Information on nuclear surface obtained from antiprotonic atoms

Agnieszka Trzcińska for PS209 Collaboration

in memory of Jerzy Jastrzębski 1934 - 2018

Low Energy Antitproton Ring (LEAR) @ CERN

- K. Kilian and collaborators proposed in 1976 cooling and deceleration of antiprotons as a way to obtain p beam of big intensity and high purity for low energy physics
- it triggered the proposal to add to the constructed SPS pp Collider a small facility with antiproton energy range from 5 to 1200 MeV
- In 1980 LEAR project was launched
- In June 1983 first beam for users

Low Energy Antitproton Ring (LEAR) @ CERN

Low Energy Antitproton Ring (LEAR) @ CERN

Experiments

- 2 x 3 week runs in 1995 and 1996 @ LEAR (CERN) as a parasitic exp.
- p beam:
 - > 300 MeV/c and 400 MeV/c (1995)
 - > 106 MeV/c (1996)

- Targets:
 - isotopically enriched materials
 - thickness: ~ 200 300 mg/cm² (1995) and ~ 50 100 mg/cm² (1996)
- 55 isotopes studied (from ¹⁶O to ²³⁸U)

Antiprotonic atoms

- creation:
 - ▶ p capture onto a "high" orbit $n_{\overline{p}} = \sqrt{(m_{\overline{p}}/m_e)} \times n_e \approx 43 \times n_e$
- deexcitation (10⁻¹⁵ 10⁻¹⁴ s):
 - > emission of Auger electrons
 - X-rays emission (energy: γ-ray region)
 - annihilation

Antiprotonic atoms – strong interaction effects

in the experiment we measure:

- Γ_{low} directly from the line shape
- $\boldsymbol{\epsilon}$ determining the line energy
- Γ_{up} indirectly from the intensity balance

p ends its life in the atom **annihilating** with a peripheral nucleon (**p** or **n**)

p ends its life in the atom **annihilating** with a peripheral nucleon (**p** or **n**)

we measure:

$$\begin{split} &\mathsf{N}(\mathsf{N}_{t}\!-\!1)\!\sim\!\rho_{\mathsf{n}}(\mathsf{r}_{\mathsf{annih}}) \\ &\mathsf{N}(\mathsf{Z}_{t}\!-\!1)\!\sim\!\rho_{\mathsf{p}}(\mathsf{r}_{\mathsf{annih}}) \\ &\mathsf{f}_{\mathsf{halo}}\!=\!\frac{\mathsf{N}(\mathsf{N}_{t}\!-\!1)}{\mathsf{N}(\mathsf{Z}_{t}\!-\!1)}\!\cdot\!\frac{\Im\,\mathsf{a}_{\mathsf{p}}}{\Im\,\mathsf{a}_{\mathsf{n}}}\!\cdot\!\frac{\mathsf{Z}_{\mathsf{t}}}{\mathsf{N}_{\mathsf{t}}} \\ &\mathsf{f}_{\mathsf{halo}}\!\sim\!\frac{\rho_{\mathsf{n}}}{\rho_{\mathsf{p}}}(\mathsf{r}_{\mathsf{1/2}}\!+\!\mathsf{1.5\,\mathsf{fm}}) \end{split}$$

"Radiochemical" method

experiment:

- irradiation: target with AI monitor foils
- measurement: off-line gamma spectroscopy (low-background)

_____ activity of of the products

Al monitor foils _____ activity of ²⁴Na _____ pbar current

• irradiated target N(A_t-1) N(N_t-1)~ $\rho_n(r_{annih})$ N(Z_t-1)~ $\rho_p(r_{annih})$

X-rays ~
$$r_{1/2}$$
 + 1.5 fm
A_T-1 ~ $r_{1/2}$ + 2.5 fm

Antiprotonic atoms – A_{T} -1 production

halo factor

P. Lubiński et al., Phys. Rev. Lett. **73**(1994)3199
P. Lubiński et al., Phys. Rev. C **57**(1998)2962
R. Schmidt et al., Phys. Rev. C **60**(1999)054309

Observations:

- strong correlation between f_{halo} and neutron separation energy B_n
- in nuclei with $B_n < 9$ MeV nuclear

periphery is reach in neutrons!

• $f_{halo} < 1$ for nuclei with $B_n > 10$ MeV

proton halo?? or NN bound state (S.Wycech)

halo factor → form of peripheral density distribution?

let's assume ρ in the form of 2pF: $\rho(r) = \rho_0 \cdot \left(1 + \exp(\frac{r-c}{a})\right)^{-1}$ and consider 2 extreme situations:

• $a_n = a_p, c_n \neq c_p \rightarrow \Delta r_{np}$ ("neutron skin")

• $a_n \neq a_p$, $c_n = c_p \rightarrow \Delta r_{np}$ ("neutron halo")

halo factor → form of peripheral density distribution?

let's assume ρ in the form of 2pF: $\rho(r) = \rho_0 \cdot \left(1 + \exp(\frac{r-c}{a})\right)^{-1}$ and consider 2 extreme situations:

•
$$a_n = a_p$$
, $c_n \neq c_p \rightarrow \Delta r_{np}$ ("neutron skin")

•
$$a_n \neq a_p$$
, $c_n = c_p \rightarrow \Delta r_{np}$ ("neutron halo")

halo factor → form of peripheral density distribution?

 Δr_{np} is caused rather by $a_n \neq a_p$ than by $c_n \neq c_p$

antiproton atom X rays \rightarrow good tool for investigation of the nuclear periphery: strong interaction **level width** and **shift** depend on the ρ_p and ρ_n via antiproton-nucleus potential:

$$\epsilon/2 \sim \int \left(\Psi(r)^2 \right) \Re \left[V^{opt}(r,\rho) \right] d\overline{r}$$
$$\Gamma/2 = -\int \left(\Psi(r)^2 \right) \Im \left[V^{opt}(r,\rho) \right] d\overline{r}$$

Experimental set-up

Antiprotonic atoms X rays

Antiprotonic atoms X rays

Energy (keV)

harvest of PS209 experiment

antiprotonic atom X rays as nuclear surface probe

- known:
 - $-\rho_{p}$ (from electromagnet. interacting probes: e, μ) well known?
 - V_{opt} (ρ_p , ρ_n)
- assumed:
 - 2-parameter-Fermi density distribution
 - c_n = c_p (information from comparison of f_{halo} and Δr_{np})
- fit: $a_n(V_{opt}, \Gamma_{low}, \Gamma_{up})$

 $\square \rho_n(c_n, a_n)$

 ρ_n for 26 isotopes deduced (from ⁴⁰Ca up to ²³⁸U)

antiprotonic atom X rays as nuclear surface probe

zero range NN interaction

$$V_{opt} = \frac{-2\pi}{\mu} (\overline{a_n} \rho_n(\mathbf{r}) + \overline{a_p} \rho(\mathbf{r})) \quad \text{where} \quad \overline{a_n} = \overline{a_p} = 2.5 + 3.4 \cdot \mathbf{i}$$

C.J. Batty Nucl. Phys. A592 (1995) 487

finite range NN interaction

$$V_{\rm opt} = \frac{-2\pi}{\mu} (1 + \frac{\mu}{M} \frac{A - 1}{A}) [b_0(\rho_n(r) + \rho_p(r)) + b_1(\rho_n(r) - \rho_p(r))]$$

E. Friedman Nucl. Phys. A761 (2005) 283

$$V^{\text{opt}} = \Sigma_{p,n} [V_S(r) + \nabla V_P(r)\nabla] = V_S + \hat{V}_P$$
$$V_{S,P}(r) = \frac{2\pi}{\mu_{\bar{N}N}} a_{S,P} \int d\mathbf{u} \, g_{S,P}(\mathbf{u}) \rho(\mathbf{r} - \mathbf{u})$$

S. Wycech Phys. Rev. C 76 (2007) 034316

antiprotonic atom X rays as nuclear surface probe

∆r_{np}

$$\rho_{p}(c_{n}, a_{n}), \rho_{n}(c_{n}, a_{n}) \rightarrow \Delta r_{np}$$

 $\Delta r_{np} = (-0.03 \pm 0.02) + (0.90 \pm 0.15) \cdot \delta$

Δr_{np} – comparison with other experiments

 $\rho_{p}(c_{n}, a_{n}), \rho_{n}(c_{n}, a_{n}) \rightarrow \Delta r_{np}$

 $\Delta r_{np} = (-0.03 \pm 0.02) + (0.90 \pm 0.15) \cdot \delta$

Δr_{np} – comparison with droplet model

Droplet Model: D. Meyers, W. Swiatecki, Nucl. Phys. A336 (1980) 267

²⁰⁸Pb Δr_{np} – comparison of the results

Sn Δr_{np} – comparison of the results

Sn

antiprotonic atoms (PS209)
 hardon probes
 HFB calculation

Summary

- Two experimental methods using antiprotonic atoms were applied to investigate nuclear periphery:
 - radiochemical method : $\rho_n / \rho_p @ r \approx c_{1/2} + 2.5 \text{ fm}$
 - antiprotonic X rays: $(\rho_n + \rho_p) @ \approx c_{1/2} + 1.5 \text{ fm}$
- Reach set of precise data collected
 - base for nuclear periphery studies
 - ... and for optical potential construction
- Δr_{np} systematics deduced from the data
 - excellent agreement of Δr_{np} from antiprotonic X rays and hadron scattering for ²⁰⁸Pb
 - good agreement of $\Delta r_{np}(\delta)$ established from antiprotonic data and theoretical models
 - fair agreement with the data from other experiments (hadron scattering)

Summary

- Open questions:
 - shifts not reproduced with available potentials
 - poor agreement with pionic atom results
- Future ...
- Examples of interesting cases for continuation:
 - Ca: dobly-magic 40Ca and 48Ca isotopes (possible measurement of 3 levels for each isotope, study of the neutron halo evolution between N=20 and N=28
 - odd-A isotopes (eq. Sn) study of unpaired nucleon effect, looking for LS effect
 - deformed even-A nuclei:
 - study of deeply-bound states via E2 resonacne
 - does deformation increases neutron-proton rms difference?
 - search for quasi-bound pp states ??

PS209 Collaboration

University of Warsaw Heavy Ion Laboratory

T.Czosnyka , J. Iwanicki, J. Jastrzębski, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, A. Stolarz, A. Trzcińska

Inistitute of Experimental Physics

K. Gulda, W. Kurcewicz

Technical University, Munich T. von Egidy F. J. Hartmann, B. Ketzer, R. Schmidt

Silesian Univeristy, Katowice B. Kłos

Sołtan Institute for Nuclear Studies S. Wycech, R. Smolańczuk

CERN E. Widmann

Thank you for the attention :)

Charge (proton) density distribution – realy well known??

