

Austrian Academy of Sciences

Status of FLAIR – Facility for Low-energy Antiproton and Ion Research @ FAIR

www.flairatfair.eu

Eberhard Widmann

ECT* Trento

17 Jun 2019

Stefan Meyer Institute for Subatomic Physics, Vienna

Next-generation Low-energy Antiproton Facility (2004)

Feature	Solution
Higher intensity	Accumulation scheme
	Coincidonae experimente
Fast and slow extraction	(nuclear physics)
Cooled beams down to	Storage rings: ELENA
< 500 keV	Operation from 2021
Availability of pbar and RI	FAIR

High brightness low energy beams

- two storage rings with 300 keV (LSR) and 20 keV (USR)
- electron cooling
 - $\epsilon \sim 1 \pi$ mm mrad
 - Δp/p ~ 10⁻⁴
- Storage rings with internal targets for collision studies
- Slow and fast extraction
- Ion traps
 - HITRAP facility for HCI & pbar
- Many new experiments possible
- same facilities can be used for HCI

Factor 100 more pbar trapped or stopped in gas targets than CERN-AD

FLAIR BTR www.flairatfair.eu

Antiprotons at FAIR

- Modularized start version 0-3
 - founded Oct. 2010
 - construction started
- FLAIR: Module 4 with NESR, SFRS-LEB
 - additional funding of ~100 M€ needed
 in 2005 prizes
- Storage rings are a core feature of FAIR

Modules 0 to 3 of FAIR. Module 0: green; module 1: red; module 2: yellow

Low Energy Antiproton Physics @ FLAIR

- Spectroscopy for tests of CPT and QED
 - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions
 - Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions
- Antiprotons as hadronic probes
 - X-rays of light antiprotonic atoms: low-energy QCD
 - X-rays of neutron-rich nuclei: nuclear structure (halo)
 - Antineutron interaction
 - Strangeness –2 production
- Medical applications: tumor therapy

FLAIR TDR - E. Widmann CAMOP - Physica Scripta 72, C51-C56 (2005)

E. Widmann

Sub-Femtosecond Correlated Dynamics Probed with Antiprotons

Sensitivity of \overline{H} spectroscopy

E. Widmann

Status of antimatter CPT tests

Right edge: value Bar length: relative precision Left edge: absolute sensitivity

E. Widmann

Source: PDG Blue: measured Orange: planned Yellow: potentially reachable

Stefan Meyer Institute

Widmann, E. et al. *Hyperfine Interact. 240:5 (2019)* https://doi.org/10.1007/s10751-018-1536-9.

Comparison of CPT tests: SME

$$(i\gamma^{\mu}D_{\mu} - m_{e} - a^{e}_{\mu}\gamma^{\mu} - b^{e}_{\mu}\gamma_{5}\gamma^{\mu} - \frac{1}{2}H^{e}_{\mu\nu}\sigma^{\mu\nu} + ic^{e}_{\mu\nu}\gamma^{\mu}D^{\nu} + id^{e}_{\mu\nu}\gamma_{5}\gamma^{\mu}D^{\nu})\psi = 0.$$

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

LORENTZ VIOLATION

- Minimal SME: only HFS
- Non-minimal SME: also 1S-2S shows CPTV

Bluhm, R., Kostelecky, V., & Russell, N., PRL 82, 2254–2257 (1999).

CPT tests and **SME**

PDG, Kostelecky & Bluhm arXiv:0801.0287

E. Widmann

Sub-Femtosecond Correlated Dynamics Probed with Antiprotons

Stefan Meyer Institute

Sub-Femtosecond Correlated Dynamics Probed with Antiprotons

Atomic Collision Physics with USR

Ionization in single collision Energy loss by slow antiprotons

Single Ionization of He by Antiproton Impact

- Benchmark system for theory
- Antiproton does not suffer from charge screening
- Kinematically complete measurements possible with an internal target in a storage ring

Reaction microscope

Stefan Meyer Institute

E. Widmann

D. Fischer, FLAIR workshop Heidelberg 2014 https://indico.gsi.de/event/2495/

Fully differential cross sections for ions

E. Widmann

D. Fischer, FLAIR workshop Heidelberg 2014 https://indico.gsi.de/event/2495/

X-rays of light antiprotonic atoms

Talk D. Gotta Fr 10:00

- Continuous pbar beam needed:
- Low-energy nucleonantinucleon interaction
- spin
 dependencies
- Isotope

 effects:
 relative
 strength of
 annihilation
 p,n: halo
 effects

Ground-state HFS could not be resolved @ LEAR

E. Widmann

p-RI in Traps for Nuclear Structure Study

Talk A. Trzinksa Tu 11:00

PS209@LEAR determination of the halo factor (f_{halo})

- Momentum distribution of recoil nuclei
 - Wave function of outer-most nucleon
- Charged pion multiplicity
 - Distinguish annihilation on p and n
- Halo factors
- Less model dependent than X-rays
- Antiprotons from FLAIR
- RI from LEB-SFRS gas catcher

Cold dense nuclear matter

Stefan Meyer Institute

Signal of bound states ?

OBELIX data

Ap invariant mass

entries/0.0175 GeV

 $\overline{p} + {}^{4}He \rightarrow ppnK^{-} + K^{0}$ $ppnK^{-} + K^{0} \rightarrow \Lambda^{0} + d + K^{0}$

Ad invariant mass

Antiproton annihilation

Stefan Meyer Institute

- Strong attraction in antikaon-nucleon interaction below threshold
 - Bound states of single and double kaons exist?
- Large cross section for production of 2 K⁺ in proton-antiproton annihilation at LEAR
- re-measurement with stopped antiprotons
- •4π detector needed: FOPI
 - also useful for meson spectroscopy with stopped antiprotons E. Widmann

$$\overline{p} + p \longrightarrow K^+ + K^+ + K^- + K^- - 0.098 \text{ GeV}$$
$$\overline{p} + {}^4He \longrightarrow K^+ + K^+ + [pnnK^-K^-]$$

J. Zmeskal et al. Hyperfine Interact 194, 249-254 (2009)

New developments

Eberhard Widmann

USR: electrostatic storage ring

Part Phys. Nucl. Letters 8 (2011)

E _{min} /E _{max}	20 / 300 keV
Voltages	< ± 20 kV
number of pbars at 20 keV	1·10 ⁷

Stefan Meyer Institute

CSR@MPI-K Heidelberg; USR: C. Welsch Cockcroft Institute

Cooled Heavy Ions at GSI/FAIR

HITRAP

- LINAC + RFQD + Penning trap for HCI and pbar extraction of eV beams precision mass measurements, reaction microscopes for collision studies, etc. •being
 - commissioned for ESR@GSI

CRYRING: a perfect match for LSR

- LSR is central "work horse" of FLAIR
 - Beam delivery for HITRAP, USR, experiments
- Choice of CRYRING (MSL, Stockholm)
 - Fitting energy range, electron cooling, fast ramping, internal target, low-energy injection from ion source for commissioning
 - Expertise: MSL staff has designed & built CRYRING
 - CRYRING will be contributed by Sweden as in-kind contribution to FAIR

Ready for beam@GSI

CRYRING@ESR – a Swedisch in-kind contribution

E. Widmann

GSI/FAIR beamline topology with CRYRING@ESR

ESR fast extraction towards CRYRING

CRYRING: First transfer of ions from ESR to CYRING

From Th. Stöhlker

CRYRING / FAIR

Scientific goal:

 atomic and nuclear physics of exotic systems at low energy

ST

Special Topics

anized by European Physical Socie

etpsciences 🖉 Springer in print

- circumference: 54 m
- decelerate ions down to 7‰ c
- UHV: p < 10⁻¹¹ mbar
- gas and electron targets, COLTRIMS
- e-cooler
- several experiment stations

CRYRING in the SIS18 target hall @ GSI/FAIR

From Th. Stöhlker

CRYRING@ESR: Highly-Charged lons at Low Energies

Spectroscopy for tests of QED

- High-precision x-ray spectroscopy
 - 1s-Lamb-Shift
 - Two-Electron-QED
- Recoil ion momentum spectroscopy
 - Highly-excited stated
- Laser spectroscopy
- Recombination spectroscopy with high resolution

Atomic collisions

- Sub-femtosecond correlated dynamics
- Unexplored regime: strong perturbation Q/v

Nuclear Physics at low-energies

- exotic nuclear decay modes
- astrophysical reactions

Features@Cryring

- Low-energy and electron cooled beams
- Electron cooling with adiabatic expansion
- High-luminosity for in-ring experiments
- Very fast deceleration 7 T/s
- Internal jet and electron target
- Slow extraction

FLAIR: Expected Antiproton Rates

- Production: 10⁸ / 4 s
- Deceleration time
 - •~20 s
- Limits from space charge in rings:
 - 300 keV: 3 x 10⁶ / s
 - 20 keV: 5 x 10⁵ / s
 - for 10 π mm mrad
 - HITRAP:
 - 0 keV: 1 x 10⁶ / s
- In-ring experiments
 - Effective rates: 10¹⁰- 10¹² / s

H. Danared, TP p. 159

- Phase space density much higher than AD
 - AD production rate 5x10⁷ / 100 s

Assumptions: 10% of accumulated $\bar{\textbf{p}}$

ELENA @ CERN

momentum range, MeV c^{-1}	100–13.7	
kinetic energy range, MeV	5.3–0.1	
machine tunes h/v ^a	2.46/1.46	
circumference, m	30.4	
repetition rate, s ^b	≈100	
injected beam intensity	3×10^{7}	
ejected beam population (total of all bunches)	1.8 × 10 ⁷	
number of extracted bunches	4 ^c	
$\Delta p/p$ of extracted bunches, (95%) ^d	$2.5 imes 10^{-3}$	
bunch length at extraction, (95%), m/ns ^d	1.3/300	
emittance (h/v) at extraction, $\pi\mu$ m, (95%) $^{ m d}$	6/4	
nominal (dynamic) vacuum pressure, Torr	3×10^{-12}	

^aWith sufficient tuning range, e.g. to avoid resonances.

Table 1. ELENA machine and beam parameters.

^bLimited by the AD repetition rate; the expected ELENA cycle length is \approx 25 s.

^c Less extracted bunches is an option leading to slightly larger emittances and momentum space-

^dPresent best guesses based on simulations.

Cite this article: Bartmann W, Belochitskii P,

Breuker H, Butin F, Carli C, Eriksson T, Oelert W, Ostojic R, Pasinelli S, Tranquille G on behalf of the ELENA and AD teams. 2018 The ELENA facility. *Phil. Trans. R. Soc. A* **376**: 20170266. http://dx.doi.org/10.1098/rsta.2017.0266

Fast extraction only

Approved in 2011, start 2021

Modularized Start Version of FAIR and beyond

ESR

CR

RESR

FLAIR@ESR ,CRYRING, HITRAP USR

CRYRING@ESR, may enable a much earlier realization of the physics program of FLAIR with slow anti-protons.

30 MeV pbars from RESR (0.8 Tm)

2.2 GeV pbars from CR (10 Tm)

From Th. Stöhlker

Scenarios: p rates in MSV from HESR

• Leftover from PANDA

- few 10⁹ per 60 min
- decelerate & transfer to ESR
 - T. Katayama: 100s, 80% eff.
- average 5x10⁵/s
- 5x10⁷/s every 100 s
 - similar to AD-ELENA
- fast or *slow* extraction

T. Katayama et al., Phys. Scr. T166 (2015) 014073

•Low-energy p production: full use of HESR

- CR 13 Tm
- ESR 10 Tm, but above transition energy
- deceleration needed to avoid loss: HESR
- T. Katayama:
 - start with $10^9 \bar{p}$ (stacking for 100 s)
 - deceleration to 30 MeV in HESR&ESR: $8x10^8 \bar{p} / 100 s$: 10xELENA
 - max. $10^{10} \bar{p}$ (stacking for 1000 s): similar average rate

Latest FAIR news 2019

- Very positive scientific report
- Cost increase 850 M€
 - Due to booming construction industry

Report		
of the		
FAIR Progress and Cost Review Board	d:	
Detailed Review of Progress and		
Financial Status of the FAIR Project		
April 2019		
29 April 2019		
	1/17	
RevBoardReport_20190429_Public	1/17	

Summary and Outlook

- Low energy antiprotons offer exciting possibilities for a variety of fields
 - Fundamental symmetries, nuclear & atomic physics
- CERN-AD and ELENA: Antihydrogen
 - essential for continuation of current program
 - Antihydrogen spectroscopy and gravity
- FLAIR: offers further opportunities
 - \bullet continuous \bar{p} beams available from CRYRING
 - nuclear and particle physics type experiments (not possible at AD)
 - Availability of radioactive ion beams (RIB) offers new synergies
 - requires independent beam line from (S)FRS
 - Cooled antiprotons down to 20 keV (with USR)
 - higher rates (phase 2, with RESR)
 - Time line: beyond 2025
- Major components of FLAIR are ready or will be soon
 - CRYRING can play a major role in future experiments with (continuous) beams of slow antiprotons

