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Introduction: low-energy reactions and nuclear EoS

Low-energy heavy ion collisions (close or above the Coulomb barrier):

Pre-equilibrium dipole emission in charge asymmetric reactions
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Interplay between fusion and quasi�ssion processes (superheavy elements)
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Dynamics in many-body interacting systems

Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]

Semi-classical approaches: Vlasov model

Transport equation for the 1-body distributions fq (r, p, t)

∂fq

∂t
+
∂εq

∂p

∂fq

∂r
−
∂εq

∂r

∂fq

∂p
= 0 ⇒ ρq(r, t) =

2

(2π~)3

∫
dp fq(r, p, t) q = p, n

Vlasov equation ≡ semi-classical limit of TDHF (or RPA for zero-amplitude)

∂f

∂t
+ {f ,Heff } = 0 ⇐= i~ ˙̂ρ(t) +

[
ρ̂, Ĥeff [ρ]

]
= 0

Mean-�eld with Skyrme interactions (ρ, ρ3 = ρn ± ρp, τ, τ3 = τn ± τp)

E =
~2

2m
τ + C0ρ

2 + D0ρ
2
3 + C3ρ

σ+2 + D3ρ
σρ23 + Ceff ρτ + Deff ρ3τ3 + C∇(∇ρ)2 + D∇(∇ρ3)2

Isoscalar (IS) or isovector (IV) dipole operator:

D̂S =
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(
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3
< r2 >

)
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i

τi
N

A
zi−(1−τi )

Z

A
zi , τi = 0 (1) for n (p)

Strength function: SK (E) =
∑

n | 〈n| D̂K |0〉 |2 δ (E − (En − E0)) K = S, V
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Coupling between IS and IV modes

Symmetric nuclear matter: IS and IV modes are decoupled

Neutron-rich systems: n and p oscillate with di�erent amplitudes ⇒ coupling
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In�uence of the e�ective interaction

SAMi-J interactions
[X. Roca-Maza et al., PRC87, (2013)]

⇒ isolate in�uence of IV channel

Esym(ρ) = C(ρ)I 2
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Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]
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Low-lying dipole modes: N/Z evolution and density pro�les
Detailed comparison between TDHF and RPA

Comparison between Vlasov and TDHF model
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Link between nuclear response and density pro�les
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Sharper evolution from bulk to surface region favor toroidal mode

Smoother density pro�le leads to robust PDR oscillations

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Sn isotope chain: N/Z evolution of PDR

Dipole response evolution with the neutron/proton content ⇒ Sn isotopes chain

Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?

[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

Explanation: it re�ects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Need to normalize the mixing e�ect to the IS PDR strength ⇒ Rf =
f IV
PDR

f IS
PDR
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Comparison between TDHF and RPA

TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures

Question: which numerical parameters ensure the best agreement?

Dependence on box size (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

Very good agreement when the size is large enough (also for transition densities)
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Final remarks and conclusions

Summary

Small amplitude dynamics in nuclei: semi-classical and quantal models

Examination of both IS and IV nuclear E1 response in neutron-rich systems

Main results

General agreement between Vlasov, TDHF and RPA calculations

Characterization of the nature of low-lying response, in view of IS/IV mixing

Evolution of low-lying modes with density pro�les and neutron skin

Monotonic increse with N/Z of IV/IS ratio of EWSR fractions in PDR region

Further developments and outlooks

Full study of isotopes chain to understand also deformation and pairing role

Look at other multipole response channels (quadrupole resonances)

Investigate other mechanisms to constraint the e�ective interaction and EoS
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Back-up slides: focus on IS/IV mixing

0

2

4

6

8

Im
 [

D
S
 (

E
)]

 [
fm

4
]

0 5 10 15 20 25 30 35 40

E [MeV]

0

0.1

0.2

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40

E [MeV]

0

0.05

0.1

PDR

IV GDR

IS perturbation

IV perturbation

132
Sn 100

Sn

IV GDR

PDR

(d)

(a) (b)

(c)

0

0.5

1

1.5

2

Im
 [

D
V

 (
E

)]
 [

fm
2
]

0 5 10 15 20 25 30 35 40

E [MeV]

0

10

20

30 0

0.3

0.6

0.9

1.2

0 5 10 15 20 25 30 35 40

E [MeV]

0

5

10

IV perturbation

IS perturbation

132
Sn

PDR

IV GDR

PDR

IV GDR

100
Sn(a) (b)

(d)(c)

Burrello S. Extracting information on EoS from low-energy reactions



Low-energy heavy ion collisions and nuclear Equation of State
Small amplitude dynamics: semi-classical vs quantal models

Low-lying dipole modes: N/Z evolution and density pro�les
Detailed comparison between TDHF and RPA

Back-up slides: dipole strength in Sn isotopes
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Back-up slides: transition densities comparison
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