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Low Energy Antitproton Ring (LEAR) @ CERN 

K. Kilian and collaborators proposed in 1976 cooling and 
deceleration  of antiprotons as a way to obtain p beam of big 
intensity and high purity for low energy physics

it triggered the proposal to add to the constructed SPS pp  Collider 
a small facility  with antiproton energy range from 5 to 1200 MeV

In 1980 LEAR project was launched

In June 1983 first beam for users
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Experiments

2 x 3 week runs in 1995 and 1996 @ LEAR (CERN) – as a parasitic exp.

p beam:

➢ 300 MeV/c and 400 MeV/c  (1995)

➢ 106  MeV/c  (1996)

Targets:

➢ isotopically enriched materials

➢ thickness: ~ 200 - 300 mg/cm2 (1995) and ~ 50 - 100 mg/cm2 (1996)

55 isotopes studied (from 16O to 238U)



  

Antiprotonic atoms 

creation:

➢ p capture onto a “high” orbit

deexcitation (10-15 - 10-14 s):

➢ emission of Auger electrons

➢ X-rays emission (energy: γ-ray region)

➢ annihilation

n p=√(mp/me)×ne≈43×ne



  

Antiprotonic atoms – strong interaction effects

strong interaction
↓

widens and shifts p levels

in the experiment we measure:

Γ
low

 - directly from the line shape

ε - determining the line energy

Γ
up

 - indirectly from the intensity balance



  

Antiprotonic atoms – anninihaltion

p ends its life in the atom annihilating with a peripheral nucleon (p or n)



  

Antiprotonic atoms – anninihaltion

p ends its life in the atom annihilating with a peripheral nucleon (p or n)

we measure:

N(Nt−1)∼ρn(rannih)

N(Zt−1)∼ρp(rannih)

fhalo=
N(Nt−1)

N(Z t−1)
⋅
ℑap

ℑan

⋅
Zt

Nt

fhalo∼
ρn
ρp

(r1/2+1.5 fm)



  

“Radiochemical” method

N(Nt−1)∼ρn(rannih)

N(Zt−1)∼ρp(rannih)

experiment: 

● irradiation: target with Al monitor foils

● measurement: off-line gamma spectroscopy (low-background)

                                                                        activity of  of the products

● Al monitor foils                     activity of  24Na                   pbar current

 

● irradiated target                              N(A t−1)



  

Antiprotonic atoms – anninihaltion



  

Antiprotonic atoms – anninihaltion
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Antiprotonic atoms – anninihaltion

P m
is

si
ng

total annihilation

“cold” annihilation

X-rays   ~ r
1/2

 + 1.5 fm

A
T
-1       ~ r

1/2
 + 2.5 fm



  

Antiprotonic atoms – A
T
-1 production



  

halo factor

P. Lubiński et al., Phys. Rev. Lett.  73(1994)3199

P. Lubiński et al., Phys. Rev. C  57(1998)2962

R. Schmidt et al., Phys. Rev. C  60(1999)054309

Observations:

 strong correlation between f
halo

 and

neutron separation energy B
n

 in nuclei with B
n
 < 9 MeV nuclear

periphery is reach in neutrons!

 f
halo

 < 1 for nuclei with B
n
 > 10 MeV 

proton halo?? or NN bound state (S.Wycech)



  

halo factor → form of peripheral density distribution?

let's assume ρ in the form of 2pF: 

and consider 2 extreme situations:

a
n
 = a

p 
, c

n
 ≠ c

p
 → Δr

np
 (“neutron skin”)

a
n
 ≠ a

p
 , c

n
 = c

p
 → Δr

np
 (“neutron halo”)

ρ(r)=ρ0⋅(1+exp(
r−c

a
))

−1
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halo factor → form of peripheral density distribution?

Δr
np

 is caused  rather by a
n
 ≠ a

p
  than by  c

n
 ≠ c

p



  

antiprotonic atom X rays as nuclear surface probe

antiproton atom X rays → good tool for investigation of the nuclear periphery:

strong interaction level width and shift depend on the ρ
p
 and ρ

n

via antiproton-nucleus potential:

ϵ/2∼∫ (Ψ (r )2 ) ℜ [V opt
(r ,ρ ) ]d r̄

Γ /2=−∫ (Ψ (r )2) ℑ [V opt
(r ,ρ ) ]d r̄



  

Experimental set-up



  

Antiprotonic atoms X rays

Pb



  

Antiprotonic atoms X rays

Ni

Energy (keV)

58Ni



  

harvest of PS209 experiment



  

Isotopic effects

Ni



  

Isotopic effects

Ni

Fe



  

Isotopic effects

Ni

Fe

Zr



  

Isotopic effects



  

antiprotonic atom X rays as nuclear surface probe

 known:

– ρ
p
 (from electromagnet. interacting probes: e, μ) - well known?

– V
opt

 (ρ
p
, ρ

n
)

 assumed:
– 2-parameter-Fermi density distribution

– c
n
 = c

p
 (information from comparison of f

halo
 and Δr

np
)

 fit: a
n
(V

opt
, Γ

low
, Γ

up
)

     ρ
n 
(c

n
, a

n
)

                 ρ
n 
for 26 isotopes deduced (from 40Ca up to 238U)



  

antiprotonic atom X rays as nuclear surface probe

zero range NN interaction

Vopt=
−2π

μ (anρn(r )+apρ(r))    where   an=ap=2.5+3.4⋅i

zero range NN interaction

finite range NN interaction

C.J. Batty Nucl. Phys. A592 (1995) 487

zero range NN interaction

Vopt=
−2π

μ (1+
μ

M
A−1

A
)[b0(ρn(r)+ρp(r ))+b1(ρn(r)−ρp(r ))]

E. Friedman Nucl. Phys. A761 (2005) 283

S. Wycech Phys. Rev. C 76 (2007) 034316



  

antiprotonic atom X rays as nuclear surface probe

X-ray results

theory (HFB)

with error corridor

f
halo



  

Δr
np

ρ
p 
(c

n
, a

n
), ρ

n 
(c

n
, a

n
) → Δr

np

Δr
np 

= (-0.03 ± 0.02) + (0.90 ± 0.15) · δ



  

Δr
np 

 – comparison with other experiments

ρ
p 
(c

n
, a

n
), ρ

n 
(c

n
, a

n
) → Δr

np

Δr
np 

= (-0.03 ± 0.02) + (0.90 ± 0.15) · δ



  

Δr
np 

 – comparison with droplet model

Droplet Model: D. Meyers, W. Swiatecki, Nucl. Phys. A336 (1980) 267



  

208Pb Δr
np 

 – comparison of the results



  

Sn Δr
np 

 – comparison of the results

Sn

antiprotonic atoms (PS209)

hardon probes

HFB calculation



  

Summary

Two experimental methods using antiprotonic atoms were applied
to investigate nuclear periphery:

 radiochemical method : ρ
n
 / ρ

p 
 @ r ≈ c

1/2
 + 2.5 fm

 antiprotonic X rays: (ρ
n
 + ρ

p) 
 @ ≈ c

1/2
 + 1.5 fm

Reach set of precise data collected
 base for nuclear periphery studies
 ... and for optical potential construction

Δr
np

 systematics deduced from the data

 excellent agreement of Δr
np

 from antiprotonic X rays and hadron 

scattering for 208Pb
 good agreement of Δr

np
(δ) established from antiprotonic data

and theoretical models
 fair agreement with the data from other experiments (hadron 

scattering)



  

Summary

Open questions:
 shifts - not reproduced  with available potentials
 poor agreement with pionic atom results

Future ...
Examples of interesting cases for continuation:

 Ca: dobly-magic 40Ca and 48Ca isotopes (possible measurement
of 3 levels for each isotope, study of the neutron halo evolution 
between N=20 and N=28

 odd-A isotopes (eq. Sn) - study of unpaired nucleon effect, looking
for LS effect

 deformed even-A nuclei:
– study of deeply-bound states via E2 resonacne
– does deformation increases neutron-proton rms difference?
 search for quasi-bound pp states - ??
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Thank you for the attention :)



  

annihilation

Charge (proton) density distribution – realy well known??
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