamma < 76$ MeV (90 % C.L.)

イロト イポト イヨト

Electromagnetic form factors of the proton

what happens in the unphysical region?

Faessler et al. 2010


Baldini et al. 1999

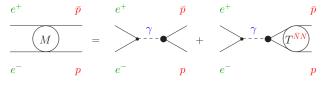
Williams/Krewald 1995

< D > < P >

프 > + 프 >

Time-like region: $e^+e^- \rightarrow \bar{\rho}\rho$

$$egin{aligned} \sigma_{e^+e^- o ar{p}
ho} &= rac{4\pilpha^2eta}{3s} \; C_{
ho}(s) \; \left[\left| G_{M}(s)
ight|^2 + rac{2M_{
ho}^2}{s} \left| G_{E}(s)
ight|^2
ight] \ & \left| G_{ ext{eff}}(s)
ight| &= \sqrt{rac{\sigma_{e^+e^- o ar{p}
ho}(s)}{rac{4\pilpha^2eta}{3s} \; C_{
ho}(s) \left[1 + rac{2M_{
ho}^2}{s}
ight]} \end{aligned}$$

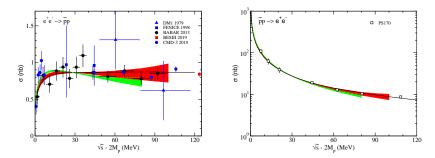

 $\sqrt{s} = M_{\overline{p}p}, \quad \beta = k_p/k_e \approx 2 k_p/\sqrt{s}, \quad C_p(s) \dots$ Sommerfeld-Gamov factor

BaBar: J.P. Lees et al., PRD 87 (2013) 092005

イロト 不同 トイヨト イヨト

Calculate $e^+e^- \rightarrow \bar{p}p$ in DWBA

one-photon exchange $\Rightarrow \overline{NN}$, e^+e^- are in the 3S_1 , 3D_1 partial waves

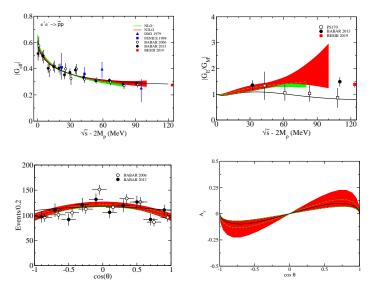


$$\begin{split} M_{L,L'} &\propto \ f_L^{e^+e^-} \cdot \ f_{L'}^{\bar{p}p} \\ f_{L=0}^{e^+e^-} &= \left[1 + \frac{m_e}{\sqrt{s}} \right]; \quad f_{L=2}^{e^+e^-} = \left[1 - \frac{2m_e}{\sqrt{s}} \right] \\ f_{L=0}^{\bar{p}p} &= \left[G_M + \frac{M_p}{\sqrt{s}} G_E \right]; \quad f_{L=2}^{\bar{p}p} = \left[G_M - \frac{2M_p}{\sqrt{s}} G_E \right] \\ f_{L=2}^{\bar{p}p} (k_p = 0) = 0 \ \to \ G_M (k_p = 0) = G_E (k_p = 0) \end{split}$$

$$f_{L'}^{\bar{p}p}(k;E_k) = f_{L'}^{\bar{p}p;0}(k) + \sum_{L} \int_0^\infty \frac{dpp^2}{(2\pi)^3} f_L^{\bar{p}p;0}(p) \frac{1}{2E_k - 2E_p + i0^+} T_{LL'}^{\bar{p}p}(p,k;E_k)$$

 $f_{L'}^{\bar{p}p;0}$... bare vertex with bare form factors G_M^0 and G_E^0 • assume $G_M^0 \equiv G_E^0 = \text{const.}$... only single parameter (overall normalization) JH, X.-W. Kang, U.-G. Meißner, NPA 929 (2014) 102 (N²LO)

Note: here bands represent cutoff variations!

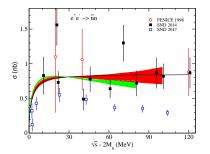


--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

PS170: G. Bardin et al., NPB 411 (1994) 3

イロト イポト イヨト イヨト

Results for $e^+e^- \rightarrow \bar{p}p$


 $\epsilon = \sqrt{s} - 2M_p = 36.5 \text{ MeV}$

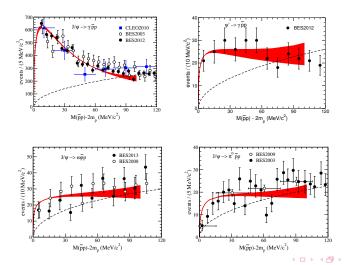
・ロン ・四 と ・ ヨ と ・

æ

Results for $e^+e^- \rightarrow \bar{n}n$

JH, C. Hanhart, X.-W. Kang, U.-G. Meißner, PRD 92 (2015) 054032 (N²LO) bands represent cutoff variations!

--- Jülich A (OBE) [meson-exchange; T. Hippchen et al., PRC 44 (1991) 1323]

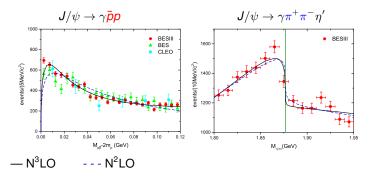

FENICE: A. Antonelli et al., NPB 517 (1998) 3

SND 2014: M.M. Achasov et al., PRD 90 (2014) 112007

SND 2017: K.I. Belobodorov et al., EPJ WoC 199 (2019) 02026

Other channels with pp in final state

X.-W. Kang, JH, U.-G. Meißner, PRD 91 (2015) 074003 (N²LO) bands represent cutoff variations!


Johann Haidenbauer

Antiproton-proton interaction

X(1835): $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

L.-Y. Dai, JH, U.-G. Meißner, PRD 98 (2018) 014005

$$\begin{split} & \mathcal{A}_{J/\psi \to \gamma \pi^+ \pi^- \eta'} = \mathcal{A}^0_{J/\psi \to \gamma \pi^+ \pi^- \eta'} + \mathcal{A}_{J/\psi \to \gamma \bar{N}N} \mathcal{G}^0_{\bar{N}N} \mathcal{V}_{\bar{N}N \to \pi^+ \pi^- \eta'} \\ & \mathcal{V}_{\bar{N}N \to \pi^+ \pi^- \eta'} \propto \tilde{\mathcal{C}} + \mathcal{C} \mathcal{P}_{\bar{N}N} \quad \text{constrained from BR}_{(\bar{\rho}\rho \to \pi^+ \pi^- \eta')} \\ & \mathcal{A}^0_{J/\psi \to \gamma \pi^+ \pi^- \eta'} \propto \tilde{\mathcal{C}}_{\eta'} + \mathcal{C}_{\eta'} \mathcal{Q}_{\pi^+ \pi^- \eta'} \quad \text{smooth background:} \tilde{\mathcal{C}}_{\eta'}, \mathcal{C}_{\eta'} \dots \text{ free parameters} \end{split}$$

BESIII (M. Ablikim et al.), PRL 117 (2016) 042002

イロト 不同 トイヨト イヨト

Summary & Outlook

- *NN* interaction at N³LO in chiral effective field theory
- new local regularization scheme is used for pion-exchange contributions
- new uncertainty estimate suggested by Epelbaum, Krebs, Meißner
- excellent description of N
 N amplitudes is achieved
- nice agreement with $\bar{p}p$ observables for $T_{lab} \leq 250$ MeV is achieved
- predictions are made for low energies ($T_{lab} \leq 5.3 \text{ MeV}$):
 - low-energy annihilation cross section
 - level shifts of antiprotonic atoms
 - \Rightarrow approach works not only for NN but also very well for $\overline{N}N$
- try our own PWA
- analyze $\bar{p}p \rightarrow \pi\pi$, $\bar{K}K$ channels
- consider pd scattering
- new data NN data?

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Backup slides

Johann Haidenbauer Antiproton-proton interaction

<ロト <回 > < 回 > < 回 > < 回 > <

æ

effective χ square

Fit to phase shifts and inelasticity parameters in the isospin basis $\tilde{\chi}^2 \approx |S_{LL'} - S_{LL'}^{PWA}|^2 / \Delta^2 \dots S_{LL'}$ are S-matrix elements (no uncertainties for the PWA given $\rightarrow \Delta^2 \dots$ simple scaling parameter)

	R=0.8 fm	R=0.9 fm	R=1.0 fm	R=1.1 fm	R=1.2 fm
$T_{lab} \leq 25~{ m MeV}$	0.003	0.004	0.004	0.019	0.036
$T_{lab} \leq 100~{ m MeV}$	0.023	0.025	0.036	0.090	0.176
$T_{lab} \leq$ 200 MeV	0.106	0.115	0.177	0.312	0.626
$T_{lab} \leq 300 \; { m MeV}$	2.012	2.171	3.383	5.531	9.479

• minimum around $R = 0.8 \sim 0.9$ fm ($R = 0.9 \sim 1.0$ fm in the NN case)

Calculation of observables is done in particle basis:

- Coulomb interaction in the pp channel is included
- the physical masses of p and n are used

 $\overline{n}n$ channels opens at $p_{lab} = 98.7$ MeV/c ($T_{lab} = 5.18$ MeV/c)