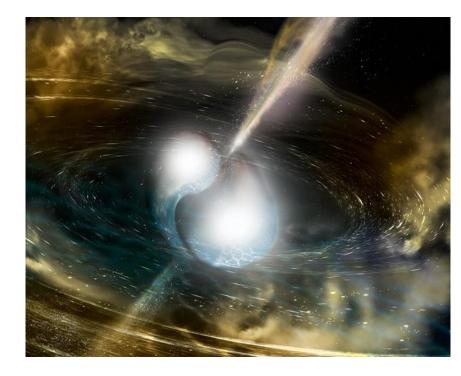


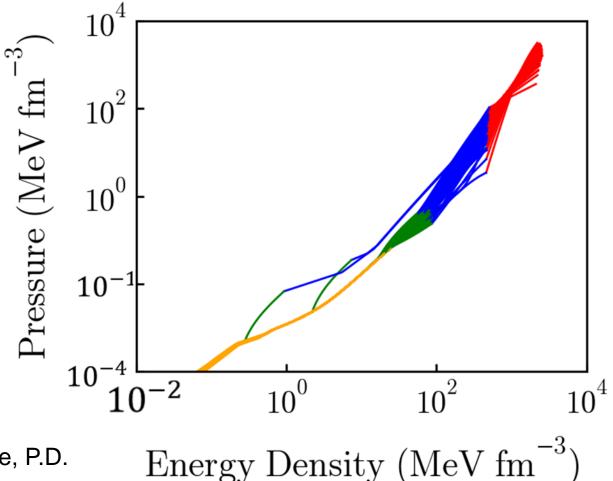
Insights on the EoS parameters from GW170817

Chun Yuen Tsang Advisor: Betty Tsang


This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

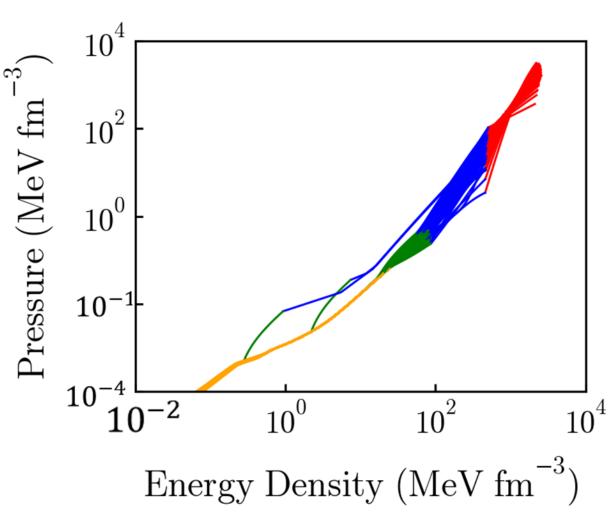
NS calculation with nuclear EoS

Neutron star merger


- On 17th Aug, 2017, gravitational wave (GW) from a binary neutron star (NS) merger is observed for the first time.
- $\hfill \label{eq:one-of-constraint}$ One of the major observables : Tidal deformability Λ
 - NS deform due to tidal force in close proximity
 - Deformation energy must come from orbital energy
 - GW period deviates from point mass calculation
 - The ease of deformation (neutron star equation of state) is given by Tidal deformability Λ
- Initial constraint of Λ < 700 from GW (B.P. Abbott et al. 2017)
- Λ can also be calculated from NS EoS,
- Can EoS obtained from nuclear physics describe neutron star properties and give reasonable Λ?

Nuclear Physics EoS: Skyrmes interactions

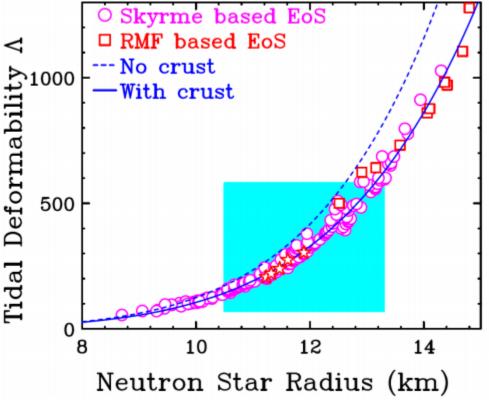
- 11 free parameters functions
- Parameters set varies when fitted to different experimental results
- (Dutra, 2012) is a summary paper including most Skyrme in the academia market. It listed Skyrme that are considered reasonable.
- We also used the extended sets from Pawel Danielewicz and Alex Brown.
- A total of 248 EoS were used.



M.Dutra, O. Lourenco, J.S. Sa Martins, A.Delfno, J.R. Stone, P.D. Stevenson, Phys Rev. C 85, 035201 (2012)

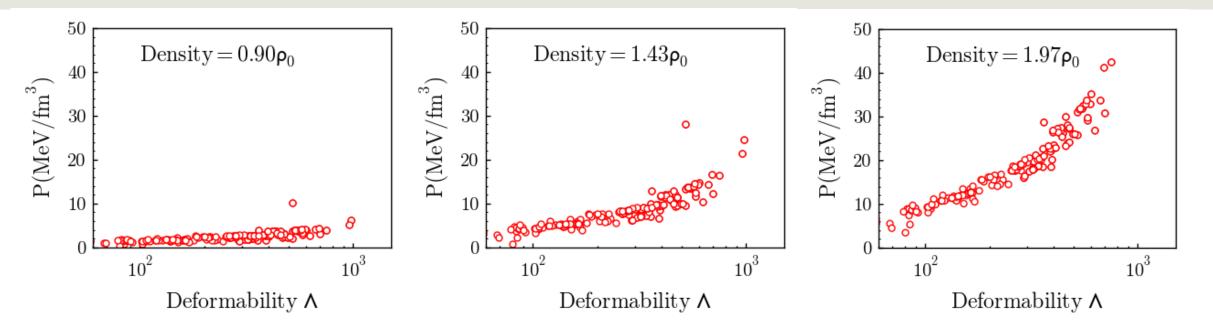
NS model to bridge NP observable to properties of NS

- NS is not a homogeneous nucleon matter across all densities. Need to stitch different EoSs from different density regions
- Yellow region: Crustal EoS from (G. Baym, 1971)
- Green region: Ultra relativistic gas equation to connect crustal EoS with nuclear physics EoS: Skyrme
- Blue region: Beta equilibrated Skyrme with electrons and muons.
- Red region: Polytropes ($P = K\rho^{\Gamma}$) at high density > $3\rho_0$. Γ is chosen such that the EoS will support 2 solar mass NS.
- Code is developed to bridge nuclear physics experimental observable and properties of NS

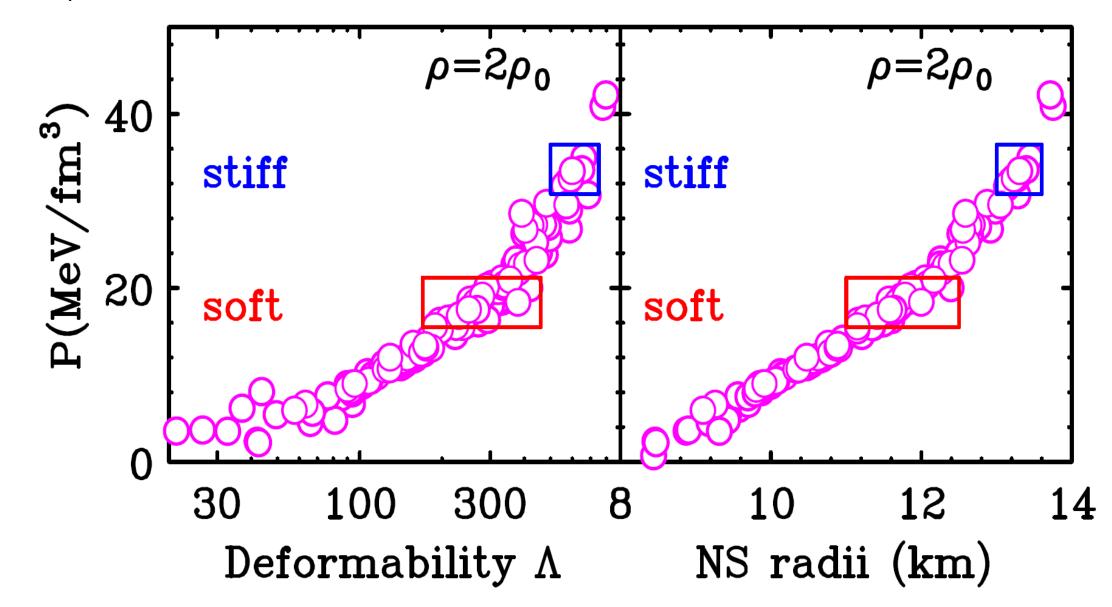

U.S. Department of Energy Office of Sciel Gordon Baym, Christopher Pethick, Peter Sutherland, Astrophys J., 170:299-National Science Foundation Michigan State University 137 (1971) Slide 5

Neutron Star properties from the model

A program was developed in collaboration with F.J. Fattoyev such that NS properties can be calculated from nuclear EoS.

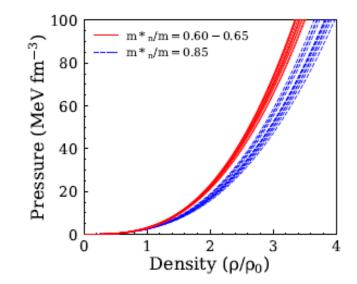

•
$$\Lambda = \frac{2}{3} k_2(R) \left(\frac{c^2 R}{Gm}\right)^5$$
 vs R is plotted.

- Red points corresponds to FSU-gold EoS and relativistic mean field density functionals.
- Blue line corresponds to neutron star EoS of our model.
- Blue dash line corresponds to Skyrme calculation without crust. 9 50
- Can we improve our constraints with nuclear reaction experiments?
 - Different density and pressure regions can be created by selecting reaction systems, energy and impact parameters.
 - Pressures can be deduced from nuclear reactions at different energy and impact parameters.
 - Is P sensitive to Λ? What is the optimum density to explore?


P-Λ sensitivity test at various densities

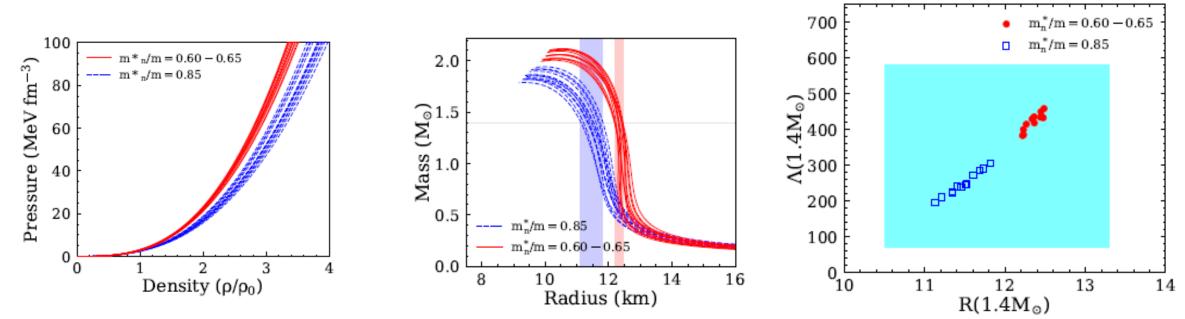
- 1. Correlation between P and Λ increases with density
- 2. We need density > $1.5\rho_0$ for constraints on Λ to be useful

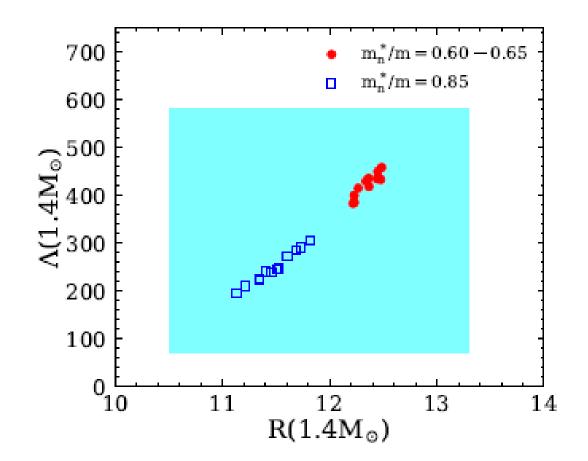
Example



NS calculation with a more restricted EDFs

Adding constraints from experiments

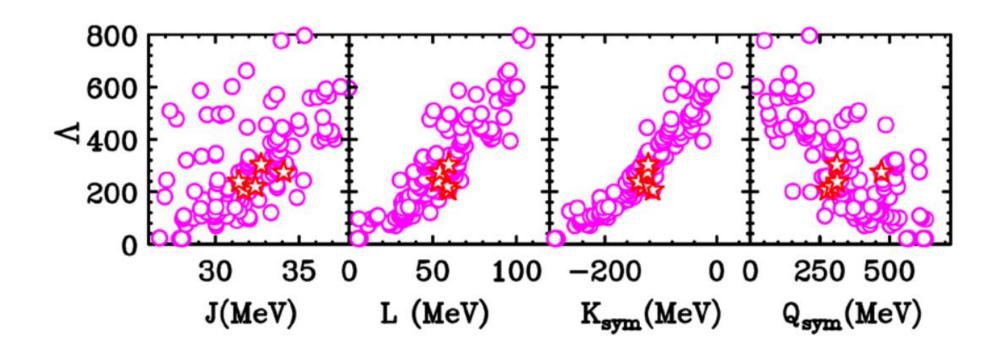

- Just to list a few...
- K₀, the nuclear incompressibility, is extracted from the energy of giant monopole resonances and 217 < K₀ <230 MeV
- Binding energies of various nuclei (e.g. 160, 240, 34Si, 40Ca, 48Ca, 48Ni...) have been measured
- RMS charge radii and single particle energies of the said nuclei have also been measured.
- Ab-inito calculation is performed for low-density neutron matter.
- Skyrme that satisfy them all?


NS sensitivity to neutron effective mass

- It is possible to parameterize Skyrme such that they satisfy aforementioned conditions with wildly different neutron-matter effective mass:
 - $\frac{m_n^*(\rho)}{m} = \frac{c_n}{c_n + d_n \rho}$ where $\mathcal{E}(\rho) = a_n \rho^2 + b_n \rho^{2+\sigma} + c_n \rho^{5/3} + d_n \rho^{8/3}$
- However, neutron star calculation reveals sensitivity between maximum possible NS and effective mass:

Final result with the restricted Skyrme

Correlations between neutron star properties and nuclei properties



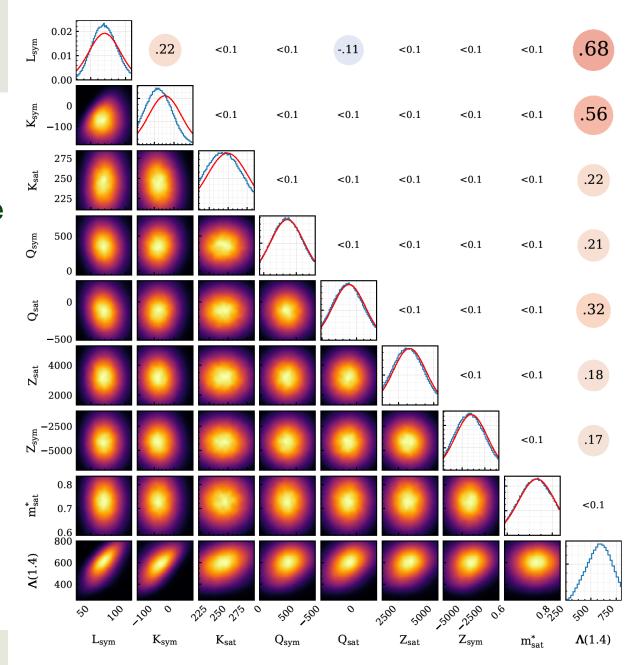
- Dutra's Skyrmes set is limited in numbers. Bias in EoS selection cannot be quantified.
- Uncertainties in correlation is hard to quantified for the same reason
- How do we handle those problems?

$$S(\rho) = J + Lx + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + O(x^{4})$$

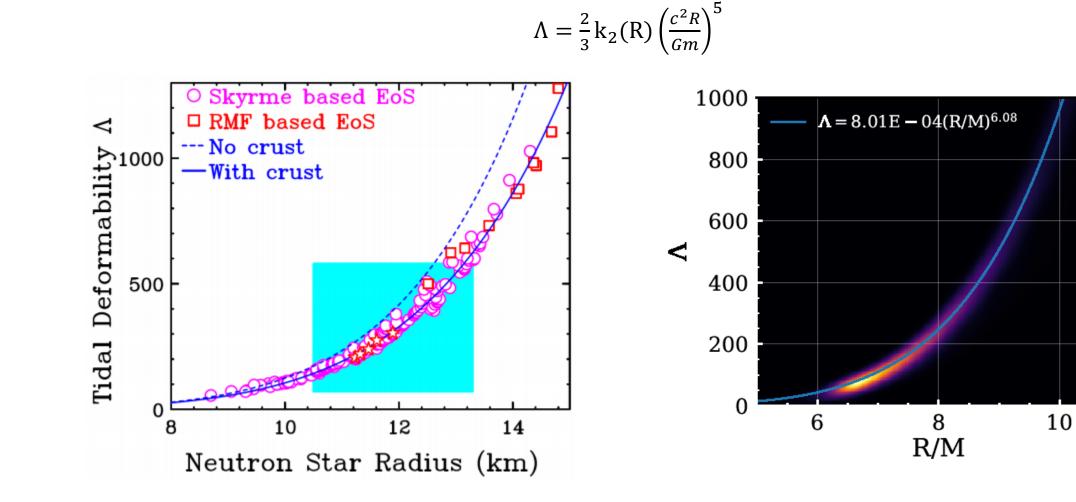
$$L = 3\rho \frac{dS(\rho)}{d\rho}; K_{sym} = 27\rho^{2} \frac{d^{2}S(\rho)}{d\rho^{2}}$$

$$Q_{sym} = 27\rho^{3} \frac{d^{3}S(\rho)}{d\rho^{3}}$$

NS calculation with Meta EOS


What is a Meta EOS

- Unllike Skyrme, A Meta EOS takes E_0 , K_{sat} , Q_{sat} , Z_{sat} , S_0 , L, K_{sym} , Q_{sym} , Z_{sym} as free parameters
- In Skyrme these terms are all correlated. Metamodelling EOS ensure independence.

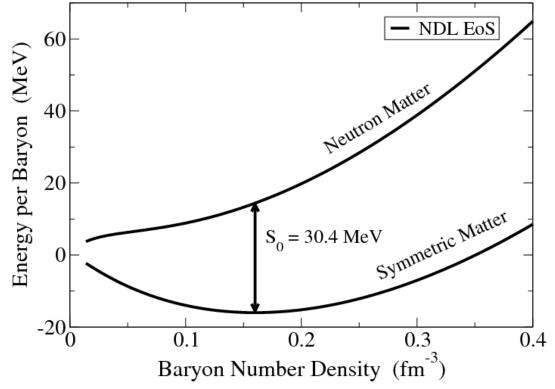

Preliminary result

- Red line in the diagonal plots: Prior
- Blue line in the diagonal plots: Posterior
- Change in shape between red and blue line is the result of comparison with measured deformability.
- Only L, Ksym and Ksat show changes between prior and posterior distribution.

Preliminary result

Back up slides

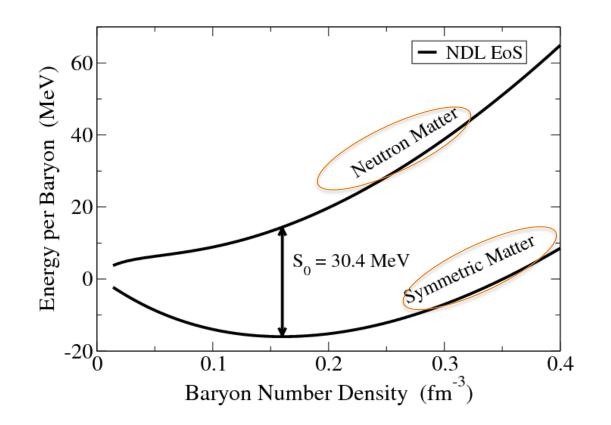
U.S. Department of Energy Office of Science National Science Foundation Michigan State University


Tommy Tsang, research discussion, Slide 19

1. Introduction to Nuclear EoS

What is Equation of state (EoS)

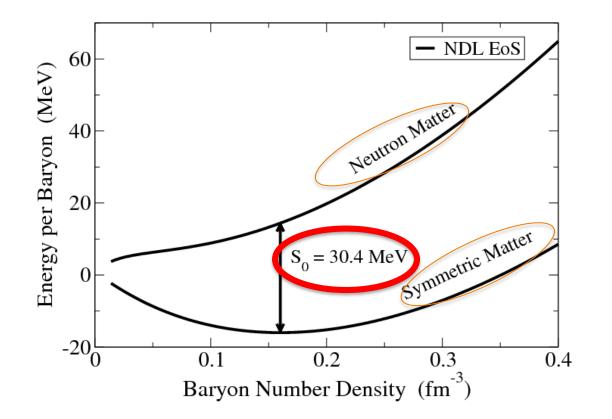
- Thermodynamic equation that relates variables that describe the matter. (e.g. Pressure, Volume, etc.)
- EoS describes bulk properties of matter
 - Soft/hard
 - Compact/sparse
 - Temperature
 - Pressure
 - etc.
- Different EoSs describe different matter
- Matter of interest: Nuclear matter
 - Matter that is made up of homogeneous nucleons
 - Examples: Core of heavy nuclei, neutron stars.
 - The nuclear EoS should be the same for heavy nuclei & neutron stars



Meixner, M. et al. arXiv:1303.0064v1 [astro-ph.HE] (2013)

Symmetric energy term : transition from hadronic EoS to Neutron star (NS) EoS

- Nuclei and NS are in different region of isospin space.
- NS consists of mostly neutrons while nuclei consists of (almost) equal number of protons and neutrons (more similar to symmetric nuclear matter)


Meixner, M. et al. arXiv:1303.0064v1 [astro-ph.HE] (2013)

Symmetric energy term : transition from hadronic EoS to Neutron star (NS) EoS

- Nuclei and NS are in different region of isospin space.
- NS consists of mostly neutrons while nuclei consists of (almost) equal number of protons and neutrons (more similar to symmetric nuclear matter)
- The 2 regions are connected through symmetry energy term S(ρ)
- $\Delta E_{neutron \, excess} = S(\rho)\delta^2$, where $S(\rho)$ is often called **symmetry energy term.**
- $S(\rho)$ is the focus of the HiRA group research.
- Study observables across nuclei with different asymmetry $\delta = \frac{N-Z}{A}$, extrapolate hadronic EoS to pure neutron EoS.

Meixner, M. et al. arXiv:1303.0064v1 [astro-ph.HE] (2013)

Meta EOS

- It is a 12-free parameters equation with the following form: • $E_{EFLc}(\rho, \delta) = t^{FG*}(\rho, \delta) + v_{EFLc}^{N}(\rho, \delta)$
 - Where

•
$$t^{FG*}(\rho,\delta) = \frac{t_{sat}^{FG}}{2} \left(\frac{\rho}{\rho_0}\right)^{\frac{2}{3}} \left[\left(1 + \frac{\kappa_{sat}\rho}{\rho_0}\right) \left((1+\delta)^{\frac{5}{3}} + (1-\delta)^{\frac{5}{3}}\right) + \frac{\kappa_{sym}\rho}{\rho_0} \delta \left((1+\delta)^{\frac{5}{3}} - (1-\delta)^{\frac{5}{3}}\right) \right]$$

• $v_{EFLc}^N(\rho,\delta) = \sum_{i=0}^4 \frac{1}{i!} \left(v_i^{is} + v_i^{iv}\delta^2\right) \left(1 - (-3x)^{5-i}\right) e^{-b\rho/\rho_0} x^i$

1

• Such that:

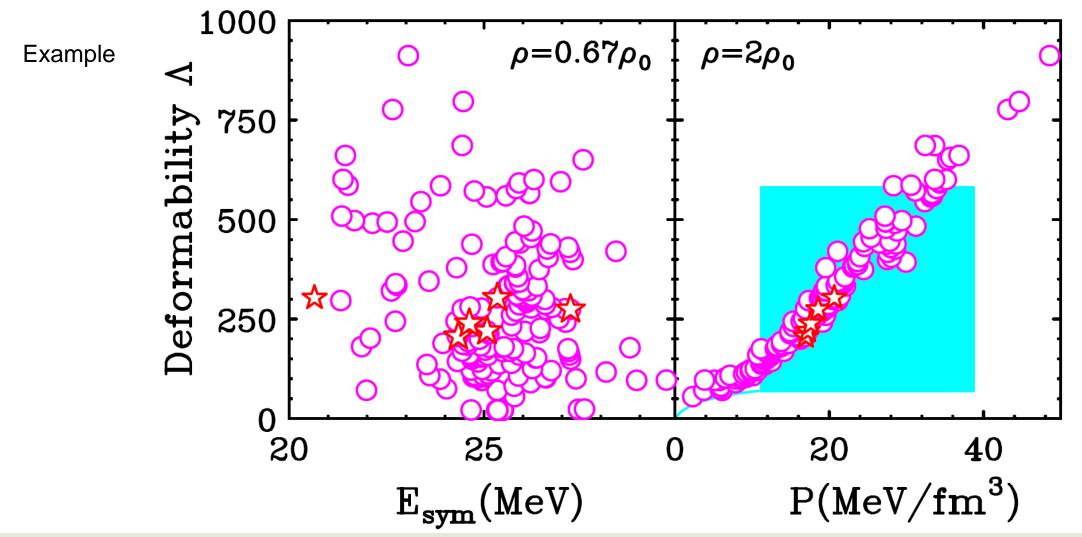
$$\begin{aligned} v_0^{is} &= E_{sat} - t_{sat}^{FG}(1 + \kappa_{sat}) \\ v_1^{is} &= -t_{sat}^{FG}(2 + 5\kappa_{sat}) \\ v_2^{is} &= K_{sat} - 2t_{sat}^{FG}(-1 + 5\kappa_{sat}) \\ v_3^{is} &= Q_{sat} - 2t_{sat}^{FG}(4 - 5\kappa_{sat}) \\ v_4^{is} &= Z_{sat} - 8t_{sat}^{FG}(-7 + 5\kappa_{sat}) \end{aligned}$$

$$v_{0}^{iv} = S_{0} - \frac{5}{9} t_{sat}^{FG} \left(1 + (\kappa_{sat} + 3\kappa_{sym}) \right)$$

$$v_{1}^{iv} = L - \frac{5}{9} t_{sat}^{FG} \left(2 + 5(\kappa_{sat} + 3\kappa_{sat}) \right)$$

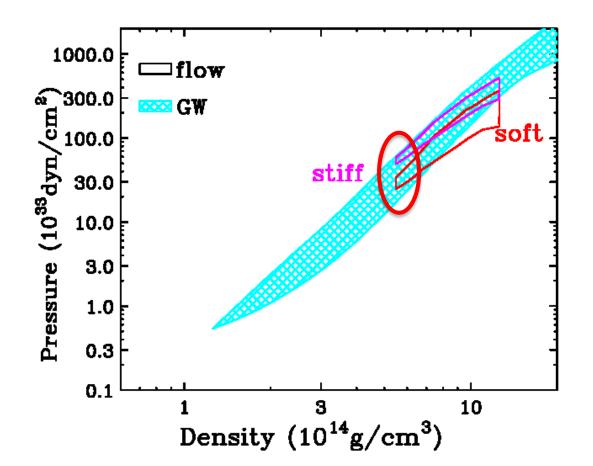
$$v_{2}^{iv} = K_{sym} - \frac{10}{9} t_{sat}^{FG} \left(-1 + 5(\kappa_{sat} + 3\kappa_{sym}) \right)$$

$$v_{3}^{iv} = Q_{sym} - \frac{10}{9} t_{sat}^{FG} \left(4 - 5(\kappa_{sat} + 3\kappa_{sym}) \right)$$


$$v_{4}^{iv} = Z_{sym} - \frac{40}{9} t_{sat}^{FG} \left(-7 + 5(\kappa_{sat} + 3\kappa_{sym}) \right)$$

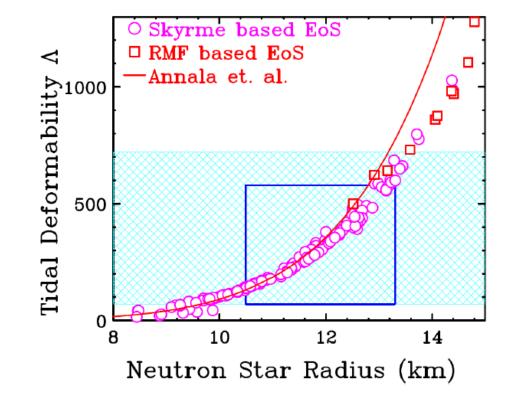
The data set consists of the following ground-state properties of the doubly magic nuclei used for the Skx family of Skyrme interactions [6–10]: ¹⁶O, ²⁴O, ³⁴Si ⁴⁰Ca, ⁴⁸Ca, ⁴⁸Ni, ⁶⁸Ni, ⁸⁸Sr, ¹⁰⁰Sn, ¹³²Sn, and ²⁰⁸Pb. The properties are binding energies, rms charge radii, and single-particle energies. These data are given in [6]. All of the CSkP functionals were constrained to have a range of *L* values (defined below) that correspond to a neutron skin thickness (the differences between the neutron and proton rms radii) for ²⁰⁸Pb to be near $R_{np} = 0.20$ fm. The Ska25s20 and Ska35s20 are unpublished functionals in the Skx family

Brown, A., Phys. Rev. Lett. 111, 232502 PRC 58, 220 (July 1998)



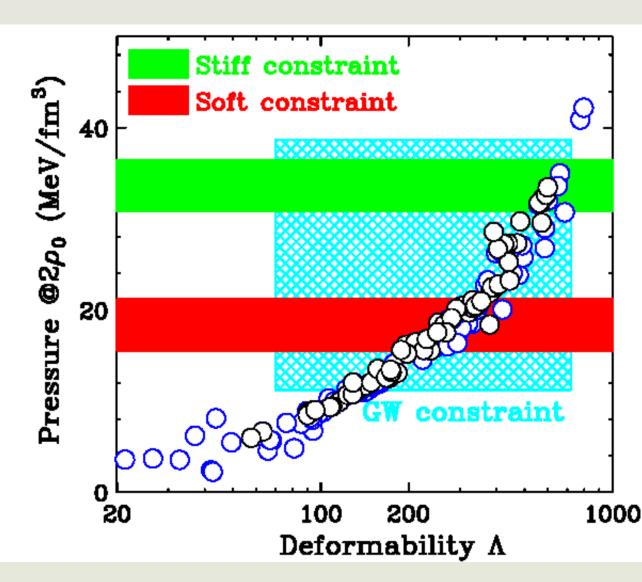
Result from the flow experiment

- Purple and red boxes show the constraints obtained from flow data with stiff and soft symmetry energy term respectively.
- Discrimination of stiff and soft symmetry energy term is good ~ $2\rho_0$.
- Recall that pressure at 1.5 ρ_0 2 ρ_0 provides optimal discrimination for Λ
- Furthermore, $P(\sim 2\rho_0)$ correlates strongly with NS radius.
- Recent EoS constraints from (LIGO, 2018) agrees well with HIC constraints from (P. Danielewicz, 2002)
- Pion ratios from SpiRIT experiments could place tighter constraints

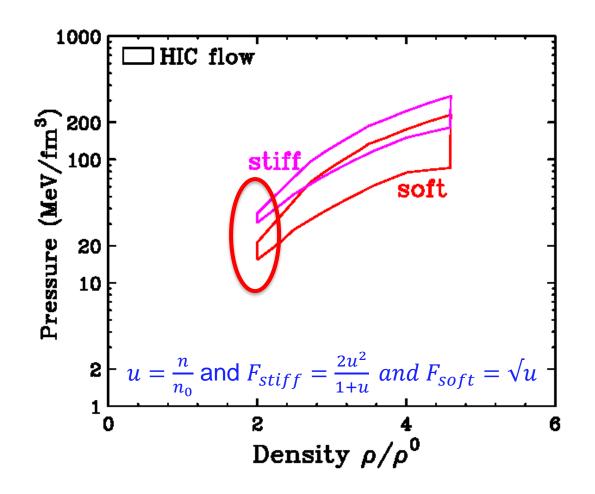

Validation of the deformability calculation

• Λ vs R is plotted against other EoSs for validation

• $\Lambda = \frac{2}{3} k_2(R) \left(\frac{c^2 R}{Gm}\right)^5$


- Red points corresponds to FSU-gold EoS and relativistic mean field density functionals.
- Red line corresponds to neutron star EoS constructed with piece-wise polytrope EoS
- Our calculation with Skyrme based EoS seems to agree with other calculations.
- How can we improve our constraints with nuclear reaction data?
 - Pressures can be deduced from nuclear reactions at different energy and impact parameters.
 - Is P sensitive to Λ ? What is the optimum?

Putting all constraints together


- Pressure at $2\rho_0$ as a function of Λ
- Open circles corresponds to theoretical calculation from Skyrmes.
- Green and red region corresponds to constraints from the flow experiment
- Blue region is the GW constraints
- Conclusion: Observables at $P(2\rho_0)$ can improve the symmetry EoS constraint further beyond the GW constraint.

Result from the flow experiment

- Purple and red contours show the constraints obtained from flow data with stiff and soft symmetry energy term respectively.
- Discrimination of stiff and soft symmetry energy term is good ~ $2\rho_0$.
- P(~2 ρ_0) also correlates strongly with NS radius.
- Recall that pressure at 1.5 ρ_0 2 ρ_0 provides good discrimination for Λ
- Pion ratios from SpiRIT experiments and future experiments could place tighter constraints

Previous measurement: Flow experiment

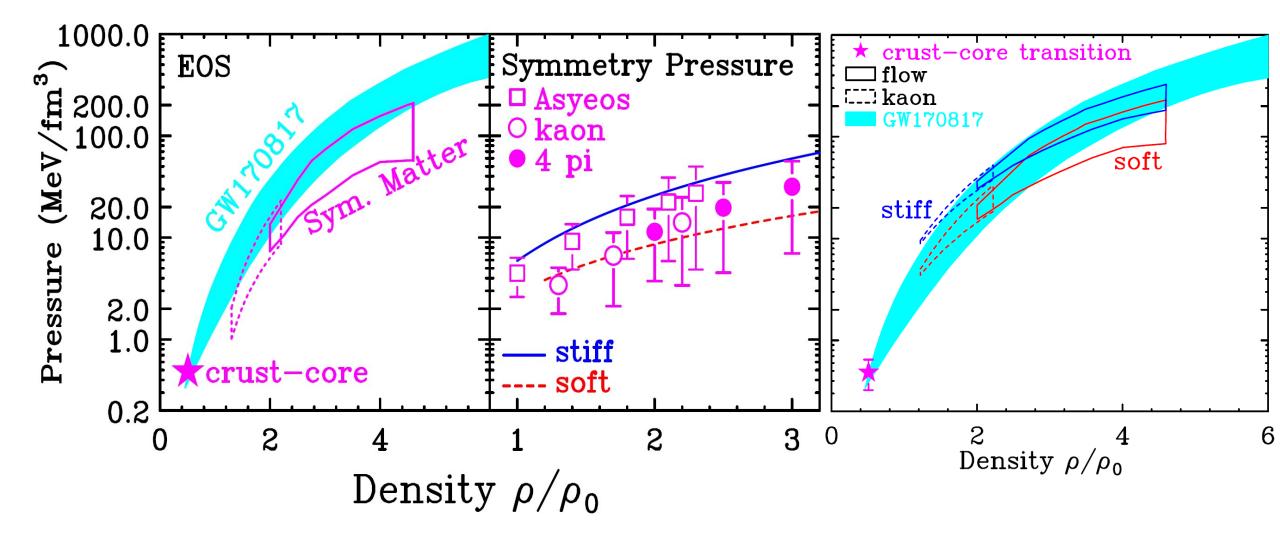
- Flow experiment: Measure pressure by calculating ratio of in-plane and out-of-plane emission and transverse flow.
- Run down of a nuclear collision:
 - 1. Part of projectile overlaps target nuclei
 - 2. Overlapped part is squeezed and expand
 - 3. The non-overlapped part (spectator nucleons) is pushed and deflect sideway.
 - 4. The non-overlapped part also blocks in-plane emission
 - 5. Higher pressure -> Preferential out-of-plane emission
- The Au+Au experiment only measured pressure for symmetric matter. Need a symmetry energy term to convert it to NS pressure
- A Stiff and Soft energy term $(S(\rho))$ is employed.
- 2 extremum. Everything in between is allowed by theory.

x (fm

10 - 10 0 10 - 10 0

Danielewicz

10 -10 0 10 -10 0 10 -10 0 10 -10 0

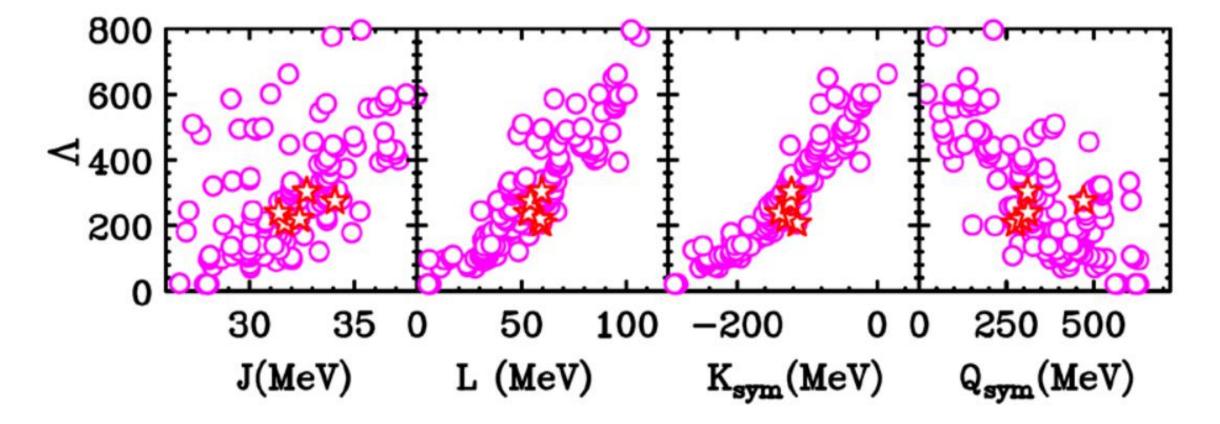

-100

10

-100

-100

arXiv:1901.07673

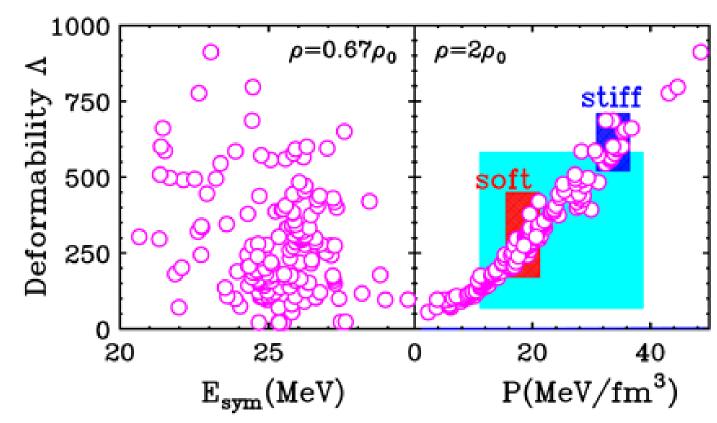

Symmetric matter constraints from 4pi flow data obtained in 2002. GW170817 analysis obtained in 2018. Goal is to reduce the uncertainties.

- Dutra's Skyrmes set is limited in numbers. Bias in EoS selection cannot be quantified.
- Uncertainties in correlation is hard to quantified for the same reason
- In progress, will come back to it...

$$S(\rho) = J + Lx + \frac{1}{2}K_{sym}x^{2} + \frac{1}{6}Q_{sym}x^{3} + O(x^{4})$$

$$L = 3\rho \frac{dS(\rho)}{d\rho}; K_{sym} = 27\rho^{2} \frac{d^{2}S(\rho)}{d\rho^{2}}$$

$$Q_{sym} = 27\rho^{3} \frac{d^{3}S(\rho)}{d\rho^{3}}$$



Putting all constraints together

- Pressure as a function of \varLambda

- Open circles correspond to theoretical calculation from Skyrme. No correlation to symmetry energy at $< \rho_0$.
- Green and red regions correspond to constraints from the flow experiment
- Blue region is the GW constraints
- Conclusion: Observables at P(~2ρ₀) can improve the symmetry EoS constraint further beyond the GW constraint
- The new code will give us a better macroscopic understanding of NS structure.

