

Nuclear giant dipole resonance in the lattice Hamiltonian method of BUU equation

Rui Wang Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Co-advisor: Yu-Gang Ma (FDU, SINAP)

Collaborators:

Lie-Wen Chen (SJTU), Che Ming Ko (TAMU), Zhen Zhang (SYSU)

Background and motivation

The lattice Hamiltonian method

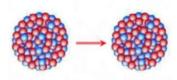
Giant dipole resonance with the lattice Hamiltonian method

Background and motivation

The lattice Hamiltonian method

Giant dipole resonance with the lattice Hamiltonian method

Transport model of heavy-ion collisions



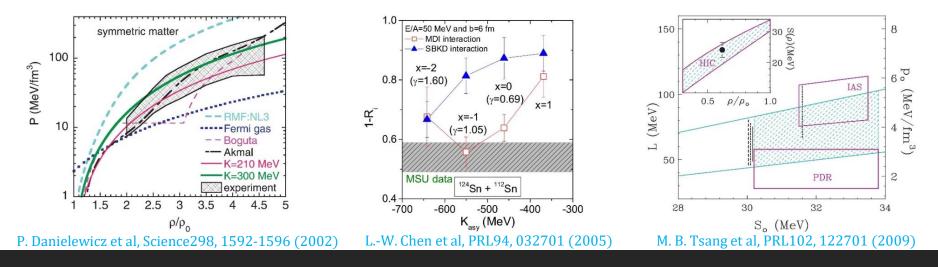
Wigner function
$$f(\vec{r},\vec{p}) = \frac{1}{(2\pi\hbar)^3} \int \exp(-i\frac{\vec{p}}{\hbar}\cdot\vec{s})\rho(\vec{r}+\vec{s}/2,\vec{r}-\vec{s}/2)d^3s$$

Boltzmann-Uehling-Uhlenbeck equation

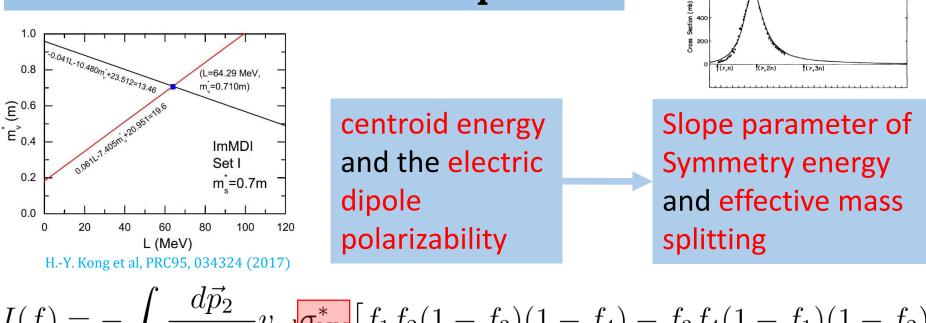
Semi-classical phase space distribution

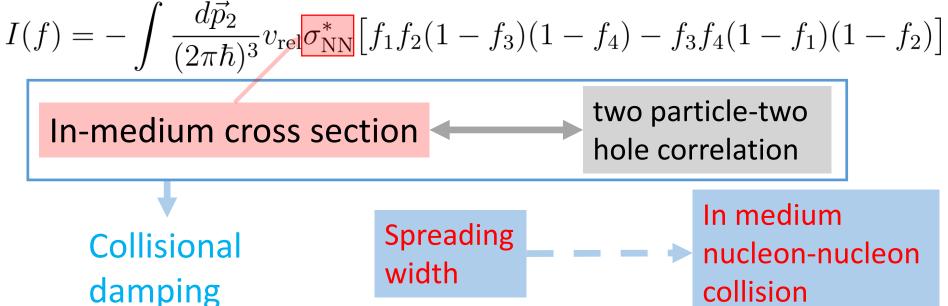
$$\frac{\partial f(\vec{r},\vec{p})}{\partial t} + \frac{\vec{p}}{m} \cdot \vec{\nabla}_r f(\vec{r},\vec{p}) + \vec{\nabla}_p U \cdot \vec{\nabla}_r f(\vec{r},\vec{p}) - \vec{\nabla}_r U \cdot \vec{\nabla}_p f(\vec{r},\vec{p}) = I \left[f(\vec{r},\vec{p}) \right]$$

Related to the equation of state of nuclear matter



Giant resonance in BUU equation





Rui Wang - Transport2019 - ECT* - 22 May 2019

E (MeV) 16 18 20 22 24 26 28 30 32 34

In order to calculate giant resonance within BUU

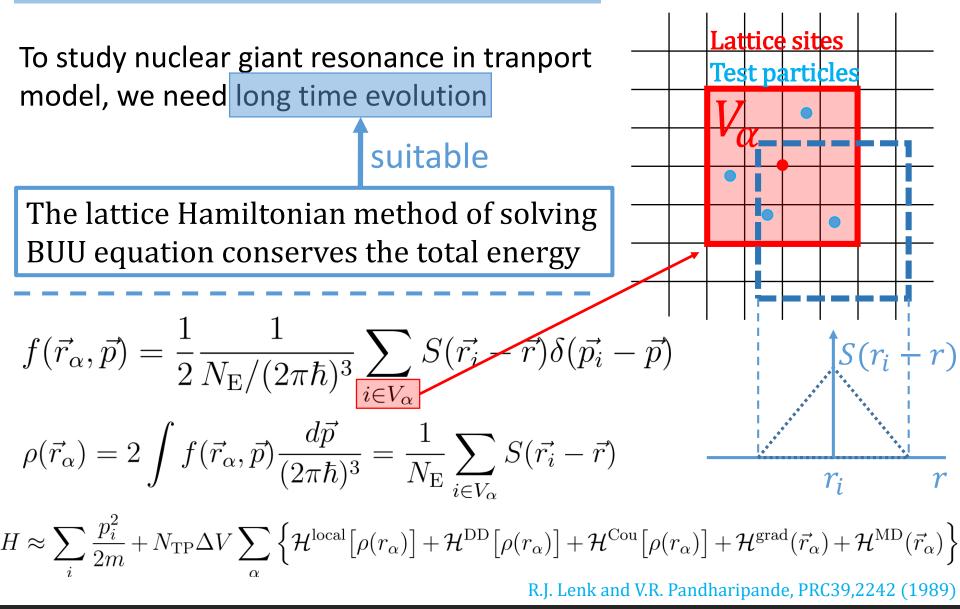
- The lattice Hamiltonian method are used to solve the BUU equation, which conserves the energy exactly and momentum to a high degree of accuracy
- The initial radial density distribution are obtained selfconsistently through varying the same Hamiltonian used in the BUU calculation (Thomas-Fermi initialization)
- Stochastic method are used in dealing with the nucleonnucleon collision term of BUU equation
- Technically, the present method are implemented based on the high performance GPU parallel computing, which enables the use of more test particle

Background and motivation

The lattice Hamiltonian method

Giant dipole resonance with the lattice Hamiltonian method

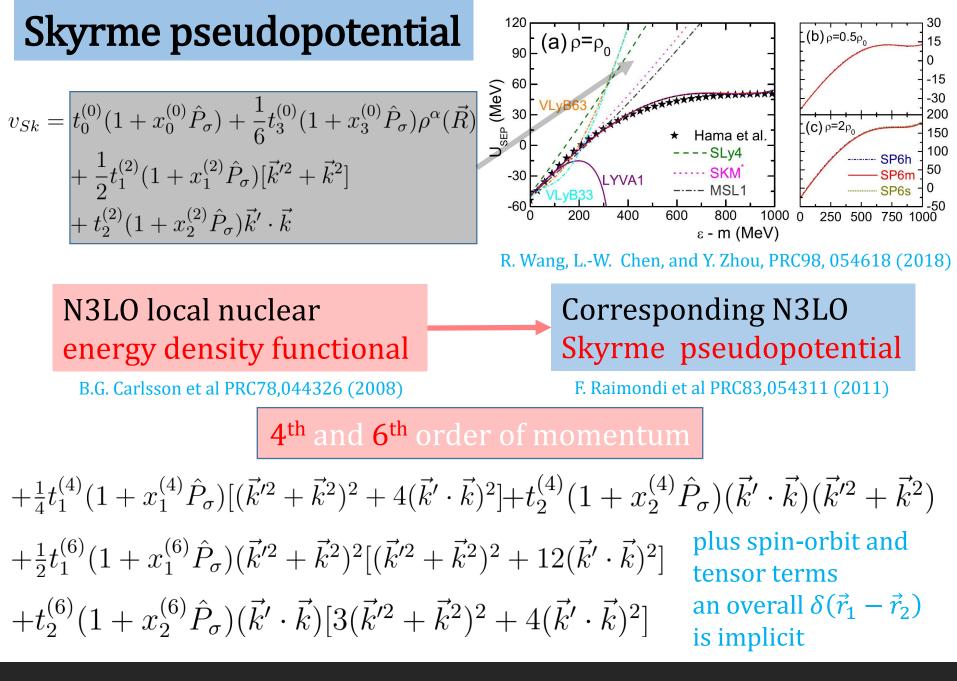
The lattice Hamiltonian method



The lattice Hamiltonian method

The treatment of momentum dependent part

$$\begin{split} \varepsilon_{MD}(\vec{r}_{\alpha}) &= \int \sum_{n=1,2,3} C_n (\vec{p}_1 - \vec{p}_2)^{2n} f(\vec{r}_{\alpha}, \vec{p}_1) f(\vec{r}_{\alpha}, \vec{p}_2) d^3 \vec{p}_1 d^3 \vec{p}_2 + \delta \ terms \\ &= \sum_{i \in V_{\alpha}} S(\vec{r}_{\alpha} - \vec{r}_i) \sum_{j \in V_{\alpha}} \sum_{n=1,2,3} C_n (\vec{p}_i - \vec{p}_j)^{2n} S(\vec{r}_{\alpha} - \vec{r}_j) + \delta \ terms \\ \\ & \text{When derivatived with respect to} \\ & \text{coordinate and momentum of test particles} \\ \hline \frac{\partial \varepsilon_{MD}(\vec{r}_{\alpha})}{\partial \vec{r}_i} = 2S'(\vec{r}_i - \vec{r}_{\alpha}) \times \\ & \sum_{j \in V_{\alpha}} \sum_{n=1,2,3} \left\{ C^{[n]}(\vec{p}_i - \vec{p}_j)^2 n + \delta \ terms \right\} \\ \hline \frac{\partial \varepsilon_{MD}(\vec{r}_{\alpha})}{\partial \vec{p}_i} = 2S(\vec{r}_i - \vec{r}_{\alpha}) \sum_{j \in V_{\alpha}} \sum_{n=1,2,3} \left\{ 2nC^{[n]}(\vec{p}_i - \vec{p}_j)(\vec{p}_i - \vec{p}_j)^{2(n-1)} + \delta \ term \right\} \end{split}$$



Initialization of test particles

r

Thomas-Fermi initialization

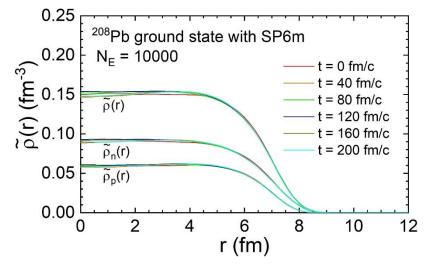
$$E = \int \mathcal{H}(r, \rho_{\tau}(r), \nabla \rho_{\tau}(r), \nabla^{2} \rho_{\tau}(r) \cdots) dr$$

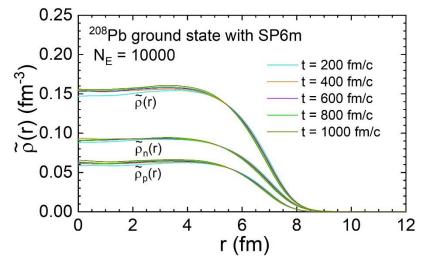
$$\frac{\partial H}{\partial \rho} - \nabla \frac{\partial H}{\partial (\nabla \rho)} + \nabla^{2} \frac{\partial H}{\partial (\nabla^{2} \rho)} = 0$$

$$F$$

$$\frac{1}{m} \left\{ p_{\tau}^{F} \left[\rho(r) \right] \right\}^{2} + U_{\tau} \left\{ p_{\tau}^{F} \left[\rho(r) \right], r \right\} = \mu_{\tau}$$

The density profile in lattice Hamiltonian method

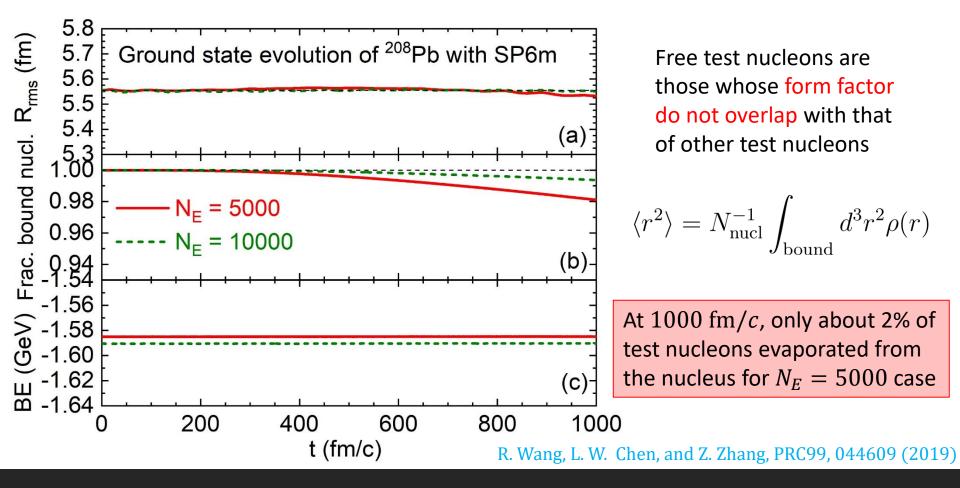




R. Wang, L. W. Chen, and Z. Zhang, PRC99, 044609 (2019)

Ground state LHV Calculations

The rms radius, fraction of bound nucleons, binding energy of ground state evolution



 $\overset{20}{\sim} 100 \text{ fm/c} 600 \text{ fm/c} \overset{20}{\sim} \overset{10}{\sim} \overset{10}{\sim} \overset{0}{\sim} \overset{0}{\sim$

12 /21

The lattice Hamiltonian method

Giant dipole resonance with the lattice Hamiltonian method

Giant resonance in LH method

Small excitation of the external field $\hat{H}(t) = \hat{H}_0 + \lambda \hat{Q} \delta(t - t_0)$ In linear response theory

$$\delta \langle \hat{Q} \rangle(t) = \langle \hat{Q} \rangle(t) - \langle 0 | \hat{Q} | 0 \rangle(t) = -\frac{2\lambda\theta(t)}{\hbar} \sum_{f} |\langle f | \hat{Q} | 0 \rangle|^2 \sin\frac{(E_f - E_0)t}{\hbar}$$

Under the assumption that \hat{Q} is one-body operator $\langle \hat{Q} \rangle(t) = \sum_{i} \hat{q}_{i}$

$$\langle \hat{Q} \rangle(t) = \langle \Phi | \hat{Q} | \Phi \rangle = \int \langle \Phi | \vec{r_1} \rangle \langle \vec{r_1} | \hat{Q} | \vec{r_2} \rangle \langle \vec{r_2} | \Phi \rangle d\vec{r_1} d\vec{r_2} = \int \langle \vec{r_2} | \Phi \rangle \langle \Phi | \vec{r_1} \rangle \langle \vec{r_1} | \hat{Q} | \vec{r_2} \rangle d\vec{r_1} d\vec{r_2}$$

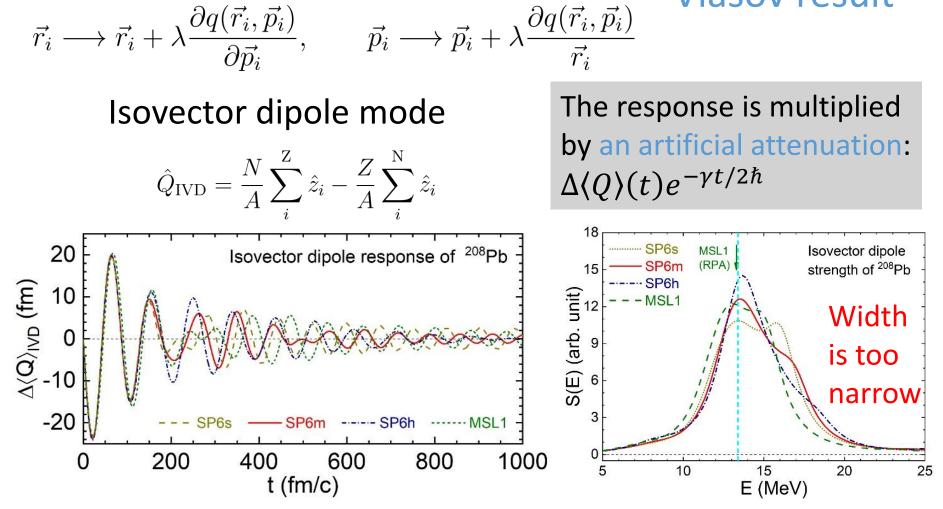
$$\langle \hat{Q} \rangle(t) = \int f(\vec{r}, \vec{p}) q(\vec{r}, \vec{p}) d\vec{r} d\vec{p} \ q(\vec{r}, \vec{p}) \equiv \int \exp(-i\frac{\vec{p}}{\hbar} \cdot \vec{s}) Q(\vec{r} + \frac{\vec{s}}{2}, \vec{r} - \frac{\vec{s}}{2}) d\vec{s}$$

Strength function

$$S(E) \equiv \sum_{f} |\langle f | \hat{Q} | 0 \rangle \delta(E - E_f - E_0) = -\frac{1}{\pi \lambda} \int_0^\infty dt \frac{\delta \langle \hat{Q} \rangle(t)}{\delta \langle \hat{Q} \rangle(t)} \sin \frac{Et}{\hbar}$$

Giant resonance in LH method

Vlasov result



We can not describe the GDR width with Vlasov calculation alone

R. Wang, L. W. Chen, and Z. Zhang, PRC99, 044609 (2019)

Stochastic collision in LH method

For phase space volume $(\vec{p}_1 \pm \Delta^3 p_1)$ and $(\vec{p}_2 \pm \Delta^3 p_2)$ at \vec{r}_{α}

$$\Delta N_{22}^{\text{coll}}(\vec{r}_{\alpha}) = \frac{\Delta^3 p_1}{(2\pi\hbar)^3} \left| \frac{df(\vec{r}_{\alpha}, \vec{p}_1)}{dt} \right|_{\vec{p}_2}^{\text{coll}} l^3 \Delta t$$

$$\begin{split} \left| \frac{df(\vec{r}_{\alpha},\vec{p}_{1})}{dt} \right|_{\vec{p}_{2}}^{\text{coll}} &= \frac{\Delta^{3} p_{1}}{(2\pi\hbar)^{3}} f(\vec{r}_{\alpha},\vec{p}_{1}) f(\vec{r}_{\alpha},\vec{p}_{2}) \\ & \times \int \frac{d\vec{p}_{3}}{(2\pi\hbar)^{3}} \frac{d\vec{p}_{4}}{(2\pi\hbar)^{3}} |\mathcal{M}_{12\to34}|^{2} (2\pi)^{4} \delta^{4}(\vec{p}_{1}+\vec{p}_{2}-\vec{p}_{3}-\vec{p}_{4}) \\ &= \frac{\Delta^{3} p_{1}}{(2\pi\hbar)^{3}} f(\vec{r}_{\alpha},\vec{p}_{1}) f(\vec{r}_{\alpha},\vec{p}_{2}) v_{\text{rel}} \sigma_{\text{NN}}^{*} \end{split}$$
by definition

In lattice Hamiltonian method $f(\vec{r}_{\alpha}, \vec{p}_{i}) = \frac{\Delta N_{i} S(\vec{r}_{i} - \vec{r}_{\alpha})}{\frac{1}{(2\pi\hbar)^{3}} \Delta^{3} p_{i}}$

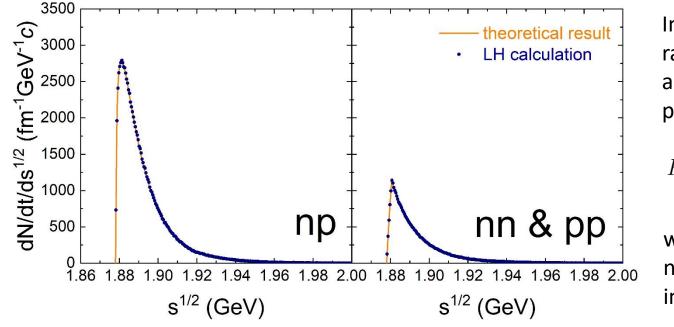
$$P22 = \frac{\Delta N_{22}^{\text{coll}}(\vec{r}_{\alpha})}{\Delta N_1 \Delta N_2} = v_{\text{rel}} \frac{\sigma_{\text{NN}}^*}{N_{\text{E}}} S(\vec{r}_1 - \vec{r}_{\alpha}) S(\vec{r}_2 - \vec{r}_{\alpha}) l^3 \Delta t$$

Stochastic collision in LH method

For Boltzmann distribution at temperature *T*, the number of collision per unit time and \sqrt{s} satisfies

$$\frac{V_{22}^{\text{coll}}}{\mathrm{d}\sqrt{s}} = \frac{1}{2} N \rho \frac{s(s - 4m^2) K_1(\sqrt{s}/T) \sigma_{22}(\sqrt{s})}{4m^4 T_{\mathrm{B}} K_2^2(m/T)}$$

Two body elastic cross section from J. Cugnon et al, NIMB 111 (1996) 215-220



In practice, we choose randomly N_{22} pairs and scale the collision probability.

$$P_{22}' = P_{22} \frac{N_{\alpha}(N_{\alpha} - 1)/2}{N_{22}}$$

with N_{α} being the number of test nucleons in lattice site α

R. Wang, L.-W. Chen, C. M. Ko, Y.-G. Ma, and Z. Zhang, in preparation

Giant dipole resonance width

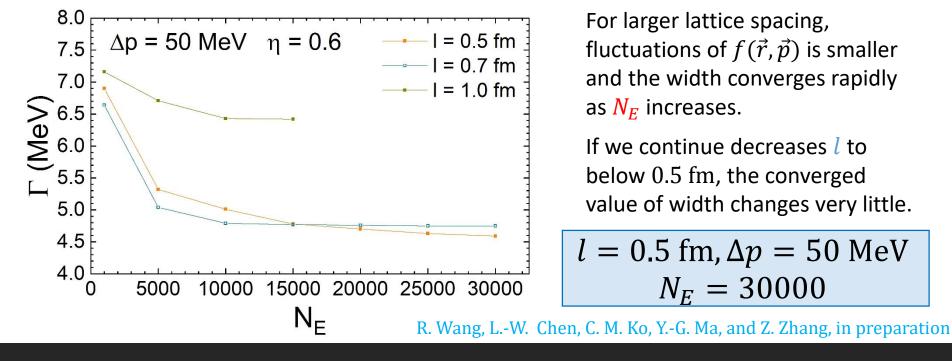
Origins of uncertainty in calculating width

$$1 - f(\vec{r}_{\alpha}, \vec{p}_{3})] \times [1 - f(\vec{r}_{\alpha}, \vec{p}_{4})]$$

 $f_{\tau}(\vec{r}_{\alpha}, \vec{p}) \approx \frac{1}{N_{\rm E}} \sum_{\vec{r}_{\perp} \in \Delta V} S[\vec{r}_{j}(t) - \vec{r}_{\alpha}]$

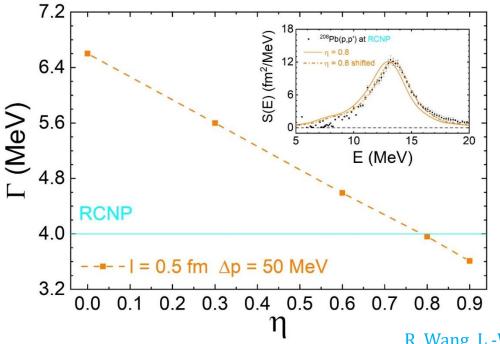
Pauli blocking

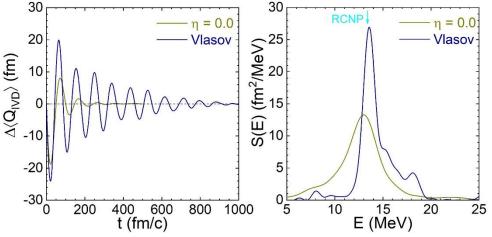
- Numerical fluctuation of $f(\vec{r}, \vec{p})$ caused by insufficient N_E
- Nonlocal effect in momentum space caused by finite Δp
- The finite lattice spacing *l* causes the average of different local density at nuclear surface, thus leads to diffusion in local momentum space



Giant dipole resonance width

With the inclusion of nucleon-nucleon collisions, the response of giant dipole resonance damps rapidly





Simple medium correction of nucleon-nucleon cross section

$$\sigma_{\rm NN}^* = \sigma_{\rm NN}^{\rm free} (1 - \eta \frac{\rho}{\rho_0})$$

Since the damping is directly related to the N-N collisions, the width shows strong dependence on the in-medium N-N cross section

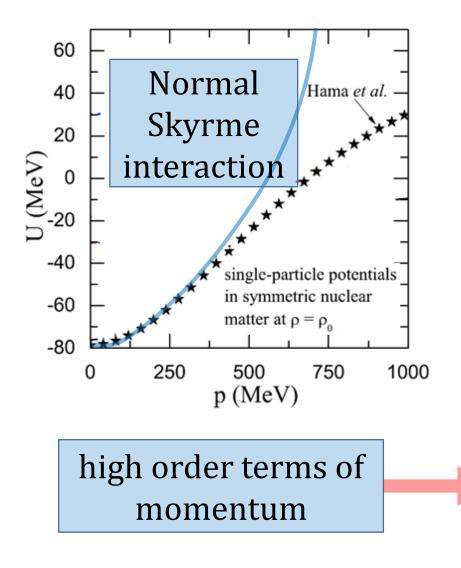
R. Wang, L.-W. Chen, C. M. Ko, Y.-G. Ma, and Z. Zhang, in preparation

Summary and outlook

- We have developed a lattice Hamitonian method of BUU equation with Skyrme pseudopotential and stochastic nucleon-nucleon collision term.
- The isovector giant dipole resonance of ²⁰⁸Pb have been studied based the above LH method, and we can decribe the experimental width and strength function with the present LH method.
- The GDR width shows strong dependence on the inmedium nucleon-nucleon cross section, and might be used to constrain the in-medium nucleon-nucleon cross section in the future.

Thank you

Extended Skyrme interaction



local nuclear energy density functional up to N3LO B.G. Carlsson et al PRC78,044326 (2008)

Corresponding Skyrme pseudo-potential up to N3LO F. Raimondi et al PRC83,054311 (2011)

Local energy density functional

local nuclear energy density functional up to N3LO B.G. Carlsson et al PRC78,044326 (2008)

$$H(\vec{r}) = f[\rho_{nLvJ}(\vec{r})] \quad \rho_{nLvJ}(\vec{r}) = \{ [K_{nL}\rho_v(\vec{r},\vec{r'})]_J \}_{\vec{r'}=\vec{r}}$$

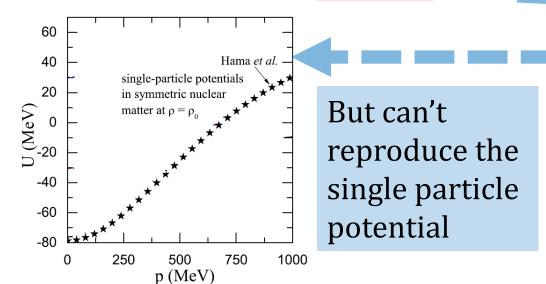
$\rho_{00}(\boldsymbol{r},\boldsymbol{r}')=\rho(\boldsymbol{r},\boldsymbol{r}')$	No.	Tensor D_{nL}	Order <i>n</i>	Rank L
$s_{1,\mu=\{-1,0,1\}}(\boldsymbol{r},\boldsymbol{r}') = -i \left\{ \frac{1}{\sqrt{2}} [s_x(\boldsymbol{r},\boldsymbol{r}') - is_y(\boldsymbol{r},\boldsymbol{r}')] \right\}$	$(r')], s_z(r, r') = \frac{1}{2}$	1	0	0
$\mathbf{U} \mathbf{V} \mathbf{Z}$	2	$\nabla_{[abla abla]_0}$ term	is up	1 0
$\frac{-1}{\sqrt{2}}[s_x(\boldsymbol{r},\boldsymbol{r}')+is_y(\boldsymbol{r},\boldsymbol{r}')]$. 4	$[\nabla \nabla]_2$ $[\nabla \nabla]_0 \nabla$ to N	$3LO_3^2$	2
	6	$[\nabla [\nabla \nabla]_2]_3$	3	3
$\nabla_{1,\mu=\{-1,0,1\}} = -i \left\{ \frac{1}{\sqrt{2}} (\nabla_x - i \nabla_y) \right\}$	7 8	$[\nabla\nabla]_0^2$ $[\nabla\nabla]_0[\nabla\nabla]_2$	4	$0 \\ 2$
$\nabla_z, \frac{-1}{\sqrt{2}}(\nabla_x + i\nabla_y)$	9	$[\nabla [\nabla [\nabla \nabla]_2]_3]_4$	4	4
$\sqrt{2}$	10 11	$[\nabla\nabla]_0^2\nabla$ $[\nabla\nabla]_0[\nabla[\nabla\nabla]_2]_3$	5	1 3
$k_{1,\mu=\{-1,0,1\}} = -i \left\{ \frac{1}{\sqrt{2}} (k_x - ik_y) \right\}$	12 13	$\begin{array}{c} [\nabla [\nabla [\nabla [\nabla \nabla]_2]_3]_4]_5 \\ [\nabla \nabla]_0^3 \end{array}$	5	5
$k_z, \frac{-1}{\sqrt{2}}(k_x + ik_y) \bigg\}$	13	$[\nabla\nabla]_0^2 [\nabla\nabla]_2$	6	2
	15 16	$ [\nabla\nabla]_0 [\nabla[\nabla[\nabla\nabla]_2]_3]_4 \\ [\nabla[\nabla[\nabla[\nabla[\nabla\nabla]_2]_3]_4]_5]_6 $	6 6	4 6

B.G. Carlsson et al PRC78,044326 (2008)

Skyrme pseudopotential

local nuclear energy density functional up to N3LO-PRC78

Corresponding Skyrme pseudopotential up to N3LO - PRC83



Code on spherical nuclei B.G. Carlsson et al CPC181, 1641-1657 (2010)

D. Davesne et al developed various Skyrme effective pseudo-potentials up to N3LO which can be used to describe nuclear matter PRC91,064303 (2015) A&A585,A83 (2016).....

Rui Wang - Transport2019 - ECT* - 22 May 2019

PhD defense - 2019**/5/2**2

Hamiltonian density

In the case of nuclear matter $\mathcal{H}(\vec{r}, f(\vec{r}, \vec{p})) = \int dp \frac{\vec{p}^2}{2m} f(\vec{r}, \vec{p}) + \mathcal{H}^{\text{local}}(\rho(\vec{r}))$ Momentum $+ \int dp dp' \sum_{n=1,2,3} C^{(i)} (\vec{p} - \vec{p}')^{2n} f(\vec{r}, \vec{p}) f(\vec{r}, \vec{p}')$ dependent part $+ \int dp dp' \sum_{n=1,2,2} D^{(i)} (\vec{p} - \vec{p}')^{2n} f_n(\vec{r}, \vec{p}) f_n(\vec{r}, \vec{p}') + n \to p$ $+ \mathcal{H}^{\mathrm{grad}}(\rho(\vec{r}))$ Single nucleon $C^{(i)} = \frac{1}{16\hbar i} [t_1^{(i)} (2 + x_1^{(i)}) + t_2^{(i)} (2 + x_2^{(i)})]$ potential $U(\vec{r},\vec{p})$ $D^{(i)} = \frac{1}{16\pi i} \left[-t_1^{(i)} (2x_1^{(i)} + 1) + t_2^{(i)} (2x_2^{(i)} + 1) \right]$ $=\varepsilon_{p\sigma\tau}^{0}=V\frac{\delta\mathcal{H}(\vec{r})}{\delta f_{r}}$ $f(\vec{r},\vec{p})$ **Equation of state** \vec{P} $E = E(\rho)$

Single particle potential

In non-relativistic framework, the single nucleon energy $E\left(\rho,\delta,\vec{k}\right)$ can be expressed generally using the following dispersion relation: Single particle

$$E_{n/p}\left(\rho,\delta,\vec{k}\right) = \frac{\vec{k}^2}{2m} + U_{n/p}\left(\rho,\delta,\vec{k},f_{n/p}(\vec{r},\vec{k})\right)$$
Distribution function
$$U_{n/p}\left(\rho,\delta,\vec{k},f(\vec{r},\vec{k})\right)$$

$$= U_0\left(\rho,\vec{k},f(\vec{r},\vec{k})\right) + \sum_{i=1}^{n} U_{sym,i}\left(\rho,\vec{k},f_{n/p}(\vec{r},\vec{k})\right) \tau_3^i \delta^i \qquad \text{Symmetry potential}$$
Effective mass
$$\frac{\hbar^2}{2m^*_{n/p}} = \frac{\hbar^2}{2m} + \frac{1}{p} \frac{\partial U_{n/p}\left(\rho,\delta,\vec{p},f_{n/p}(\vec{r},\vec{k})\right)}{\partial p}$$

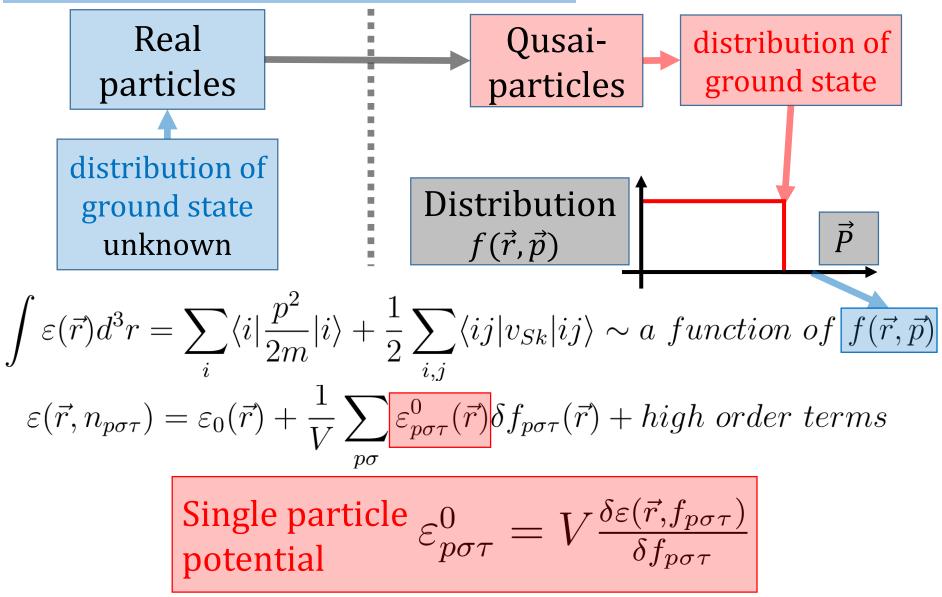
Rui Wang - Transport2019 - ECT* - 22 May 2019

PhD defense - 2019**/6/2**2

Requirements of new interactions

- Satisfies all possible constrains from the nuclear matter;
- Realistic single particle potential or Hama potential to higher momentum ~ 1.5 GeV/c² (corresponding to incident energy of 1 GeV), at $\rho = \rho_0$;
- Qualitatively reproduce the first order symmetry potential calculated by microscopic calculation up to momentum ~ 1. 5 GeV/c², at $\rho = \rho_0$.

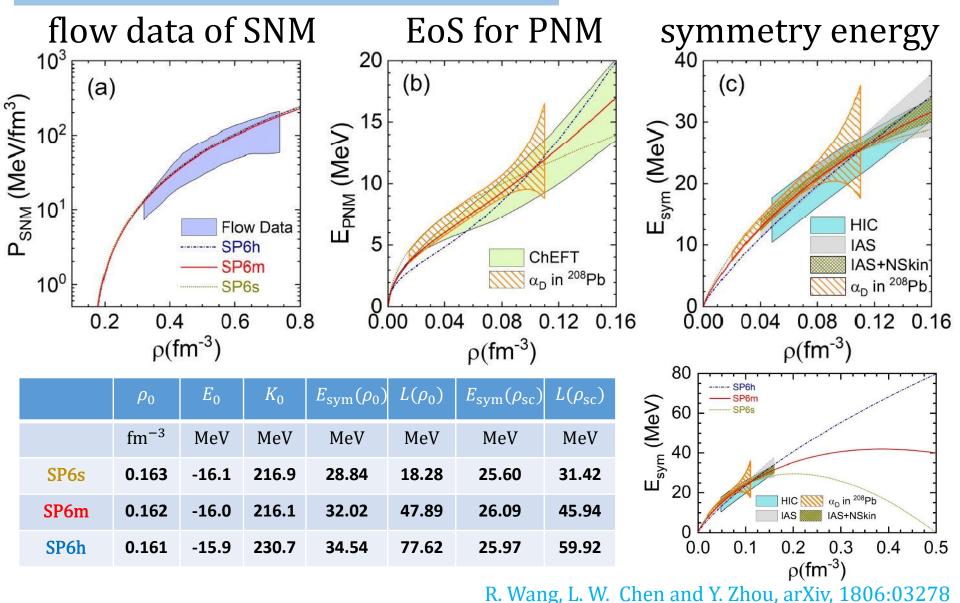
Landau Fermi liquid theory



Rui Wang - Transport2019 - ECT* - 22 May 2019

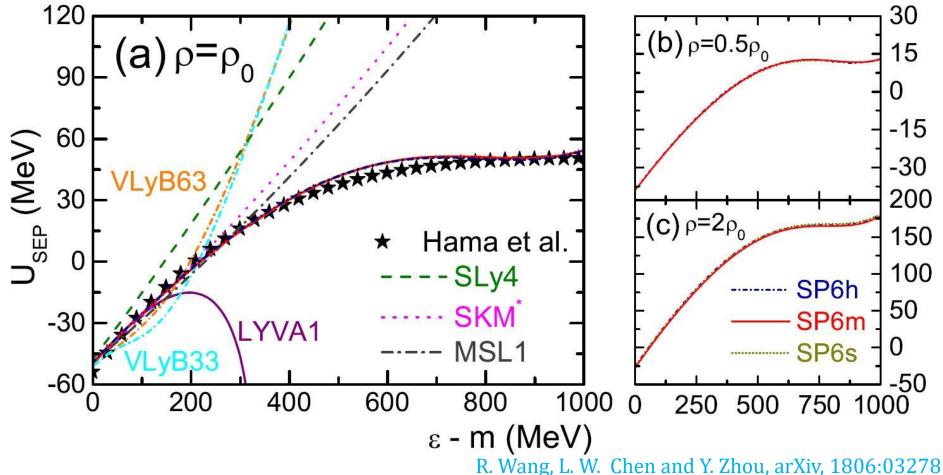
PhD defense - 2019**/5/2**2

Properties of Nuclear Matter



Single particle properties

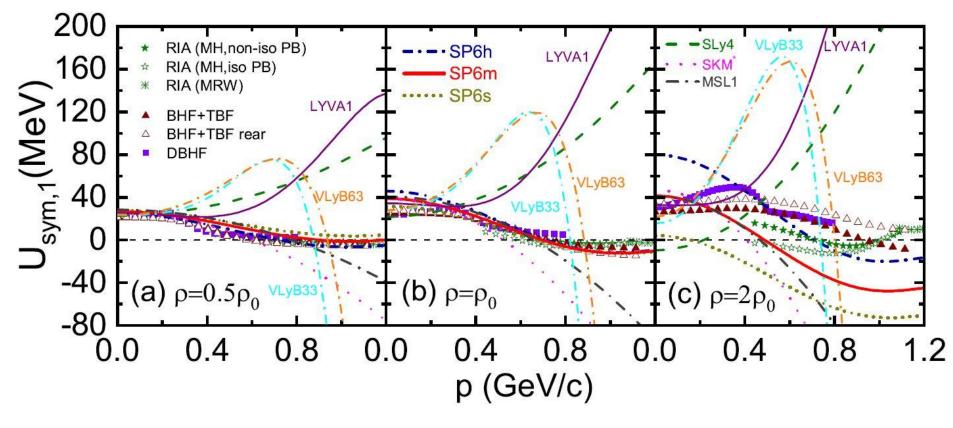
The main improvement of the new interactions SP6s SP6m and SP6h is the realistic single nucleon potential to energy of about 1 GeV.



Single particle properties

The comparison of first order symmetry potential to microscopic calculations

relativistic impulse approximation (RIA) Brueckner-Hartree-Fock (BHF)

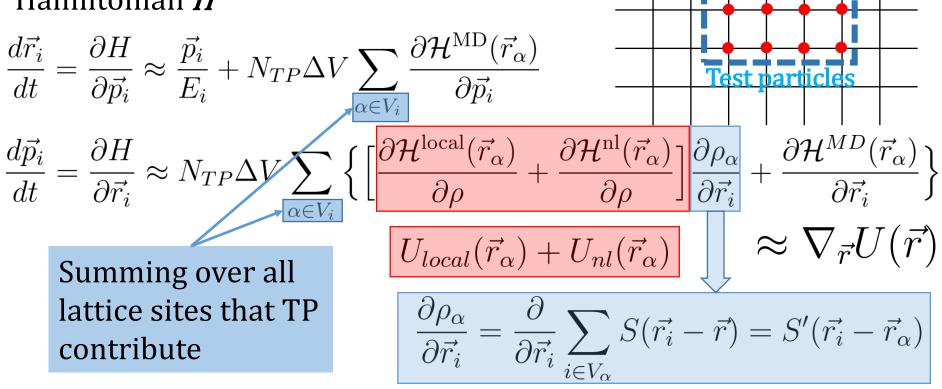


R. Wang, L. W. Chen and Y. Zhou, arXiv, 1806:03278

Lattice Hamiltonian Vlasov framework

The equation of motion

Hamilton equations, with the r_i and p_i of i-th test particle treated as the canonical coordinate and momentum of total Hamiltonian H



Rui Wang - Transport2019 - ECT* - 22 May 2019

 $f(\vec{r}_{\alpha}, \vec{p}) = \sum S(\vec{r}_i - \vec{r})\delta(\vec{p}_i - \vec{p})$

Lattice sites

 $i \in V_{\alpha}$