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General	Introduction
Problematic

two-body

three-body

one-body

Goal:	describe	the	dynamics	of	quantum	many-body	problem	
with	complex	interaction	

continuum

Born	term

Pairing	term

Advantages

Several	well-known	theories	can	be	
Recovered;	It	is	systematic

One	possible	standard	
strategy	(the	BBGKY	path)

+ · · ·
+ coupling to 3� body

(Extended	TDHF)

(TDHFB)

(TDHF)

(TD2RDM)

The	targeted	physical	situation:

-Number	of	particles	[nucleons]	(fermions):	
from	very	few	to	several	hundreds			

-The	system	is	open	to	the	continuum:
-particle	emission,	resonances,	…

-Particle	are	strongly	correlated:	
-superfluidity
-configuration	mixing,	nn collisions,…

-We also use	DFT	to	get a	« simple »	description
(also because TDHF	does not	make sense)

-Quantum	effects are	important



An	illustration	of	use
Interacting	Fermions	in	1D

with

Non-Markovian master equation
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Lacroix,	Chomaz,	Ayik,	Nucl.	Phys.	A	(1999).

1D

Example: two interacting fermions            
in 1dimension

Difficulty:
memory	effect!
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BBGKY	strategy:	two-particle	emission	with	correlations

Physical	problem
TD2RDM

Correlations	dynamics	is	dominated	by	pairs	
of	states	that	are	initially	time-reversed.		

Assié,	Lacroix,	PRL	102	(2009)



Goal	of	stochastic	methods:
Can	we	replace	a	complicated	problem	by	a	set	of	“simpler”	problem	
with	fluctuations	where	complex	effects	are	obtained	through	an	average	
over	fluctuating	trajectories?				

“simple”	=	mean-field	

|�(t0)i |�(tf )i
What	are	“complex	correlations	”	

| (t0)i =
X

n

Cn(t0)|�n(t0)iComplexity	might	come	from	initial	time

Mean-field	is	not	properly	quantized:	missing	zero	point	quantum	fluctuations	

Complexity	comes	from	correlations	beyond	the	mean-field	that	built	up	in	time	
(ex:	nucleon-nucleon	collisions,	action	of	quantum	fluctuation	one	one-body	DOFs,… )



Generalities:	Many-body	physics	with	stochastic	methods

Stochastic	TDHF	like
Correlations	that	built	up	in	time	

Direct	NN	collisions

Stochastic	Mean-Field

⇢ij(t0) ⇢ij(t)

Initial	fluctuations	

Quantum	or	Auxiliary	Field		Monte-Carlo

All	Correlations

D.	Lacroix	and	S.	Ayik EPJA	Review (2014)



Beyond	the	independent	quasi-particle	picture:	ongoing	work		

Our	objective:	use	the	stochastic		mean-field approach	to	describe	fission
Lacroix,	Ayik,	EPJA	(Review)	50	(2014)

tD tD tD tD time

Vlasov

BUU, BNV

Boltzmann-
Langevin

Adapted from 
J. Randrup et al, NPA538 (92). 

Collisions	at	
Fermi	energy

Quantum	fluctuations	can	be	treated	
approximately	by	sampling	initial	zero-
point	motion	followed	by	classical	

trajectories	(here	classical=mean-field)

Related	approaches:
-description	of	little	big-bang	at	RHIC	or	LHC			

Gelis,	Schenke,	arxiv:1604:00335	

Truncated	Wigner	theory	
For	Bose-Einstein	condensates
Sinatra,	Lobo,	and	Castin,	J.	Phys.	B	35	(2002)



Introduction	on	Phase-space	methods

Goal:	simulate	quantum	mechanics	with	
quasi-classical	evolutions

Collective	energy landscape Wave-evolution

Solution	1:	
Schroedinger Eq.

i~d|�i
dt

= h|�i

Illustration

Ex:	Wigner	transform

f(r, p, t)

+	dynamical	evolution

Classical	mechanics
With	random	initial	

fluctuations		

ṙ� = p�/m

ṗ� = �@rV (r�)

Many-classical trajectories

NB:	there	are	many	Phase-space
Methods,	especially	for	Bosons	

(see	Gardiner,	Zoller,	Quantum	noise)



What	do	we	call	classical	for	Fermi	systems?		

Ayik,	Phys.	Lett.	B	658,	(2008).	

MF

Collective	phase-space Quantum	fluctuations

The	dynamics	is	described	
by	a	set	of	mean-field	
evolutions	with	random	

initial	conditions

Mean-Field	theory dhA↵i
dt

= F ({hA�i}) at all	time	 �2
Q = hA2i � hAi2

⌃2
C = A(n)A(n) �A(n)

2

dA(n)
↵

dt
= F

⇣
{A(n)

� }
⌘

Stochastic	Mean-Field

{A(n)
↵ }

at all	time	

Constraint:	 ⌃2
C(t = 0) = �2

Q(t = 0)



The	stochastic	mean-field	(SMF)	concept	applied	to	many-body	problem

Ayik,	Phys.	Lett.	B	658,	(2008).	

MF

Collective	phase-space Quantum	fluctuations

The	dynamics	is	described	
by	a	set	of	mean-field	
evolutions	with	random	

initial	conditions

The	average	properties	of	initial	sampling	should	identify	with	properties	of	the	initial	state.

SMF	in	density	matrix	space

⇢(r, r0, t0) =
X

i

�⇤
i (r, t0)ni�j(r0, t0)

⇢�(r, r0, t0) =
X

ij

�⇤
i (r, t0)⇢

�
ij�j(r0, t0)

⇢�
ij = �ijni

�⇢�
ij�⇢

�
j0i0 =

1
2
�jj0�ii0 [ni(1� nj) + nj(1� ni)] .

SMF	in	collective	space
Q(t0)

Q�(t0)

Q
�(t0) = Q(t0)

�Q(t0) = (Q�(t0)�Q�(t0)
2
)



How	it	works?

TDHF	level
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6= 0

6= 0

TDHF	with	initial	fluctuations

Stochastic	Mean-Field

⇢�(tf )⇢�(ti)

i~⇢̇� = [h(⇢�), ⇢�]

Some	advantages -Just	N	independent	times	something	we	know	how	to	solve.
-Fluctuations	can	spontaneously	break	some	symmetries.
-Can	be	applied	with	initial	thermal	equilibrium	too.
-predicting	power	is	remarkably	good	(see	below)



Description	of	large	amplitude	collective	motion	with	SMF
The	case	of	spontaneous	symmetry	breaking

Lipkin Model

e

See	for	instance	:	Ring	and	Schuck book
Severyukhin,	Bender,	Heenen,	PRC74	(2006)

p=1 p=2 … p=N

Jx =
1
2
(J+ + J�)

Jy =
1
2i

(J+ � J�)

E H
F
/(

εN
)

α

N=40	particles

J
z(

t)

Time

Exact	dynamics

Mean-field
is	stationary



Description	of	large	amplitude	collective	motion	with	SMF
The	stochastic	mean-field	solution

j�
i (t0) = 0

j�
x (t0)j�

x (t0) = j�
y (t0)j�

y (t0) =
1

4N
.

jx

jy

jz

jz = �20

Initial	condition	
J
z(

t)

Time

One-body	observables	

Exact
SMF

Lacroix,	Ayik,	Yilmaz,	PRC	85	(2012)
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Formulation	in	quasi-spin	space
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Description	of	large	amplitude	collective	motion	with	SMF
The	stochastic	mean-field	solution
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Formulation	in	quasi-spin	space
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Lacroix,	Ayik,	Yilmaz,	PRC	85	(2012)



Another	example:	application	to	systems	on	lattice

Lacroix,	Hermanns,	Hinz,	Bonitz,	PRB90	(2014)

0.0
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Occ. number, 4 sites, 4 electrons, S = 0 channel
TDDM:	propagation	of	
One	and	two-body	density.		

Czuba,	Lacroix (2019)	in	preparation

perturbative	
regime	

Highly	non-perturbative	
regime	



Why	it	works	so	well?	
Link	with	a	non-truncated	simplified	BBGKY	hierarchy

Lacroix,	Tanimura,	Ayik and	Yimaz,	EPJA	(2016)
From

One	can	obtain	a	set	of	coupled	equations	for:	

The	first	two	equations	is:	

And	more	generally:

Here	starts	
the	approximation.

But	no	truncation…

Lipkin model	again

truncated



Recent	applications	in	nuclear	physics



Dynamical	description	of	superfluid	nuclei
Recent	progress

Nuclear	motion	of	superfluid	nuclei	on	a	mesh	(here	within	TDHF+BCS	[TDDFT	with	superfluidity])

Scamps,	Tanimura,	Lacroix	(2012-2017)

Applied	to	a	number	of	physical	process
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Fast	fission

Coulomb	boost
Extremely	slow	pairing/dissipation	dominated	motion

5600

Bulgac,	Magierski,	Roche,	and	Stetcu
Phys.	Rev.	Lett.	116,	122504	(2016)	

Confirms	the	finding	of:

Without	pairing	the	
system	do	not	fission:
Mean-field	without	
pairing	is	too	diabatic!	
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TDHFB	or	TDHF+BCS	solve	this	problem

Scamps,	Simenel,	DL	PRC	92	(2015)
Tanimura,	DL,	Ayik,	PRL	118	(2017)



Fission	of	superfluid	258Fm

1	zs =	10-21	sIdentification	of	main	fission	paths
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mounted in a vacuum chamber between two 450-mm
surface-barrier detectors located in the center of a
neutron-detection tank, and fission counted for 98 d. To
avoid contaminating the detectors with Cf, the energy
response of these detectors was calibrated with fission
fragments from our Cf course after we finished the
Md counting. We calculated fragment energies by the

same procedure described earlier, and combined these
events with the previous ones.
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258'~
A. Mass and energy distributions

We present in Figs. 5 and 6 the mass and TKE distri-
butions obtained for the five nuclides after subtracting
background distributions contributed by small and
known amounts of Fm. This correction was made by
scaling downward the distributions we obtained from
250000 events collected from a mass-separated sample of
Fm to equal the total number of Fm events we found

in our sources. The Md distributions were also adjust-
ed for the 11 events coming from a Fm impurity. As
noted in the previous section, no background corrections
were necessary for Md. Unlike most previous studies
where Fm was a major fission component, we found
that subtracting the contribution from Fm had only a
slight impact on any distribution.
For the reason that we recalculated our fragment ener-

gies from the more recent calibration parameters for
Cf (Ref. 30), the histogram distributions shown in Figs.

5 and 6 do not quite correspond to those given in Ref. 1.
Another di8'erence is that we have nearly tripled the
number of observed fission events from Md since the
publication of Ref. 1.
The most significant and unique feature of the TKE

distributions is their pronounced deviation from a single
Gaussian shape. In four of the five nuclides, decided
asymmetry is imparted by conspicuous tailing in either
energy direction from the central peak. This is the first
observation of this phenomenon, the TKE distributions
from other actinides being uniformly Gaussian with only
minor divergences. Detection of this feature was made
possible by reducing the interference from the SF of
Fm and improving the fragment-energy resolution over

that of our earlier work. Closer inspection of these TKE
distributions reveals that the peak of each distribution is
not randomly located along the energy axis, but is posi-
tioned near either 200 or 233 MeV. The asymmetric tails
of the TKE curves result in distributing an appreciable
portion of the events into one or the other of these two
main energy regions.
Based on these observations, we considered that the

TKE curves for at least four of the nuclides were a com-
posite of two separate energy distributions, with each
most likely being Gaussian. The fifth, [104], may well
have a residue of the high-TKE component, but we can-
not be sure because of the statistically few events in the
high-energy region. By taking the FWHM from the
TKE distribution for [104] as a fixed parameter and
model for the lower-energy Gaussian, we resolved each of
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TD-EDF	for	fission
Basic	aspects	of	stochastic	mean-field

SMF	in	density	matrix	space

⇢(r, r0, t0) =
X
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How	to	conceal	microscopic	deterministic	approach	and	randomness	?

Tanimura,	Lacroix,	Ayik,	PRL	(2017)

From	deterministic	to	statistical	approach
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Transfer	reaction	below	the	Coulomb	barrier
48Ca 40Ca 48Ca 40Ca

tim
e

Scamps,	DL,	PRC	87		(2013).

P1n, P2n, ...

Extract	one,	two,	…	
nucleons	transfer	probabilities	 P1n

P2n no	pairing
with	pairing

Two	normal	nuclei
Simenel,	PRL	105	(2010).

One	normal-One	superfluid

What	happens	between	two	superfluid	systems?



Collision	between	two	superfluid	nuclei:	
Is	there	a	visible	aspects	of	gauge-angle	orientation?

Magierski et	al,	PRL	119	(2017)	

Emergent	dynamical	pairing	phenomena	close	to	the	Coulomb	barrier

Deformation	effect	in	nuclear	fusion
Orientation	modifies	the	barrier	

The	observation	is	the	result	of	all	
possible	orientations	(symmetry	restoration)

Gauge-angle	deformation	effect

The	equivalent	for	pairing	is	the	spontaneous	breaking	of	particle	number	symmetry	

At	mean-field	level
All	orientation	are	
equivalent

Restoration	of	symmetry=averaging



Magierski et	al,	PRL	119	(2017)	– supplement	material	

Collisions	with	same	energy	but	
different	orientations

tim
e

240Pu+240Pu	@	E=1.1	(E-Barrier)

Emergent	dynamical	pairing	phenomena	close	to	the	Coulomb	barrier

It	was	predicted	that	
Gauge	angle	
has	a	huge	effect	
in	reaction	between	two	
Superfluids!	
(in	a	phase-space	picture))



Effects	beyond	the	mean-field	

Dietrich,	PLB	32	(1970).

A	minimal	reaction	model

P (NA) P (NB)

NBNA

Emergent	dynamical	pairing	phenomena	close	to	the	Coulomb	barrier

Particle	number

Particle	number

NBNA

N 0
A N 0

B

�B�A



Effects	beyond	the	mean-field	Interferences	between	2	
Bose-Einstein	Condensate	

P (NA) P (NB)

NBNA

Emergent	dynamical	pairing	phenomena	close	to	the	Coulomb	barrier

BEC BEC

See	for	instance	Castin,	Dalibard,	PRA	55	(1997).

Exact	solution	possible	
Application	of	phase-space	method

(n
A
�

n
B
)/
2N

(n
A
�

n
B
)/
2N

K/⌦ = 2.0/N

Exact
Mean-Field
Phase-space

Clear	
signature	
of	revival	due	
to	interference
beyond	the
phase-space	



Effects	beyond	the	mean-field	Interferences	between	2	
Bose-Einstein	Condensate	

P (NA) P (NB)

NBNA

Emergent	dynamical	pairing	phenomena	close	to	the	Coulomb	barrier

(N
�
N

B
)/
N

BEC BEC

Preliminary

Exact	solution	



K.	Dietrich,	PLB	32	(1970).

A	minimal	reaction	model

P (NA) P (NB)

NA, ✓A NB , ✓B

Angle	averaging

Semi-classical
Phase-space	
distribution

Regnier,	Lacroix,	Phys.	Rev.	C	97	(2018)

The	case	of	fermion	systems

✓0AB = ✓A � ✓B

�A = |�A|ei✓A �B = |�B |ei✓B

The	naïve	phase-space	picture	does	not	work	so	well



Towards	Multi-Configutration TDHFB		

⇢ij(t0) ⇢ij(t)

Phase-space	methods

Different	options	beyond	pure	phase-space	average	

| (t0)i =
X

↵

C↵(t0)|�↵(t0)i

| (t)i =
X

↵

C↵(t)|�↵(t)i

Equation	of	motion:	

i~@t| i = i~
X

↵

Ċ↵|�↵(t)i+ i~
X

↵

C↵(t)|�̇↵(t)i

With	coupled	equations	between													andC↵(t) |�↵(t)i

�S = �

Z t2

t1

dt h |H � I~@t| i



Towards	Multi-Configutration TDHFB:	possible	simplifications		

i~@t| i = i~
X

↵

Ċ↵|�↵(t)i+ i~
X

↵

C↵(t)|�̇↵(t)i

Development	on	a	fixed	basis	

Regnier,	et	al,	Comp.	Phys.	Com.	200	(2016),	ibid	225,	(2018).

Development	on	given	trajectories

i~@t| i = i~
X

↵

Ċ↵|�↵(t)i+ i~
X

↵

C↵(t)|�̇↵(t)i

Assumed	to	be	independent	TDHF	or	TDHFB	trajectories
Reinhard,	Cusson,	Goeke,	Nucl.	Phys.	A398	(1983).	



Back	to	the	transfer	between	two	superfluid	systems

K.	Dietrich,	Phys.	Lett.	B	32	(1970).

A	minimal	reaction	model

P (NA) P (NB)

NA, ✓A NB , ✓B

Angle	averaging

Regnier,	Lacroix,	arXiv:1902.06491

MC-TDHFB

✓0AB = ✓A � ✓B

�A = |�A|ei✓A �B = |�B |ei✓B

| (t0)i =
X

↵

C↵(t0)|�↵(t0)i

| (t)i =
X

↵

C↵(t)|�↵(t)i

| (t0)i = PNAPNB |�(t0)i

| (t0)i =
ZZ

d✓Ad✓BC✓A✓B (t0)|�(✓A, ✓B)i

e2i✓A e2i✓B

Independent	
TDHFB

evolution

Coupled	
equation

Initial	states

|�(t0)i =
Y

(UL + VLa
†
RaR)⌦

Y
(UR + VRb

†
LbL)|0i



Back	to	the	transfer	between	two	superfluid	systems

K.	Dietrich,	Phys.	Lett.	B	32	(1970).

A	minimal	reaction	model

P (NA) P (NB)

NA, ✓A NB , ✓B

Angle	averaging

Regnier,	Lacroix,	in	preparation

MC-TDHFB

✓0AB = ✓A � ✓B

�A = |�A|ei✓A �B = |�B |ei✓B

| (t0)i =
X

↵

C↵(t0)|�↵(t0)i

| (t)i =
X

↵

C↵(t)|�↵(t)i

Results



Generalities:	Many-body	physics	with	stochastic	methods

Stochastic	TDHF	like
Correlations	that	built	up	in	time	

Direct	NN	collisions

Stochastic	Mean-Field

⇢ij(t0) ⇢ij(t)

Initial	fluctuations	

Quantum	or	Auxiliary	Field		Monte-Carlo

All	Correlations

D.	Lacroix	and	S.	Ayik EPJA	Review (2014)



We assume that the residual interaction
can be treated as an ensemble of 
two-body interaction:

Statistical assumption in the Markovian limit :

Weak coupling approximation : perturbative treatment

Residual interaction in the mean-field 
interaction picture

Reinhard and Suraud, Ann. of Phys. 216  (1992)

GOAL: Restarting from an uncorrelated state we should:   

2-interpret it as an average over jumps between “simple” states   
1-have an estimate of   

Markovian	limit,	quantum-diffusion	and	stochastic	Schrödinger	Equation



{
t t+Dt

R
ep

lic
as

 

Collision time

Average time between two collisions

Mean-field time-scale 

Hypothesis :

Average Density Evolution:

Time-scale	and	Markovian	dynamic



with 

Initial simple state

One-body density
Master equation 

step by step

2p-2h nature 
of the interaction 

with 

Separability of the 
interaction

Dissipation contained in Extended TDHF is included 
The master equation is a Lindblad equation  
Associated SSE Lacroix, PRC73 (2006)

Dissipation:	link	between	Extended	TDHF	and	Lindblad	Eq.	



SSE on single-particle state :

with

time (arb. units)

w
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mean-field

average evolution

N-body density: 

1D bose condensate with gaussian two-body interaction

The numerical effort is fixed by the number of Ak

r

r(
r)

 (a
rb

. u
ni

ts
)

t=0
t>0

mean-field

average evolution

Application	to	Bose-Einstein	condensates



Summary	of	different	approaches	presented	

BBGKY	like	approaches

TD2RDM	(with	pairing	approx.)	or	ETDHF	
with	memory

Dissipation

Correlation	effects	
on	emission

Phase-space	methods

Quite	Successful	application	to	different	
systems	(normal	and	superfluid)

Application	to	some	nuclear	physics	cases

J
z(

t)

Time

Introduction	of	interference	beyond	
the	phase-space	approach

Ongoing	projects:	application	of	MC-TDHF	or	MC-TDHFB	
approaches	

Applications	in	some	specific	situations		


