Extracting information on nuclear EoS from low-energy reaction dynamics: a detailed study of low-lying dipole modes

Challenges to Transport Theory for Heavy-Ion Collisions

ECT*

Trento, May 20 - 24, 2019

Authors: Burrello S.1

¹ INFN - Laboratori Nazionali del Sud, Catania, Italy

- Low-energy heavy ion collisions (close or above the Coulomb barrier):
 - Pre-equilibrium dipole emission in charge asymmetric reactions
 [H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
 - Interplay between fusion and quasifission processes (superheavy elements)
 [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
- Giant Dipole Resonance (GDR)
- Isovector term of effective interaction: symmetry energy in EoS

- Low-energy heavy ion collisions (close or above the Coulomb barrier):
 - Pre-equilibrium dipole emission in charge asymmetric reactions
 [H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
 - Interplay between fusion and quasifission processes (superheavy elements)
 [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Pygmy Dipole Resonance (PDR)
- Isovector term of effective interaction: symmetry energy in EoS

- Low-energy heavy ion collisions (close or above the Coulomb barrier):
 - Pre-equilibrium dipole emission in charge asymmetric reactions
 [H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
 - Interplay between fusion and quasifission processes (superheavy elements)
 [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR)
- Isovector term of effective interaction: symmetry energy in EoS

- Low-energy heavy ion collisions (close or above the Coulomb barrier):
 - Pre-equilibrium dipole emission in charge asymmetric reactions
 [H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
 - Interplay between fusion and quasifission processes (superheavy elements)
 [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
 - Pygmy Dipole Resonance (PDR)
- Isovector term of effective interaction: symmetry energy in EoS

- Low-energy heavy ion collisions (close or above the Coulomb barrier):
 - Pre-equilibrium dipole emission in charge asymmetric reactions
 [H. Zheng, S. Burrello, M. Colonna, V. Baran, Phys. Lett. B 769, 424-429 (2017)]
 - Interplay between fusion and quasifission processes (superheavy elements)
 [H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps, Phys. Rev. C 98, 024622 (2018)]
- Collective phenomena in many-body dynamics ⇒ properties of interaction
- Dipole excitations in nuclei:
 - Giant Dipole Resonance (GDR)
- Pygmy Dipole Resonance (PDR)
- Isovector term of effective interaction: symmetry energy in EoS

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions f_q (r, p, t)

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \qquad q = p, r$$

ullet Vlasov equation \equiv semi-classical limit of TDHF (or RPA for zero-amplitude)

$$\frac{\partial f}{\partial t} + \{f, H_{eff}\} = 0$$
 \iff $i\hbar \dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{H}_{eff}[\rho]\right] = 0$

• Mean-field with Skyrme interactions $(
ho,
ho_3=
ho_n\pm
ho_p, \quad au, au_3= au_n\pm au_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{eff}\rho\tau + D_{eff}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)$$

Isoscalar (IS) or isovector (IV) dipole operator

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - (1 - \tau_i) \frac{Z}{A} z_i, \quad \tau_i = 0 \ (1) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_n |\langle n| \hat{D}_K |0 \rangle|^2 \delta(E - (E_{\delta} - E_0)) \otimes \bullet A = \delta \otimes A = 0$

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions $f_q(\mathbf{r}, \mathbf{p}, t)$

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \quad \Rightarrow \quad \rho_q(\mathbf{r},t) = \frac{2}{(2\pi\hbar)^3} \int d\mathbf{p} \, f_q(\mathbf{r},\mathbf{p},t) \qquad \mathbf{q} = \mathbf{p}, \mathbf{n}$$

ullet Vlasov equation \equiv semi-classical limit of TDHF (or RPA for zero-amplitude)

$$rac{\partial f}{\partial t} + \{f, H_{eff}\} = 0 \qquad \Longleftrightarrow \qquad i\hbar \dot{\hat{
ho}}(t) + \left[\hat{
ho}, \hat{H}_{eff}[
ho]\right] = 0$$

• Mean-field with Skyrme interactions $(
ho,
ho_3=
ho_n\pm
ho_p, \quad au, au_3= au_n\pm au_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{eff}\rho\tau + D_{eff}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)$$

Isoscalar (IS) or isovector (IV) dipole operator

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - (1 - \tau_i) \frac{Z}{A} z_i, \quad \tau_i = 0 \ (1) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_n |\langle n| \hat{D}_K |0 \rangle|^2 \delta(E - (E_{\delta} - E_0)) \otimes \bullet A = \delta \otimes A = 0$

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions f_q (r, p, t)

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \quad \Rightarrow \quad \rho_q(\mathbf{r},t) = \frac{2}{(2\pi\hbar)^3} \int d\mathbf{p} \, f_q(\mathbf{r},\mathbf{p},t) \qquad \mathbf{q} = \mathbf{p}, \mathbf{n}$$

Vlasov equation ≡ semi-classical limit of TDHF (or RPA for zero-amplitude)

$$\frac{\partial f}{\partial t} + \{f, H_{eff}\} = 0 \qquad \Longleftrightarrow \qquad i\hbar \dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{H}_{eff}[\rho]\right] = 0$$

ullet Mean-field with Skyrme interactions $(
ho,
ho_3=
ho_n\pm
ho_p, \quad au, au_3= au_n\pm au_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{\text{eff}}\rho\tau + D_{\text{eff}}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)$$

Isoscalar (IS) or isovector (IV) dipole operator

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - (1 - \tau_i) \frac{Z}{A} z_i, \quad \tau_i = 0 \ (1) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_n |\langle n|\hat{D}_K|0 \rangle|^2 \delta(E - (E_A \oplus E_B))$ 使标题 是 约90

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions $f_q(\mathbf{r}, \mathbf{p}, t)$

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \quad \Rightarrow \quad \rho_q(\mathbf{r}, t) = \frac{2}{(2\pi\hbar)^3} \int d\mathbf{p} \, f_q(\mathbf{r}, \mathbf{p}, t) \qquad q = p, n$$

• Vlasov equation \equiv semi-classical limit of TDHF (or RPA for zero-amplitude)

$$\frac{\partial f}{\partial t} + \{f, H_{eff}\} = 0 \qquad \Longleftrightarrow \qquad i\hbar \dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{H}_{eff}[\rho]\right] = 0$$

• Mean-field with Skyrme interactions $(\rho, \rho_3 = \rho_n \pm \rho_p, \quad \tau, \tau_3 = \tau_n \pm \tau_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{\text{eff}}\rho\tau + D_{\text{eff}}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)^2$$

Isoscalar (IS) or isovector (IV) dipole operator

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - (1 - \tau_i) \frac{Z}{A} z_i, \quad \tau_i = 0 \ (1) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_n |\langle n| \hat{D}_K |0 \rangle|^2 \delta(E - (E_{n'} - E_0)) \gg \star \not \models = \delta \not \models \lor = 9 \triangleleft e$

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions $f_q(\mathbf{r}, \mathbf{p}, t)$

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \quad \Rightarrow \quad \rho_q(\mathbf{r}, t) = \frac{2}{(2\pi\hbar)^3} \int d\mathbf{p} \, f_q(\mathbf{r}, \mathbf{p}, t) \qquad q = p, n$$

ullet Vlasov equation \equiv semi-classical limit of TDHF (or RPA for zero-amplitude)

$$\frac{\partial f}{\partial t} + \left\{ f, H_{eff} \right\} = 0 \qquad \Longleftrightarrow \qquad i \dot{\hbar} \dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{H}_{eff}[\rho] \right] = 0$$

• Mean-field with Skyrme interactions $(\rho, \rho_3 = \rho_n \pm \rho_p, \quad \tau, \tau_3 = \tau_n \pm \tau_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{eff}\rho\tau + D_{eff}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)^2$$

• Isoscalar (IS) or isovector (IV) dipole operator:

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - \left(1 - \tau_i \right) \frac{Z}{A} z_i, \quad \tau_i = 0 \left(1 \right) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_{n} |\langle n| \hat{D}_K |0 \rangle|^2 \delta(E - (E_{n} - E_0)) / 2 + \langle E = \delta \rangle / 2 = 999$

- Small amplitude dynamics of nuclei [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]
 - Quantal approaches: TDHF [D. Lacroix, G. Scamps] HF+RPA [G. Coló, X. Roca Maza]
 - Semi-classical approaches: Vlasov model
- Transport equation for the 1-body distributions $f_q(\mathbf{r}, \mathbf{p}, t)$

$$\frac{\partial f_q}{\partial t} + \frac{\partial \epsilon_q}{\partial \mathbf{p}} \frac{\partial f_q}{\partial \mathbf{r}} - \frac{\partial \epsilon_q}{\partial \mathbf{r}} \frac{\partial f_q}{\partial \mathbf{p}} = 0 \quad \Rightarrow \quad \rho_q(\mathbf{r}, t) = \frac{2}{(2\pi\hbar)^3} \int d\mathbf{p} \, f_q(\mathbf{r}, \mathbf{p}, t) \qquad q = p, n$$

ullet Vlasov equation \equiv semi-classical limit of TDHF (or RPA for zero-amplitude)

$$\frac{\partial f}{\partial t} + \{f, H_{eff}\} = 0 \qquad \Longleftrightarrow \qquad i\hbar \dot{\hat{\rho}}(t) + \left[\hat{\rho}, \hat{H}_{eff}[\rho]\right] = 0$$

• Mean-field with Skyrme interactions $(\rho, \rho_3 = \rho_n \pm \rho_p, \quad \tau, \tau_3 = \tau_n \pm \tau_p)$

$$\mathcal{E} = \frac{\hbar^2}{2m}\tau + C_0\rho^2 + D_0\rho_3^2 + C_3\rho^{\sigma+2} + D_3\rho^{\sigma}\rho_3^2 + C_{\text{eff}}\rho\tau + D_{\text{eff}}\rho_3\tau_3 + C_{\nabla}(\nabla\rho)^2 + D_{\nabla}(\nabla\rho_3)^2$$

Isoscalar (IS) or isovector (IV) dipole operator:

$$\hat{D}_S = \sum_i \left(r_i^2 - \frac{5}{3} < r^2 > \right) z_i, \qquad \hat{D}_V = \sum_i \tau_i \frac{N}{A} z_i - (1 - \tau_i) \frac{Z}{A} z_i, \quad \tau_i = 0 \ (1) \quad \text{for n (p)}$$

• Strength function: $S_K(E) = \sum_n |\langle n| \hat{D}_K |0 \rangle|^2 \delta(E - (E_n + E_0)) \gg K = S_EV \approx 9.9$

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

Coupling between IS and IV modes

- Symmetric nuclear matter: IS and IV modes are decoupled
- Neutron-rich systems: n and p oscillate with different amplitudes ⇒ coupling

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{\text{sym}}(\rho) = C(\rho)I^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy **slope**:
 - IV PDR
- Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{\text{sym}}(\rho) = C(\rho)I^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy **slope**:
- Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{\text{sym}}(\rho) = C(\rho)I^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy **slope**:
 - IV PDR
- Agreement with Vlasov results

[Zheng, H. et al., PRC 94, (2016)]

- SAMi-J interactions
 - [X. Roca-Maza et al., PRC87, (2013)]
 - ⇒ isolate influence of IV channel

$$E_{\text{sym}}(\rho) = C(\rho)I^2$$

- Sensitivity of E_{IV-GDR} to E_{sym} at crossing
- Role of symmetry energy **slope**:
 - IV PDR ⇔ neutron skin thickness
- Agreement with Vlasov results
 [Zheng, H. et al., PRC 94, (2016)]

- SAMi-J interactions
- [X. Roca-Maza et al., PRC87, (2013)]
- \Rightarrow isolate influence of IV channel

$$E_{\text{sym}}(\rho) = C(\rho)I^2$$

Comparison between Vlasov and TDHF model

- Good reproduction of IV GDR and IS GDR
- Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
 - toroidal mode (inner surface against bulk)
- Displacement of PDR peaks ⇒ numerical treatment of surface.

Comparison between Vlasov and TDHF model

- Good reproduction of IV GDR and IS GDR
- Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
 - PDR mode (outer surface)
 - toroidal mode (inner surface against bulk)
- Displacement of PDR peaks ⇒ numerical treatment of swface , ் ந்து திரும் சிற்றார்.

Comparison between Vlasov and TDHF model

- Good reproduction of IV GDR and IS GDR
- Two contributions in low-energy region: [see M. Urban, PRC85, (2012)]
 - PDR mode (outer surface)
 - toroidal mode (inner surface against bulk)
- Displacement of PDR peaks ⇒ numerical treatment of surface_

Link between nuclear response and density profiles

Sharper evolution from bulk to surface region favor toroidal mode

Smoother density profile leads to robust PDR oscillations

[S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

- Dipole response evolution with the neutron/proton content ⇒ Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength
- ullet Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = rac{f_{PDR}^{PD}}{f_{PDR}^{ED}}$

- Dipole response evolution with the neutron/proton content ⇒ Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
- [S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength
 - [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

ullet Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = rac{f_{POR}^{PO}}{f_{POR}^{ES}}$

- ullet Dipole response evolution with the neutron/proton content \Rightarrow Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
 - [S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength
 - [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

• Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{V}}{rlS}$

- ullet Dipole response evolution with the neutron/proton content \Rightarrow Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
 [S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength
 - [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

- ¹²⁰Sn surface is more diffuse than ¹³²Sn (open vs closed-shell nucleus)
- Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{IV}}{f_{PDR}^{IS}}$

- Dipole response evolution with the neutron/proton content ⇒ Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
 [S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength
 - [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

- 120 Sn surface is more diffuse than 132 Sn (open vs closed-shell nucleus)
- Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{IV}}{f_{PDR}^{IS}}$

- ullet Dipole response evolution with the neutron/proton content \Rightarrow Sn isotopes chain
- Question: Why IV PDR fraction of EWSR does not grow from N=70 to N=82?
 [S. Ebata, T. Nakatsukasa, T. Inakura, Phys. Rev. C 90, 024303 (2014)]
- Explanation: it reflects the decrease in the IS fraction and IS dipole strength

• Need to normalize the mixing effect to the IS PDR strength $\Rightarrow R_f = \frac{f_{PDR}^{IV}}{f_{PDR}^{IS}}$

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on **box size** (i.e. **discretization** of **continuum** single-particle states)

 [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on **box size** (i.e. **discretization** of **continuum** single-particle states)
 [S. Burrello et al., Phys. Rev. C 99, 054314 (2019)]

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on box size (i.e. discretization of continuum single-particle states)

- TDHF and RPA equivalent in zero-amplitude limit, despite technical procedures
- Question: which numerical parameters ensure the best agreement?
- Dependence on box size (i.e. discretization of continuum single-particle states)

Final remarks and conclusions

Summary

- Small amplitude dynamics in nuclei: semi-classical and quantal models
- Examination of both IS and IV nuclear E1 response in neutron-rich systems

Final remarks and conclusions

Summary

- Small amplitude dynamics in nuclei: semi-classical and quantal models
- Examination of both IS and IV nuclear E1 response in neutron-rich systems

Main results

- General agreement between Vlasov, TDHF and RPA calculations
- Characterization of the nature of low-lying response, in view of IS/IV mixing
- Evolution of low-lying modes with density profiles and neutron skin
- Monotonic increse with N/Z of IV/IS ratio of EWSR fractions in PDR region

Final remarks and conclusions

Summary

- Small amplitude dynamics in nuclei: semi-classical and quantal models
- Examination of both IS and IV nuclear E1 response in neutron-rich systems

Main results

- General agreement between Vlasov, TDHF and RPA calculations
- Characterization of the nature of low-lying response, in view of IS/IV mixing
- Evolution of low-lying modes with density profiles and neutron skin
- Monotonic increse with N/Z of IV/IS ratio of EWSR fractions in PDR region

Further developments and outlooks

- Full study of isotopes chain to understand also deformation and pairing role
- Look at other multipole response channels (quadrupole resonances)
- Investigate other mechanisms to constraint the effective interaction and EoS

Thanks to all collaborators

TDHF model

- D. Lacroix (IPN, IN2P3-CNRS, Orsay, France),
- G. Scamps (Université libre de Bruxelles (ULB), Bruxelles, Belgium)

RPA calculations

G. Coló, X. Roca-Maza (University and INFN Sezione, Milano, Italy)

Semi-classical model

- M. Colonna (LNS INFN, Catania, Italy)
- H. Zheng (Shaanxi Normal University, Xi'an, China)

Thanks to all collaborators

TDHF model

- D. Lacroix (IPN, IN2P3-CNRS, Orsay, France),
- G. Scamps (Université libre de Bruxelles (ULB), Bruxelles, Belgium)

RPA calculations

G. Coló, X. Roca-Maza (University and INFN Sezione, Milano, Italy)

Semi-classical model

- M. Colonna (LNS INFN, Catania, Italy)
- H. Zheng (Shaanxi Normal University, Xi'an, China)

THANK YOU FOR YOUR KIND ATTENTION!

Back-up slides: focus on IS/IV mixing

Back-up slides: dipole strength in Sn isotopes

Back-up slides: transition densities comparison

Back-up slides: transition densities of PDR

Back-up slides: torodail mode and 2nd IV peak

