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Dipole excitations, giant resonances and neutron skin

Introduction: low-energy reactions and nuclear EoS

@ Low-energy heavy ion collisions (close or above the Coulomb barrier):
o Pre-equilibrium dipole emission in charge asymmetric reactions
[H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
o Interplay between fusion and quasifission processes (superheavy elements)
[H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
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Introduction: low-energy reactions and nuclear EoS

@ Low-energy heavy ion collisions (close or above the Coulomb barrier):
o Pre-equilibrium dipole emission in charge asymmetric reactions

[H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
o Interplay between fusion and quasifission processes (superheavy elements)
[H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
@ Collective phenomena in many-body dynamics = properties of interaction
@ Dipole excitations in nuclei:
o Giant Dipole Resonance (GDR)
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Dipole excitations, giant resonances and neutron skin

Introduction: low-energy reactions and nuclear EoS

@ Low-energy heavy ion collisions (close or above the Coulomb barrier):
o Pre-equilibrium dipole emission in charge asymmetric reactions
[H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
o Interplay between fusion and quasifission processes (superheavy elements)
[H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
@ Collective phenomena in many-body dynamics = properties of interaction
@ Dipole excitations in nuclei:
o Giant Dipole Resonance (GDR)
o Pygmy Dipole Resonance (PDR)
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Introduction: low-energy reactions and nuclear EoS

@ Low-energy heavy ion collisions (close or above the Coulomb barrier):
o Pre-equilibrium dipole emission in charge asymmetric reactions
[H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
o Interplay between fusion and quasifission processes (superheavy elements)
[H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
@ Collective phenomena in many-body dynamics = properties of interaction
@ Dipole excitations in nuclei:
o Giant Dipole Resonance (GDR)
o Pygmy Dipole Resonance (PDR)

@ Isovector term of effective interaction: symmetry energy in EoS
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Dipole excitations, giant resonances and neutron skin

Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]
o Semi-classical approaches: Vlasov model
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Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]

o Semi-classical approaches: Vlasov model
@ Transport equation for the 1-body distributions f, (r, p, t)

Oy | Deg 0y Deq 0Fy _ oo
ot op Or or Jp
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Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]
o Semi-classical approaches: Vlasov model

@ Transport equation for the 1-body distributions f, (r, p, t)
Ofy,  Oeq Ofy  Oeq Ofy
Z9 4 Zard9 2974 _ g _
ot " op or  or op a=pn
@ Vlasov equation = semi-classical limit of TDHF (or RPA for zero-amplitude)
of

O {fHa} =0 = inp(e)+ [p Aerlal] =0 J
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Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]
o Semi-classical approaches: Vlasov model

@ Transport equation for the 1-body distributions f, (r, p, t)

Ofy,  Oeq Ofy  Oeq Ofy 2 /

—+ = - = =0 t)= ——— [ dpf t =

ot + 3p Or Or ap = pQ(r7 ) (27Tﬁ)3 P q(ﬂP: ) q p,n
@ Vlasov equation = semi-classical limit of TDHF (or RPA for zero-amplitude)

of

O {fHa} =0 = inp(e)+ [p Aerlal] =0 J

@ Mean-field with Skyrme interactions (p, p3 = pn £ pp, 7,73 = Tnh £ 7p)

2

h
E=om™ Cop” + Dop3 + C3p” 2 + D3p” p3 + Cerr p7 + Desrpats + Cv(Vp)® + Dy (Vps)?
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Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]
o Semi-classical approaches: Vlasov model

@ Transport equation for the 1-body distributions f, (r, p, t)

Ofy,  Deq Ofy  Deq Ofy 2 /
—+ = - = =0 t)= ——— [ dpf t =
ot + 3p Or Or ap = pQ(r7 ) (27!'}7,)3 P q(ﬂP: ) q p,n
@ Vlasov equation = semi-classical limit of TDHF (or RPA for zero-amplitude)

of

O {fHa} =0 = inp(e)+ [p Aerlal] =0 J

@ Mean-field with Skyrme interactions (p, p3 = pn £ pp, 7,73 = Tn £ 7p)
_ E 2 2 042 o 2 2 2
E=-7+ Cop® + Dop3 + Cap? ™ + D3p? p3 + Cefr pT + Desrpats + Cv(Vp)® + Dv(Vp3)
@ Isoscalar (IS) or isovector (1V) dipole operator:

~ 5 Z
D5:Z(rf—§<r2>)z,~, V_ZT,—Z, (1—7) Az,-, 7=0(1) for n(p)

i
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Dynamics in many-body interacting systems

@ Small amplitude dynamics of nuclei [s. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
@ Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Cols, X. Roca Maza]
o Semi-classical approaches: Vlasov model

@ Transport equation for the 1-body distributions f, (r, p, t)

Ofy,  Oeq Ofy  Oeq Ofy 2 /

—+ = - = =0 t)= ——— [ dpf t =

ot + 3p Or Or ap = pQ(r7 ) (27!'}7,)3 P q(ﬂP: ) q p,n
@ Vlasov equation = semi-classical limit of TDHF (or RPA for zero-amplitude)

of

O {fHa} =0 = inp(e)+ [p Aerlal] =0 J

@ Mean-field with Skyrme interactions (p, p3 = pn £ pp, 7,73 = Tnh £ 7p)
_ E 2 2 o+2 o 2 2 2
€= o7+ Cop” + Dop3 + Gp” " + D3p?p3 + Cerrp7 + Derrpams + Co (V)™ + Dy (Vps)

@ Isoscalar (IS) or isovector (1V) dipole operator:
o 5 Z
DS:Z(riz—§<r2 >)z,-, V—ZT,—Z, (1—7) Az,-, 7=0(1) for n(p)

@ Strength function: Sx(E) =3, | (n| Dk 0) |28 (E — (En = Eo)) K=S:V
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Mixing of IS/IV modes and role of effective interaction

Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling

— T T T T T T T T
8 IS perturbation —|
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Mixing of IS/IV modes and role of effective interaction

Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling
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Mixing of IS/IV modes and role of effective interaction

Coupling between IS and IV modes

@ Symmetric nuclear matter: IS and IV modes are decoupled

@ Neutron-rich systems: n and p oscillate with different amplitudes = coupling

Im [Dg (B)] [fm"]

Extracting information on EoS from low-energy reactions

— —
IS perturbation

L o132
i

T
025~ SAMi-J31 | GDR IV perturbation

o
o

0.05

5 ‘ 20 25
E [MeV]
IS response

Im [D,, (B)] [fm’]

2

T —
IV perturbation |

IS perturbation

15

25 30 35

20
E [MeV]
IV response

40



Mixing of IS/IV modes and role of effective interaction

Influence of the effective interaction

40 T T T T,

C . I 7

@ SAMi-J interactions sl = samiazm A
[X. Roca-Maza et al., PRC87, (2013)] L | SAMi31 /
) ) —— SAMi-J35 J/

= isolate influence of IV channel or s _]

— | / PR

— 2 L T 4

Eym(p) = C(p)! E &l 1

=P i

2 ]

&) 15 1

10 A

5 i

0 | | | | | |

0.2 0.4 0.6 0.8 1

Extracting information on EoS from low-energy reactions



Mixing of IS/IV modes and role of effective interaction

Influence of the effective interaction
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@ Sensitivity of Ejv.gpr to Esym at crossing

S, (B) [fm’/MeV]
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Mixing of IS/IV modes and role of effective interaction

Influence of the effective interaction

S, (B) [fm’/MeV]
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SAMi-J interactions
[X. Roca-Maza et al., PRC87, (2013)]
= isolate influence of IV channel

Eqm(p) = C(p)I?
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@ Sensitivity of Ejv.gpr to Esym at crossing

@ Role of symmetry energy slope:
o IV PDR



Mixing of IS/IV modes and role of effective interaction

Influence of the effective interaction
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@ Sensitivity of Ev.gpr to Esym at crossing

@ Role of symmetry energy slope:
o IV PDR < neutron skin thickness
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@ Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]
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Mixing of IS/IV modes and role of effective interaction

Influence of the effective interaction

@ SAMi-J interactions
[X. Roca-Maza et al., PRC87, (2013)]
= isolate influence of IV channel

Eqm(p) = C(p)I?
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Low-lying dipole modes: N/Z evolution and density profiles

Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR
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Low-lying dipole modes: N/Z evolution and density profiles

Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR

@ Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
o PDR mode (outer surface)

o toroidal mode (inner surface against bulk)
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Low-lying dipole modes: N/Z evolution and density profiles

Comparison between Vlasov and TDHF model
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@ Good reproduction of IV GDR and IS GDR
@ Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
o PDR mode (outer surface)
o toroidal mode (inner surface against bulk)

@ Displacement of PDR peaks = numerical treatment of surface
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Link between nuclear response and density profiles
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@ Sharper evolution from bulk to surface region favor toroidal mode

Low-lying dipole modes: N/Z evolution and density profiles

Al b m e
5 10 15 20 25 30

40

Sy (E) [fm’/MeV]

10 15 20 25

p [fm]

-3

p [fm"]

p [fm’]

J
B
2
g
<

Smoother density profile leads to robust PDR oscillations

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827

[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Low-lying dipole modes: N/Z evolution and density profiles

Sn isotope chain: N/Z evolution of PDR

@ Dipole response evolution with the neutron/proton content = Sn isotopes chain

@ Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=827
[ S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]

@ Explanation: it reflects the decrease in the IS fraction and IS dipole strength

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Detailed comparison between TDHF and RPA

Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
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Detailed comparison between TDHF and RPA

Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures

@ Question: which numerical parameters ensure the best agreement?
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Detailed comparison between TDHF and RPA

Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
@ Question: which numerical parameters ensure the best agreement?
@ Dependence on box size (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
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Detailed comparison between TDHF and RPA

Comparison between TDHF and RPA

@ TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
@ Question: which numerical parameters ensure the best agreement?

@ Dependence on box size (i.e. discretization of continuum single-particle states)

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

TDHF RPA
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@ Very good agreement when the size is large enough (also for transition densities)
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Detailed comparison between TDHF and RPA

Final remarks and conclusions

@ Small amplitude dynamics in nuclei: semi-classical and quantal models

@ Examination of both IS and IV nuclear E1 response in neutron-rich systems
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Detailed comparison between TDHF and RPA

Final remarks and conclusions

@ Small amplitude dynamics in nuclei: semi-classical and quantal models

@ Examination of both IS and IV nuclear E1 response in neutron-rich systems
v

General agreement between Vlasov, TDHF and RPA calculations

o
@ Characterization of the nature of low-lying response, in view of IS/IV mixing
@ Evolution of low-lying modes with density profiles and neutron skin

o

Monotonic increse with N/Z of 1V /IS ratio of EWSR fractions in PDR region
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Detailed comparison between TDHF and RPA

Final remarks and conclusions

@ Small amplitude dynamics in nuclei: semi-classical and quantal models

@ Examination of both IS and IV nuclear E1 response in neutron-rich systems

v

General agreement between Vlasov, TDHF and RPA calculations

Characterization of the nature of low-lying response, in view of I1S/IV mixing

°
°
@ Evolution of low-lying modes with density profiles and neutron skin
°

Monotonic increse with N/Z of 1V /IS ratio of EWSR fractions in PDR region

Further developments and outlooks

@ Full study of isotopes chain to understand also deformation and pairing role

@ Look at other multipole response channels (quadrupole resonances)

@ Investigate other mechanisms to constraint the effective interaction and EoS

y
Extracting information on EoS from low-energy reactions




Detailed comparison between TDHF and RPA

Thanks to all collaborators

D. Lacroix (IPN, IN2P3-CNRS, Orsay, France),
G. Scamps (Universite libre de Bruxelles (ULB), Bruxelles, Belgium)

RPA calculations
G. Cold, X. Roca-Maza (University and INFN Sezione, Milano, Italy)

M. Colonna (LNS - INFN, Catania, ltaly)
H. Zheng (Shaanxi Normal University, Xi’an, China)

Extracting information on EoS from low-energy reactions



Detailed comparison between TDHF and RPA

Thanks to all collaborators

D. Lacroix (IPN, IN2P3-CNRS, Orsay, France),
G. Scamps (Université libre de Bruxelles (ULB), Bruxelles, Belgium)

RPA calculations
G. Col6, X. Roca-Maza (University and INFN Sezione, Milano, Italy)

M. Colonna (LNS - INFN, Catania, Italy)
H. Zheng (Shaanxi Normal University, Xi’an, China)

THANK YOU FOR YOUR KIND ATTENTION!

Extracting information on EoS from low-energy reactions




Detailed comparison between TDHF and RPA

slides: focus on IS/IV mixing
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Detailed comparison between TDHF and RPA

Back-up slides: dipole strength in Sn isotopes
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Detailed comparison between TDHF and RPA

Back-up slides: transition densities comparison
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Detailed comparison between TDHF and RPA

Back-up slides: transition densities of PDR
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Detailed comparison between TDHF and RPA

Back-up slides: torodail mode and 2nd IV peak
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