Relativistic Parton Transport at fixed shear viscosity η/s

V. Greco UNIVERSITY of CATANIA INFN-LNS

"We focus on energies and corresponding densities, where a hadronic representation is appropriate." (from the abstract of the Workshop)

Challenges to Transport Theory for Heavy-Ion Collisions, ECT*, Trento – 20-24 May 2019

Outline

\clubsuit Transport Theory at fixed η/s for QGP :

- Motivations
- How to fix locally η/s (Green-Kubo correlator)
- Tests and comparisons
- Study of the ∞ cross section limit (λ<<d):
 → Ideal Hydro & viscous correction

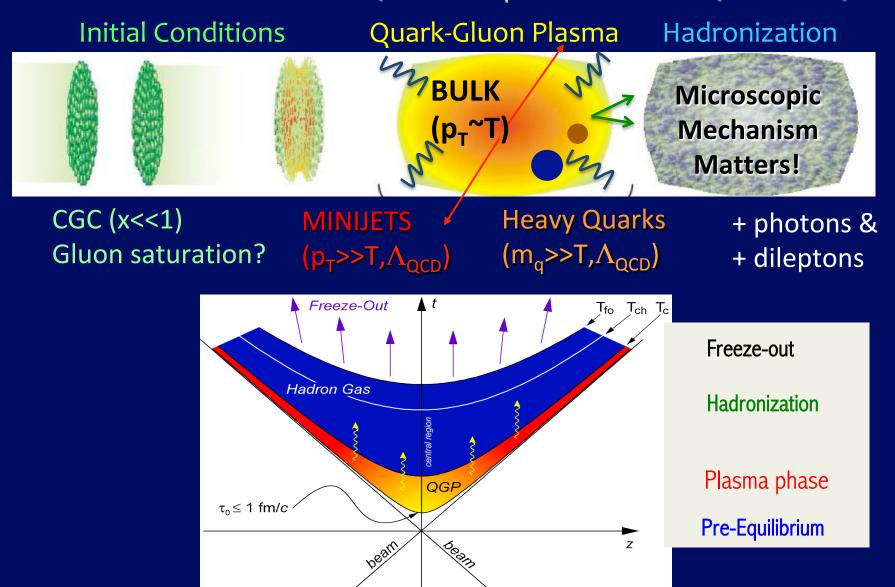
Some results for HIC:

- Hydro-like (equilibrium) study of v_n
- Impact of non-equilibrium: initial stage & high-p_T

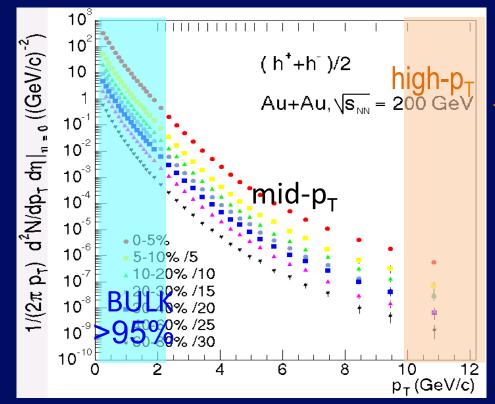
Challenges and future directions:

Ultra-relativistic HIC

Going from $p_T \approx 1$ to 500 Λ_{QCD} and $m_q \approx 1/20$ to 20 Λ_{QCD} (700 Λ_{QCD})



Scales in ultra-relativistic HIC



SOFT ($P_T \sim \Lambda_{QCD}$, T) **DRIVEN BY NON PERTURBATIVE QCD** Hadron yields, <u>collective modes of the bulk v_n</u>,

strangeness enhancement, fluctuations ...

HARD (P_T>>> Λ_{QCD}) PQCD APPLICABLE jet quenching, <u>heavy quarks</u> quarkonia, hard photons ...

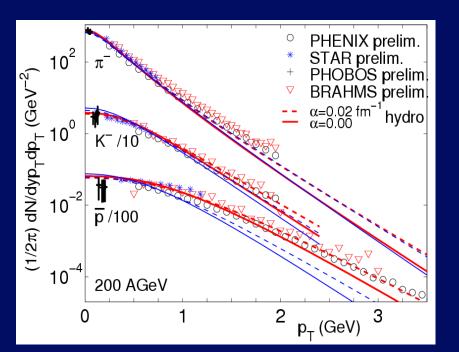
Ideal Hydrodynamics: a perfect fluid?

$$\begin{cases} \partial_{\mu} T^{\mu\nu}(x) = 0\\ \partial_{\mu} j^{\mu}_{B}(x) = 0 \end{cases}$$

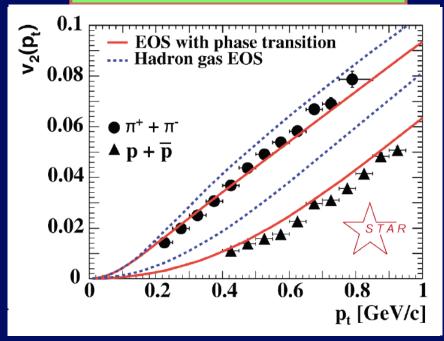
$$T^{\mu\nu}(x) = \begin{bmatrix} \varepsilon + p \end{bmatrix} u^{\mu} u^{\nu} - p g^{\mu\nu} \qquad T_{f} \sim 120 \text{ MeV} \\ <\beta_{T} > \sim 0.5 \end{cases}$$
$$T^{*} \approx T_{f} + \frac{1}{2} m \langle \beta_{T}^{2} \rangle \qquad \text{A } \tau_{th} \approx 0.5 \text{-1 fm/c just assumed!}$$

No microscopic description ($\lambda \rightarrow 0$), no dissipation,...only conservation laws!

Blue shift of dN/dp_T hadron spectra
Mass ordering of v₂(p_T)



For the first time very close to ideal Hydrodynamics



Ideal Hydrodynamics: a perfect fluid?

$$\begin{aligned} \partial_{\mu}T^{\mu\nu}(x) &= 0 \\ \partial_{\mu}j^{\mu}_{B}(x) &= 0 \end{aligned} \qquad \begin{aligned} f_{eq}(x,p) &\approx e^{-\frac{\gamma E - \vec{p} \cdot \vec{u} - \mu}{T}} &\approx e^{-\frac{m_{T}}{T^{*}}} \\ T^{*} &\approx T_{f} + \frac{1}{2}m\langle \beta_{T}^{2} \rangle \end{aligned} \qquad A \tau_{th} \approx 0.5-1 \end{aligned}$$

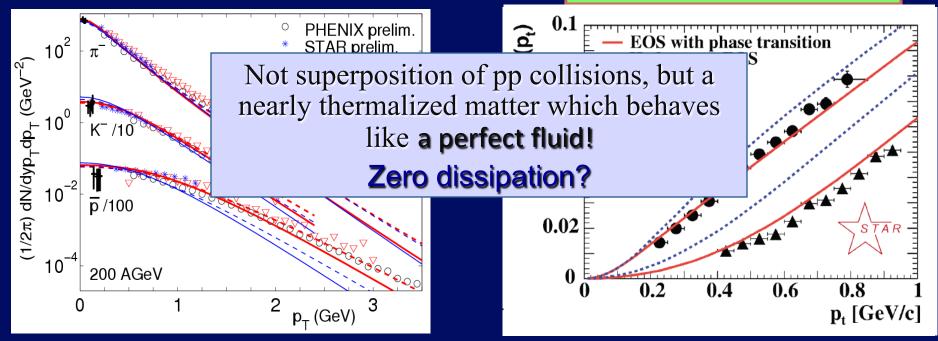
 $T_f \simeq 120 \text{ MeV}$ $<\beta_T > \simeq 0.5$

 $\Lambda \langle \beta_{\rm T}^2 \rangle$ A $\tau_{\rm th} \approx 0.5$ -1 fm/c just assumed!

No microscopic description ($\lambda \rightarrow 0$), no dissipation,...only conservation laws!

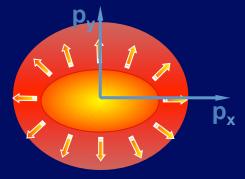
Mass ordering of v₂(p_T)

For the first time very close to ideal Hydrodynamics

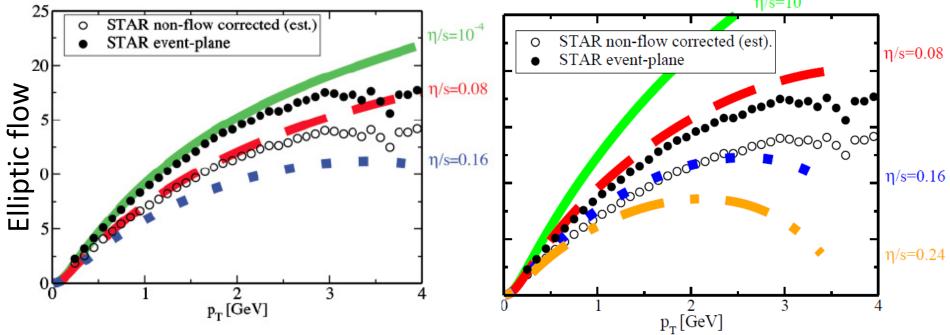


Success of viscous hydrodynamics for $v_2 \rightarrow \eta/s \approx 0.1$

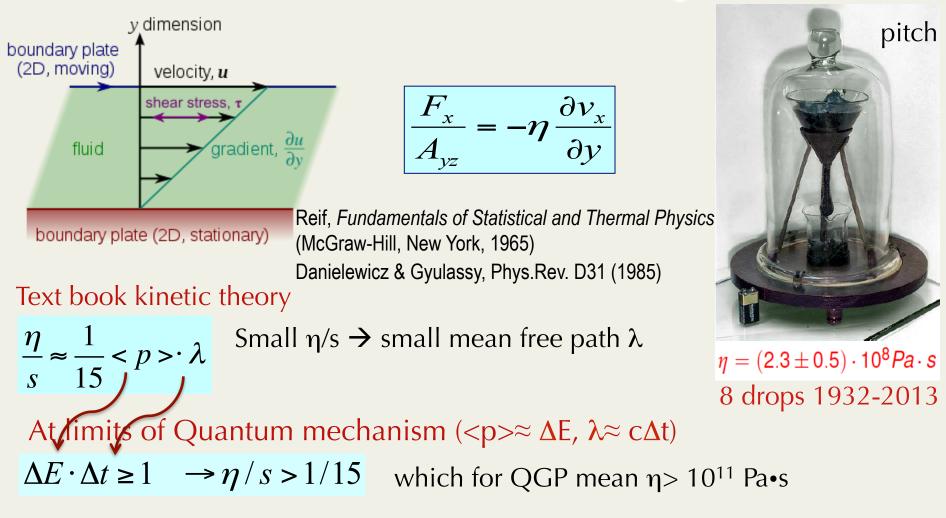
 v_2/ϵ measures efficiency in converting space eccentricity to Momentum space



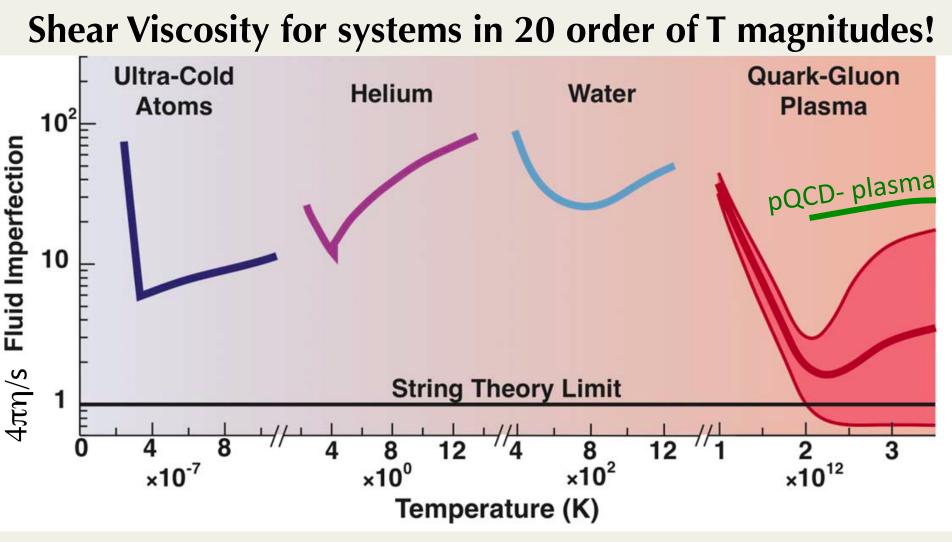
Glauber Init. Cond.



What is Shear Viscosity?



AdS/CFT, based on the conjecture that a Gauge theory in 4D (in the infinite coupling limit) is dual to a gravitational calculation in 5D gives $\eta/s > 1/4\pi$



Report to USA Nuclear Science Advisory Committee in 2013

Why we want to use a Boltzmann relativistic transport theory, if viscous Hydrodynamics works so well?

Also if viscosity is so low, mean free path is small ... QGP is strongly coupled

Does we are outside of the region of validity of Boltzmann?

$$\frac{\eta}{s} \approx \frac{1}{15} \langle p \rangle \cdot \lambda \to \lambda \approx \frac{5}{T} \frac{\eta}{s} \qquad \qquad \rho_{QGP} \approx 4.5T^3 \to \overline{d}_{QGP} \approx \frac{0.6}{T}$$
$$\lambda < \overline{d}$$

A relativistic fluid at small η /s \approx 0.1 is not very dilute!

Viscous Hydrodynamics

Relativistic Navier-Stokes

$$T^{\mu\nu} = T^{\mu\nu}_{ideal} + \eta (\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \partial^{\alpha} u_{\alpha})$$

but it violates causality, II⁰ order expansion needed -> Israel-Stewart tensor based on entropy increase $\partial_{\mu} s^{\mu} > 0$

$$\pi^{\mu\nu} = \eta \nabla^{<\mu} u^{\nu>} + \tau_{\pi} \left[\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} D \pi^{\alpha\beta} \dots \right]$$

-Dissipative correction to $u^{\mu},\,T$ -Dissipative correction to f -> $f_{eq}\text{+}\delta f_{neq}$

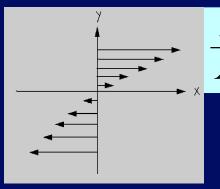
There is no one to one correspondence!

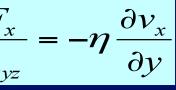
$$T_{eq}^{\mu\nu} + \delta T^{\mu\nu} \Leftarrow f_{eq} + \delta f$$

An Asantz

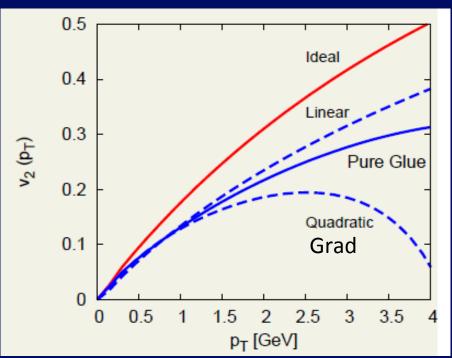
$$\delta f = \frac{\pi^{\mu\nu}}{\varepsilon + P} \frac{p_{\mu}p_{\nu}}{T^2} f_{eq}$$

- $p_T \sim 3 \text{ GeV} \rightarrow \delta f/f \approx 1-4$ - $\Pi^{\mu\nu}(t_0) = 0 \rightarrow \text{discard initial non-eq (ex. minijets)}$





$$\begin{split} \tau_{\eta}, \tau_{\zeta} \text{ two parameters appears +} \\ \delta f &\simeq f_{eq} \text{ reduce the } p_{T} \text{ validity range +} \\ \text{Full II}^{\circ} \text{ order has about 10 parameters} \end{split}$$



Full Viscous Hydrodynamics

Phys.Rev. D85 (2012)

It becomes quite complicated and the number of parameters increases significantly: τ_{η} , τ_{ζ} , δf , $\Pi^{\mu\nu}(\tau_0)$,...

Relativistic Boltzmann-Vlasov approach

$$\left\{p^{*\mu}\partial_{\mu} + \left[p^{*}_{\nu}F^{\mu\nu} + m^{*}\partial^{\mu}m^{*}\right]\partial^{p^{*}}_{\mu}\right\}f(x,p^{*}) = C[f]$$

Free streaming Field Interaction (EoS)

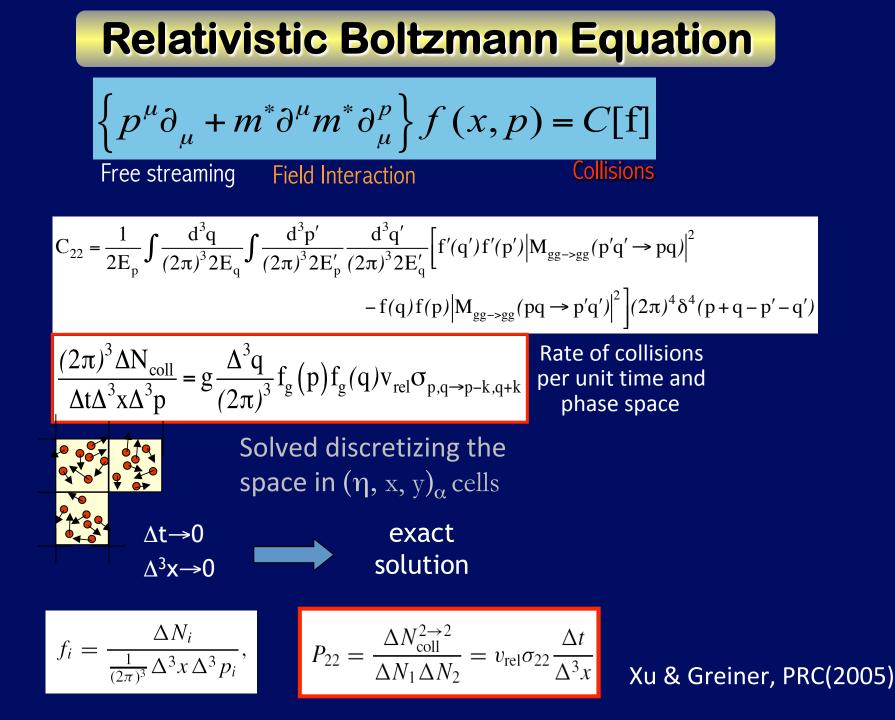
Collisions -> η≠0

f(x,p) is the one-body distribution function

$$\mathcal{C}_{22} = \frac{1}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3 p_1'}{(2\pi)^3 2E_1'} \frac{d^3 p_2'}{(2\pi)^3 2E_2'} f_1' f_2' |\mathcal{M}_{1'2' \to 12}|^2 (2\pi)^4 \delta^{(4)}(p_1' + p_2' - p_1 - p_2) - \frac{1}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3 p_1'}{(2\pi)^3 2E_1'} \frac{d^3 p_2'}{(2\pi)^3 2E_2'} f_1 f_2 |\mathcal{M}_{12 \to 1'2'}|^2 (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_1' - p_2')$$

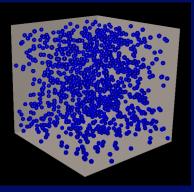
- $C[f_{eq}+\delta f] \neq 0$ deviation from ideal hydro (finite λ or η/s)
- We map with C[f] the phase space evolution of a fluid at fixed η/s !

One can expand over microscopic details (2<->2,2<->3...), but in a hydro language this is irrelevant only the global dissipative effect of C[f] is important! In fact expanding C[f] one gets viscous hydrodynamics: Denicol, Rischke,...



Some test and check of Boltzmann transport at ultrarelativistic limit

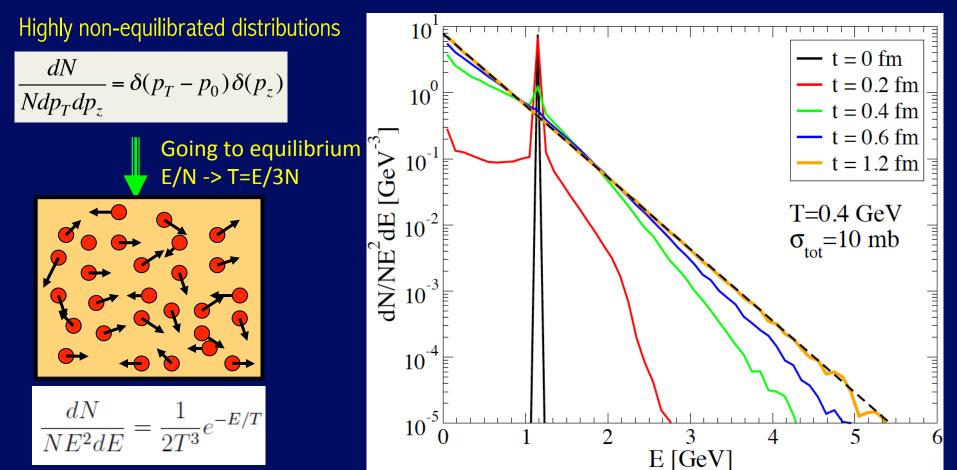
for thermalization time O(1fm/c)



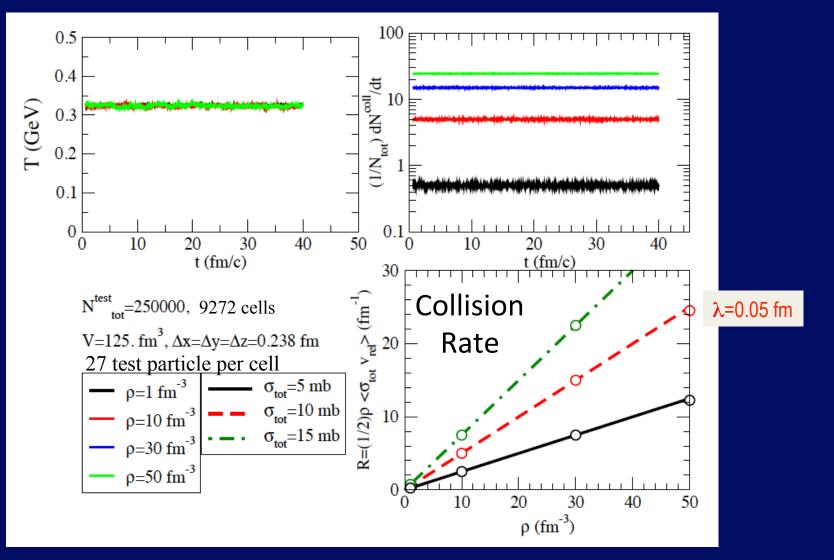
Simulation in a box

Test of equilabration in time scale of 1 fm/c for ultra-relativistic particles

Particle off-equilibrium in a thermal bath at T=400 MeV



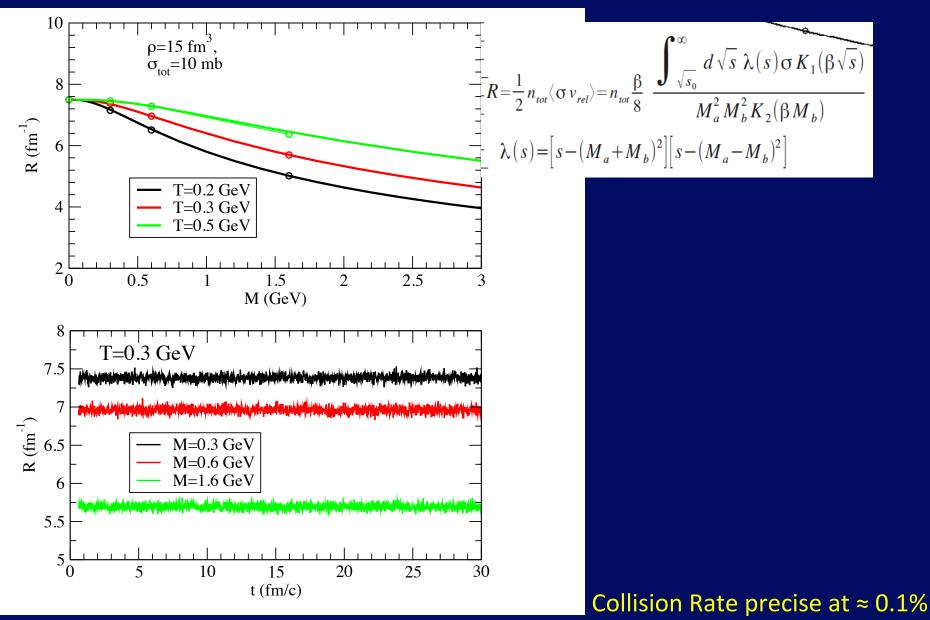
Some checks about the rate of collisions



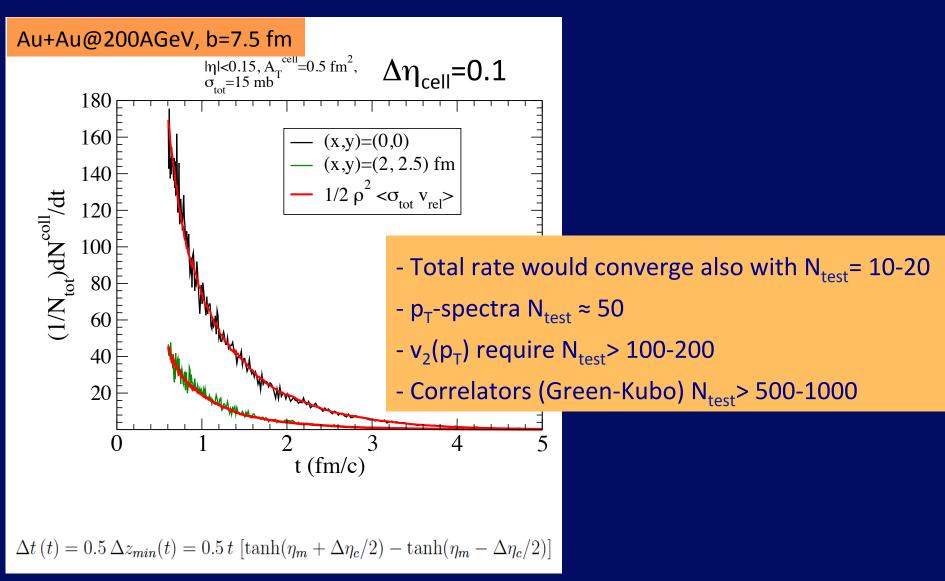
Stable in all the range of cross section and density of interest:

 A geometrical interpretation would have more trouble ! Especially in the ultra-relativistic limit!

Some check at Finite Masses



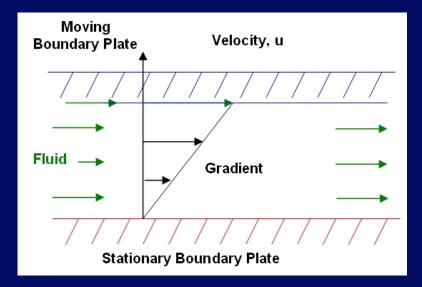
Test of collision rate locally in the expanding fireball



Part I – Kinetic Theory at fixed η/s

Instead of starting from cross-sections and fields, we reverse the process starting from η/s

What is the relation $\eta <-> \sigma$, $d\sigma/d\Theta$, M, T, ρ ? - Check η with the Green-Kubo correlator



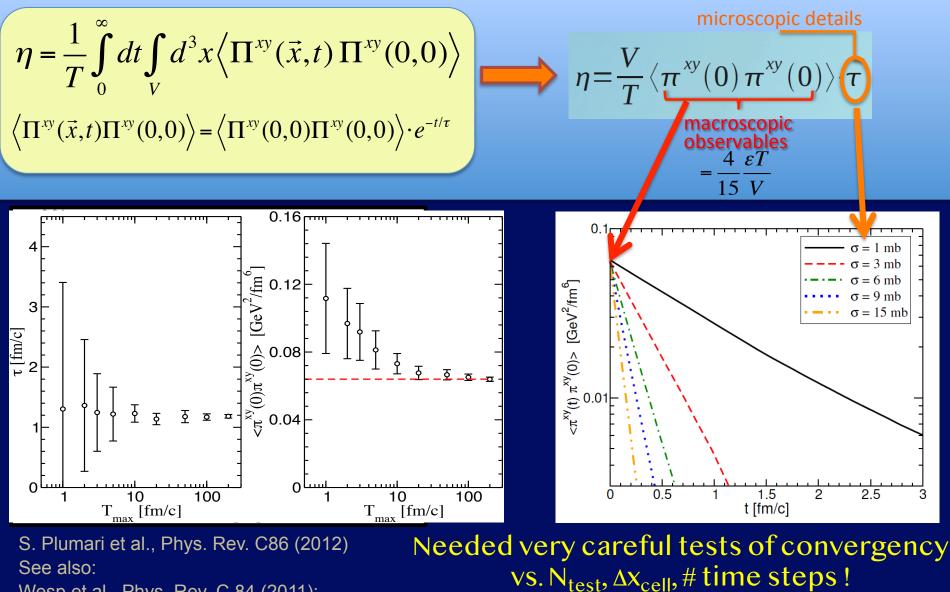
$$\frac{F}{A} = \eta \frac{\partial u}{\partial y}$$

$$\eta / s \approx \frac{1}{15} \frac{\langle p \rangle}{\sigma \rho}$$

?

Shear Viscosity in Box Calculation

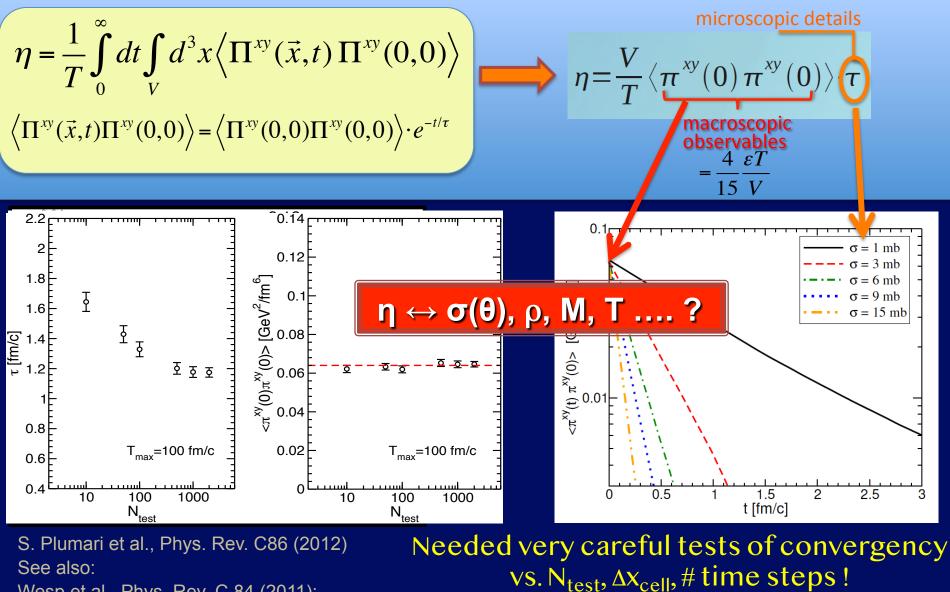
Green-Kubo correlator



Wesp et al., Phys. Rev. C 84 (2011);

Shear Viscosity in Box Calculation

Green-Kubo correlator



Wesp et al., Phys. Rev. C 84 (2011);

Non Isotropic Cross Section - $\sigma(\theta)$

Relaxation Time Approximation

$$\eta_{RTA} / s = \frac{1}{15} \tau_{tr} = \frac{1}{15} \frac{}{\langle h(a) \rangle \sigma_{TOT} \rho}$$

$$h(a) = 4a(1+a)[(2a+1)\ln(1+a^{-1})-2]$$
, $a = m_D^2 / s$

h(a)= σ_{tr}/σ_{tot} weights cross section by q²

Chapmann-Enskog (CE)

$$\eta/s = \frac{1}{15} \langle p \rangle \, \tau_\eta = \frac{1}{15} \frac{\langle p \rangle}{g(a)\sigma_{tot}\rho}$$

$$g(a) = \frac{1}{50} \int dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)^{-1} dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y$$

g(a) correct function that fix the momentum transfer for shear motion

- CE and RTA can differ by about a factor 2
- Green-Kubo agrees with CE

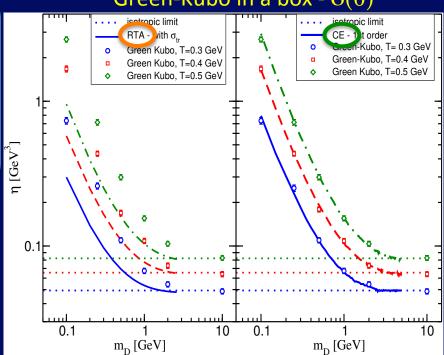
S. Plumari et al., PRC86(2012)054902

RTA is the one usually employed to make theroethical estimates: Gavin NPA(1985); Kapusta, PRC82(10); Redlich and Sasaki, PRC79(10), NPA832(10); Khvorostukhin PRC (2010) ...

for a generic cross section:

$$\frac{d\sigma}{d\Omega} \propto \left(q^2(\theta) + m_D^2\right)^{-2}$$

$\ensuremath{\mathsf{m}}_{\ensuremath{\mathsf{D}}}$ regulates the angular dependence



Green-Kubo in a box - $\sigma(\theta)$

Simulate a fixed shear viscosity

Usually input of a transport approach are *cross-sections and fields*, but here we reverse it and start from η /s with aim of creating a more direct link to viscous hydrodynamics

Chapmann-Enskog

$$\frac{\eta}{s} = \frac{1}{15} \langle p \rangle \cdot \tau_{\eta} = \frac{1}{15} \frac{\langle p \rangle}{g(\frac{m_D}{T}) \sigma_{TOT} \rho}$$

$$g(a) = \frac{1}{50} \int \! dy y^6 \left[(y^2 \! + \! \frac{1}{3}) K_3(2y) \! - \! y K_2(2y) \right] \! h\left(\frac{a^2}{y^2}\right)$$

 $g(a=m_{D}/2T)$ correct function that fix the relaxation time for the shear motion

$0 < g(m_D/2T) < 2/3$ forward Isotropic peaked

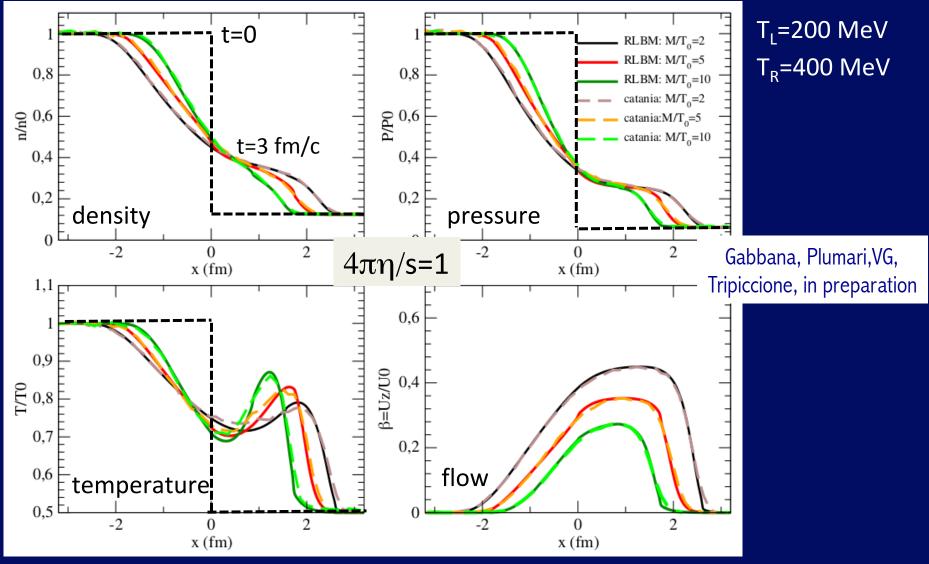
 $m_D \rightarrow \infty$

Transport code

Space-Time dependent cross section evaluated locally M. Ruggieri et al., PLB727 (2013), PRC89(2014)

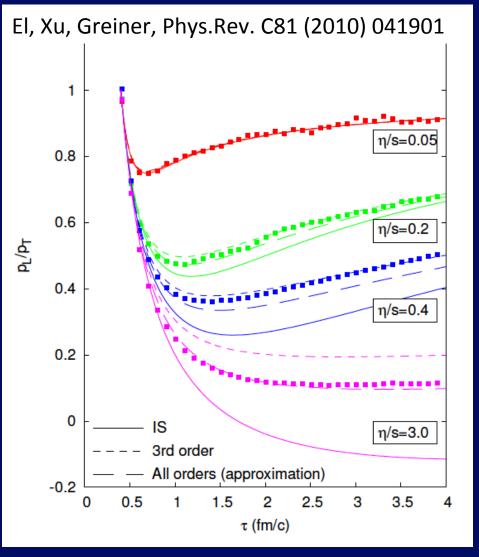
Comparison to Relativistic Lattice Boltzmann

Riemann problem: shock waves (extreme dynamics)



RLBM-Gabbana, Mendoza, Succi, Tripiccione, PRE95 (2017) already tested against viscous hydro for M=0

Study from BAMPS-Frankfurt



- Convergency for small η /s of Boltzmann transport at fixed η /s with viscous hydro
- Better agreement with 3rd order viscous hydro for large η/s

$$s^{\mu} = -\int \frac{d^3p}{E} p^{\mu} f(\ln f - 1) \,. \tag{3}$$

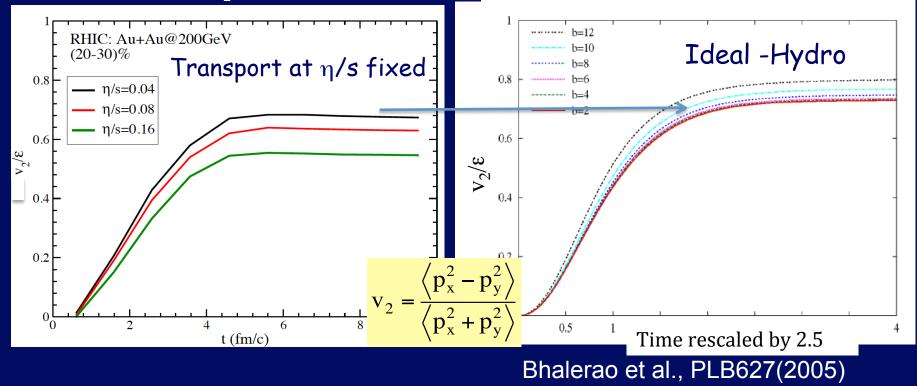
 $\ln(f)$ will be expanded to the third order in $\phi \approx C_0 \pi_{\mu\nu} p^{\mu} p^{\nu}$ [see Eq.(1)]. We obtain

$$s^{\mu} \approx -\int \frac{d^{3}p}{E} f_{0}p^{\mu} \left(\ln f_{0} - 1 + \phi + \phi \ln f_{0} + \frac{\phi^{2}}{2} - \frac{\phi^{3}}{6} \right)$$
$$= s_{0}u^{\mu} - \frac{\beta_{2}}{2T} \pi_{\alpha\beta} \pi^{\alpha\beta} u^{\mu} - \frac{8}{9} \frac{\beta_{2}^{2}}{T} \pi_{\alpha\beta} \pi^{\alpha} \pi^{\beta\sigma} u^{\mu}, \qquad (4)$$

Boltzmann transport at fixed η/s for <u>non dilute systems</u> converge to hydrodynamics

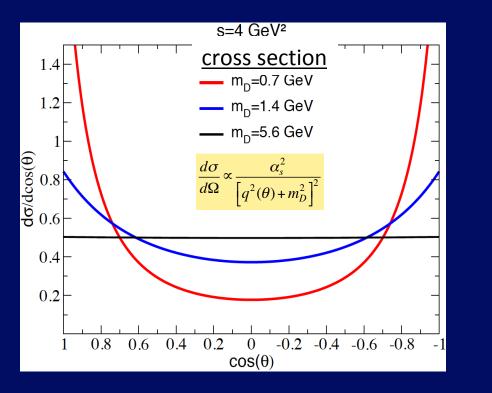
Test in 3+1D: v_2/ϵ response for almost ideal case EoS $c_s^2=1/3$ (dN/dy tuned to RHIC, geometry of Au+Au)

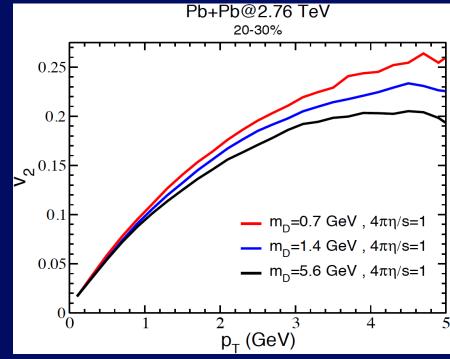
Integrated v_2 vs time



In the bulk the transport has an hydro v_2/ε_2 response!

η /s or details of the cross section?





Keep same η/s means:

$$\frac{\eta}{\sigma} = \frac{1}{15} \langle p \rangle \cdot \tau_{\eta} \qquad \tau_{\eta}^{-1} = g(\frac{m_D}{T}) \sigma_{TOT} \rho$$

$$\frac{\sigma_{TOT}(m_{1D})}{\sigma_{TOT}(m_{2D})} = \frac{g(m_{2D})}{g(m_{1D})}$$

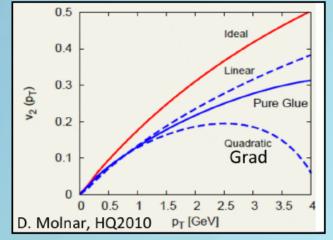
for m_{D} = 0.7 GeV -> factor 2 larger σ_{tot} is needed respect to isotropic case

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

$$f(x,p)=f^{(0)}(x,p)+\delta f(x,p)$$

 $T^{\mu\nu} = T^{(0)\mu\nu} + \delta T^{\mu\nu} \leftarrow f^{(0)} + \delta f$

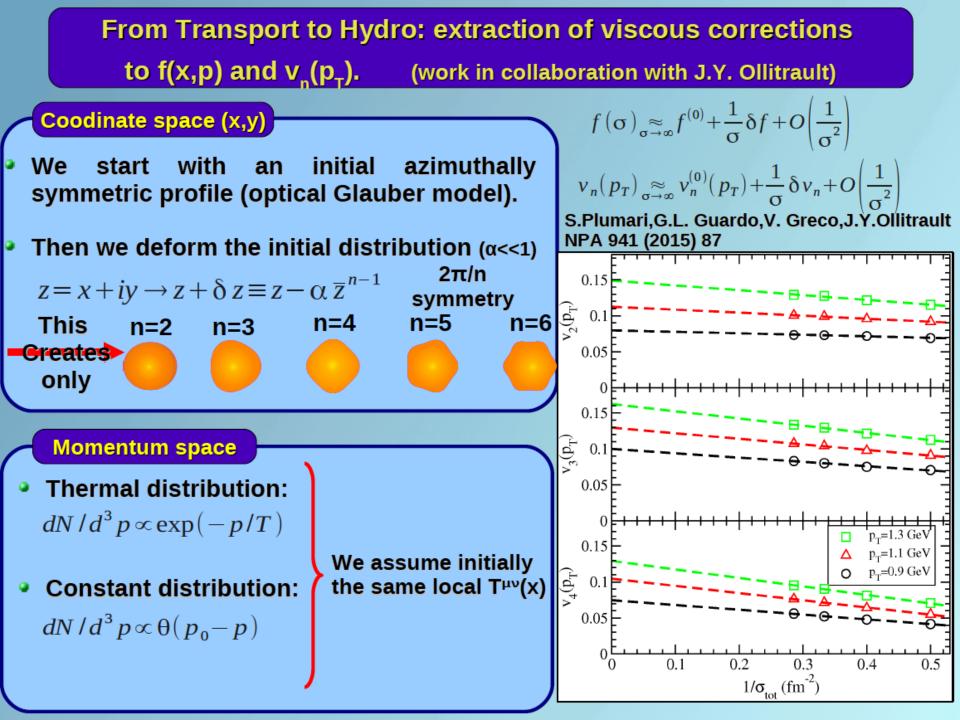
A common choice for δf – the Grad ansatz $\delta f \propto \Gamma_s f^{(0)} p^{\alpha} p^{\beta} \langle \nabla_{\alpha} u_{\beta} \rangle \propto p_T^2$



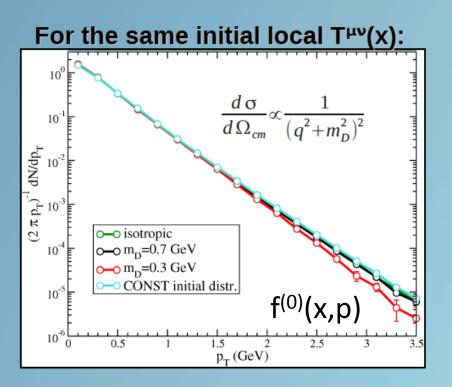
BUT it doesn't care about the microscopic dynamics

In general in the limit $\sigma \rightarrow \infty$, f(σ) can be expanded in power of 1/ σ .

PURPOSE: evaluate the ideal hydrodynamics limit $f^{(0)}$, $v_n^{(0)}$ and the viscous corrections δf and δv_n solving the Relativistic Boltzmann eq for large values of the cross section σ

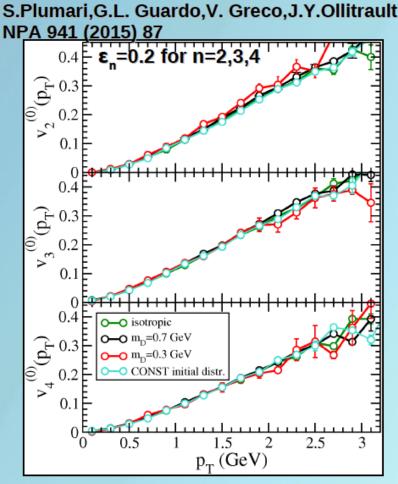


From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)



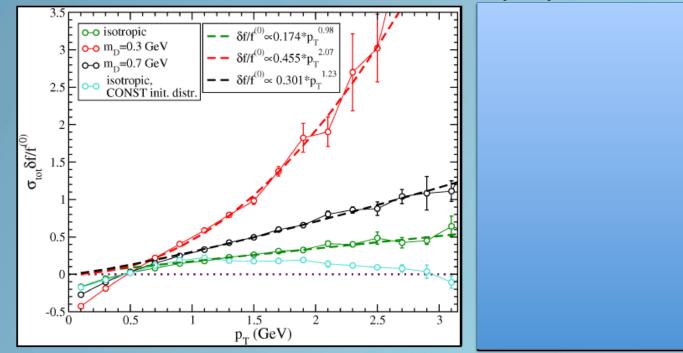
For $\sigma \rightarrow \infty$ we find the ideal Hydro limit:

- f⁽⁰⁾ is an exponential decreasing function.
- f⁽⁰⁾ doesn't depends on microscopical details (i.e. mD).
- Universal behavior of $v_n^{(0)}(p_{T})$
- $v_n^{(0)}(p_T)/\epsilon_n$ is approximatively the same for all n and p_T .



From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

S.Plumari,G.L. Guardo,V. Greco, J.Y.Ollitrault NPA 941 (2015) 87



In δf and δv_n it is encoded the information about the microscopical details

• $\delta f(p_T)/f^{(0)} \propto p_T^{\alpha}$ with $\alpha = 1. - 2$. and $\alpha(m_D)$. For isotropic σ similar to R.S. Bhalerao et al. PRC 89, 054903 (2014)

...but in strongly coupled system one does not expect a very forward peaked cross-section

Motivation for transport vs Hydrodynamics

Starting from 1-body distribution function f(x,p) and not from $T_{\mu\nu}$:

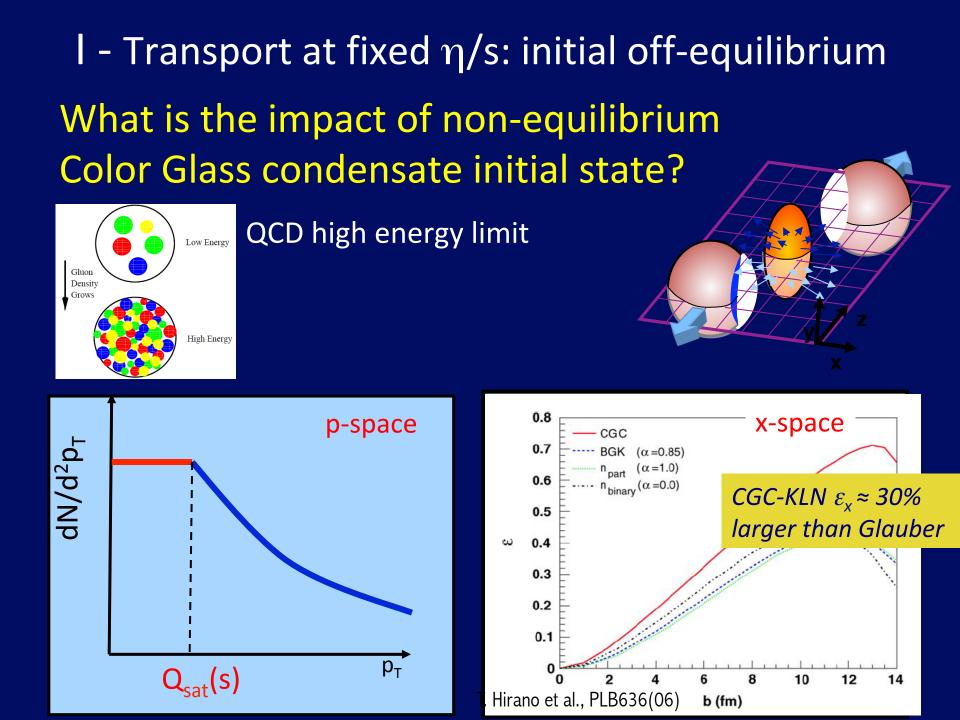
p_T≈3T Hydro ← Transport η/s<<1 fixed η/s Extension to mid- p_T (minijets): large δf(p_T)
Initial pre-equilibrium
Freeze-out consistent with η/s (Hydro weakness)
Large η/s and Local Large stress tensor (pA)

Microscopic mechanism: Hadronization (beyond SHM)

Heavy Quarks beyond Fokker-Planck

Now, some examples of things where one can go beyond Viscous Hydro:

I- initial stage off-equilibrium
 II- Initial State Fluctuations: v₂=v₃
 III- From Chromo-magnetic fields to QGP
 IV- Extension to pA collisions

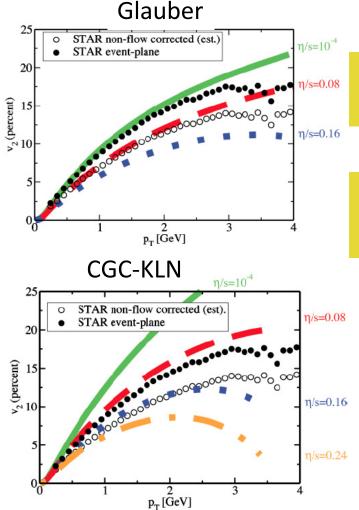


V₂ from KLN (CGC) in Hydro

What does KLN in hydro?

1) r-space from KLN (larger ε_x)

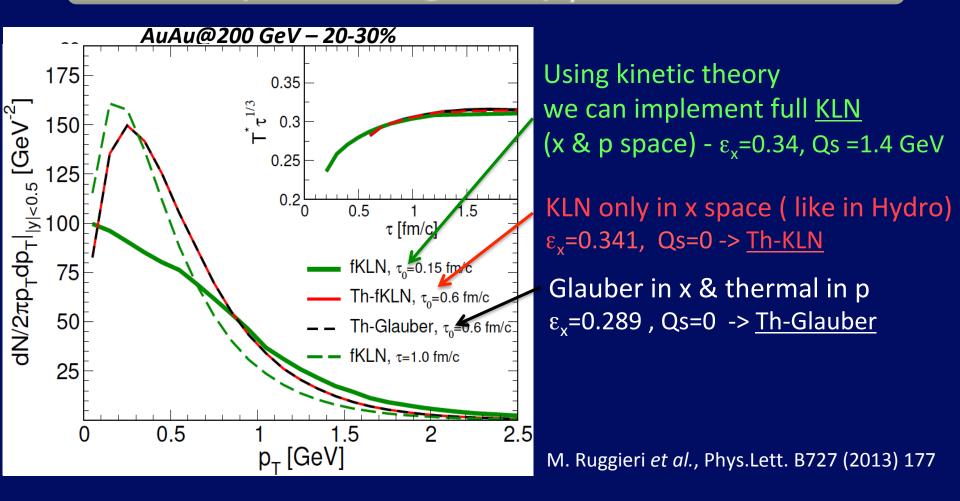
2) p-space thermal at $t_0 \approx 0.6-0.9$ fm/c - No Q_s scale , We'll call it <u>fKLN-Th</u>



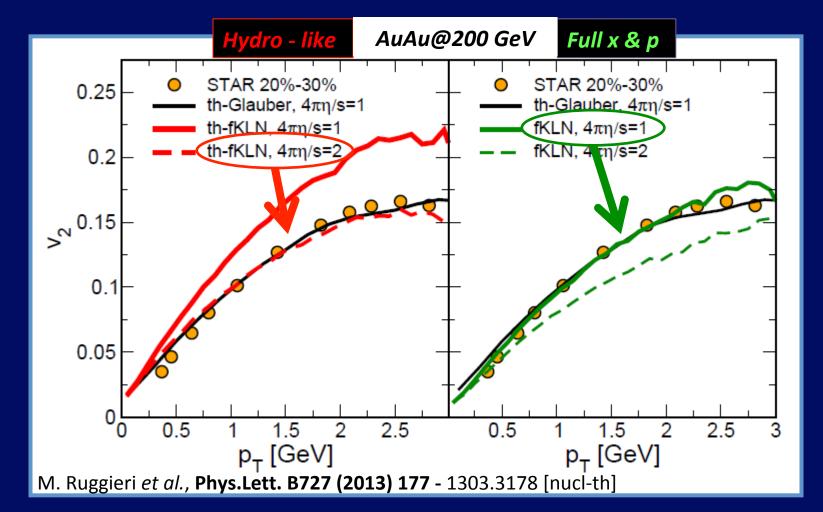
Larger ε_x - > higher η /s to get the same $v_2(p_T)$ Glauber $\rightarrow \eta$ /s = 0.08 CGC-KLN $\rightarrow \eta$ /s=0.16

Luzum and Romatschke PRC78(2008) 034915 See also: Alver et al., PRC 82, 034913 (2010) Heinz *et al.*, PRC 83, 054910 (2011)

Implementing KLN p_T distribution



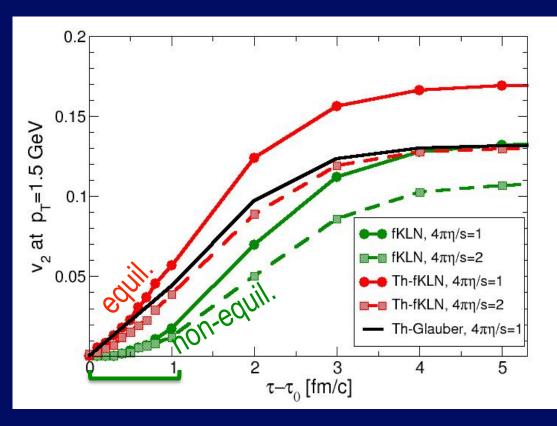
Results with kinetic theory



When implementing KLN and Glauber like in Hydro we get the same of Hydro

> When implementing full KLN we get close to the data with $4\pi\eta/s = 1$: larger ε_x compensated by Q_s saturation scale (non-equilibrium distribution)

What is going on?

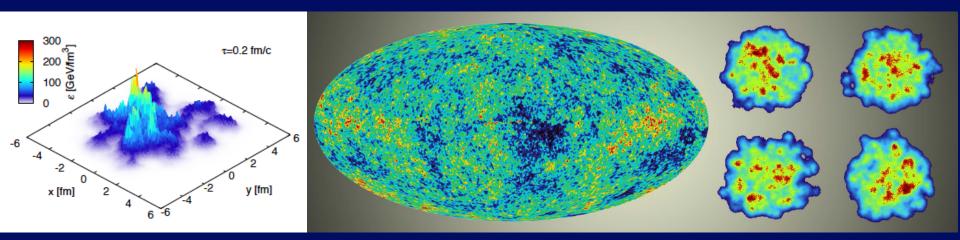


♦ We clearly see that when non-equilibrium distribution is implemented in the initial stage ($\leq 1 \text{ fm/c}$) v₂ grows slowly with respect to thermal one

- Deformation of p_T distribution -> affects v₂(p_T)!!
- Effect decrease with centrality and with beam energy!

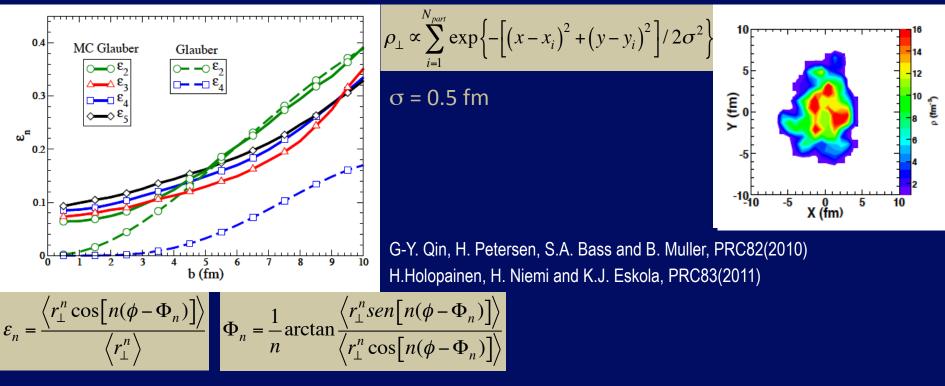
II – Initial State Fluctuations

What is the impact of Initial State Fluctuations? Local large gradients against Hydro (indeed they are cut-off at t₀)



Include Initial State Fluctuations

MonteCarlo Glauber

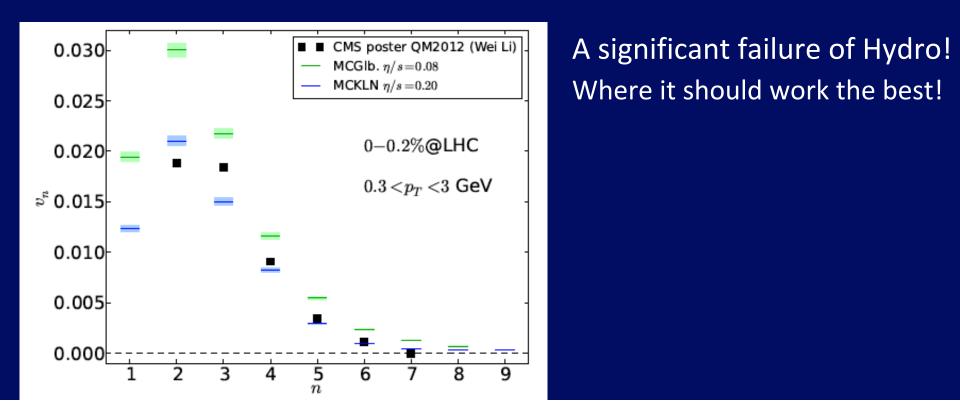


Impact of Fluctuations as in hydro:

- Decrease of v_{2 (15-20%)}
- appeareance of a large $v_3 \approx v_2$ in ultra-central
- Enanhcement of v_{4 about a factor 3}

In <u>ultra central collision</u>, of course viscous hydro works better:

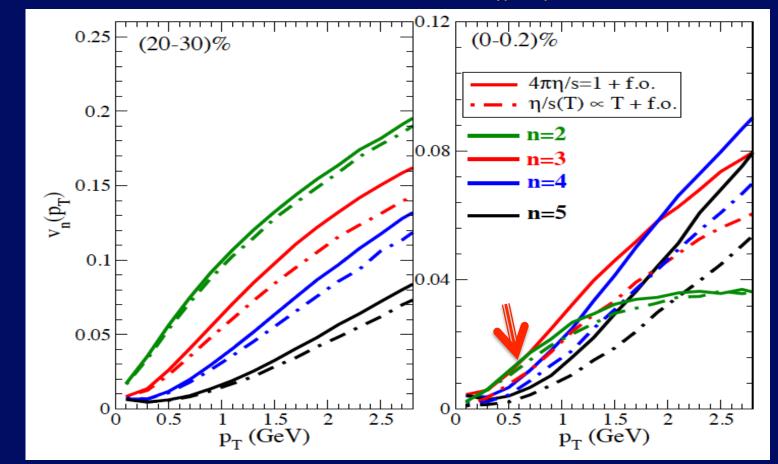
large source, smaller surface gradients, less corona and/ or hadronic contaminations



Neither MC-Glb nor MC-KLN gives the correct initial power spectrum! † R.I.P.

Is it due to some non-equilibrium physics or freeze-out dynamics?

Include Initial State Fluctuations : $v_n(p_T)$ in ULTRA-central



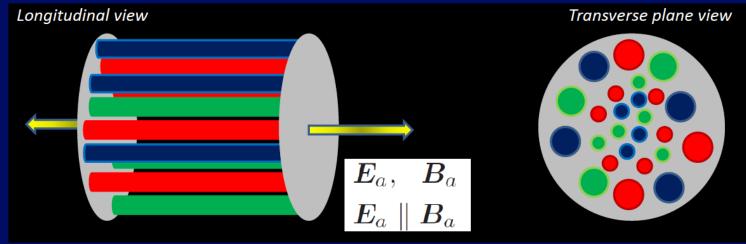
• For Ultra-central collisions there is quite larger sensitivity to $\eta/s(T)$

- Strong saturation of $v_2(p_T)$ with p_T , while $v_n \approx p_T^{\alpha}$ seen experimentally
- ♦ $V_3 \approx V_2$ in ultra-central collisions... woud solve a main puzzle!!!

S. Plumari et al., PRC92(2015)

III- From Chromo-magnetic fields to QGPA first tentative: Color electric flux tubes

Initial stage starting from chromoeletric fields then matched to parton transport at fixed $\eta/s(T)$

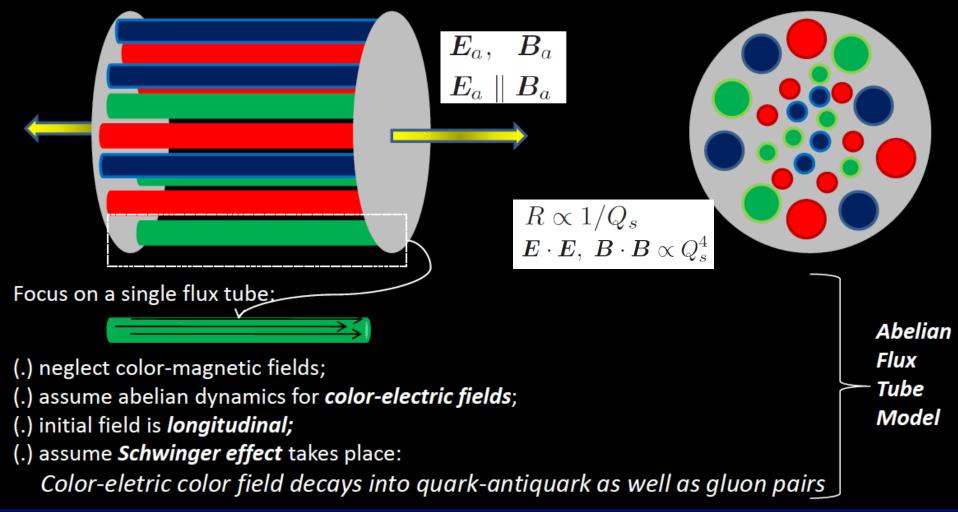


A possible approach color fields decay via vacuum instability toward pair creation (Schwinger mechanism, 1951)

Schwinger effect in Chromodynamics Abelian Flux Tube Model

Longitudinal view

Transverse plane view



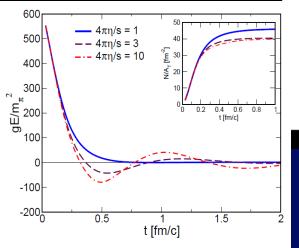
In order to permit *particle creation* from the vacuum we need to add a *source term* to the rhs of the Boltzmann equation:

$$(p_{\mu}\partial^{\mu} + gQ_{jc}F^{\mu\nu}p_{\mu}\partial^{p}_{\nu})f_{jc} = p_{0}\frac{\partial}{\partial t}\frac{dN_{jc}}{d^{3}xd^{3}p} + \mathcal{C}[f]$$
Florkowski and Ryblewski, PRD 88 (2013)

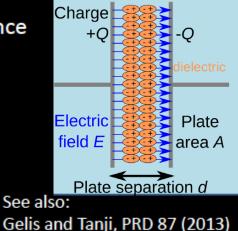
Invariant source term: change of *f* due to particle creation in the volume at (*x*,*p*).

In our model, particles are created by means of the Schwinger effect, hence

10²⁵ Volt/m



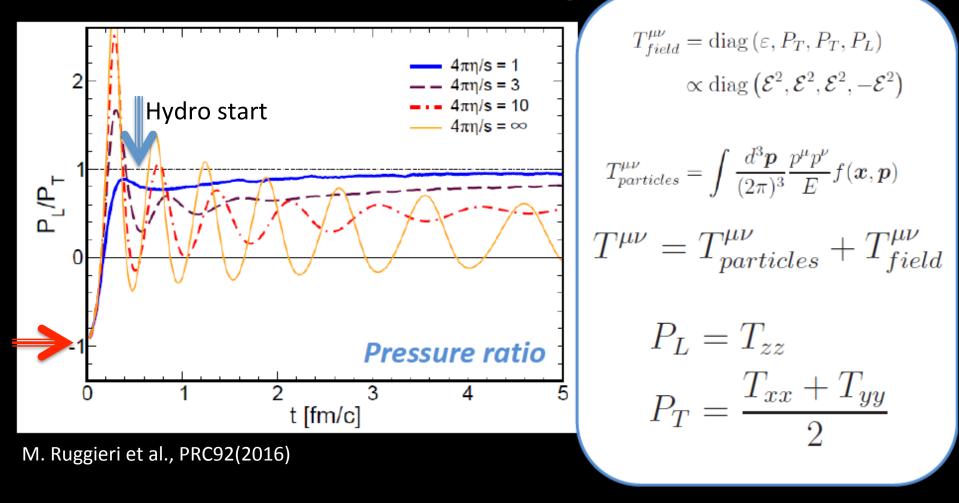
$$\frac{dN_{jc}}{d\Gamma} \equiv p_0 \frac{dN_{jc}}{d^4 x d^2 p_T dp_z} = \mathcal{R}_{jc}(p_T) \delta(p_z) p_0$$
$$\mathcal{R}_{jc}(p_T) = \frac{\mathcal{E}_{jc}}{4\pi^3} \left| \ln \left(1 \pm e^{-\pi p_T^2 / \mathcal{E}_{jc}} \right) \right|$$
$$\mathcal{E}_{jc} = (q |Q_{jc} E| - \sigma_j) \theta (q |Q_{jc} E| - \sigma_j)$$



 \mathcal{E}_{jc} effective force on pairs Q_{ic} color flavor charges

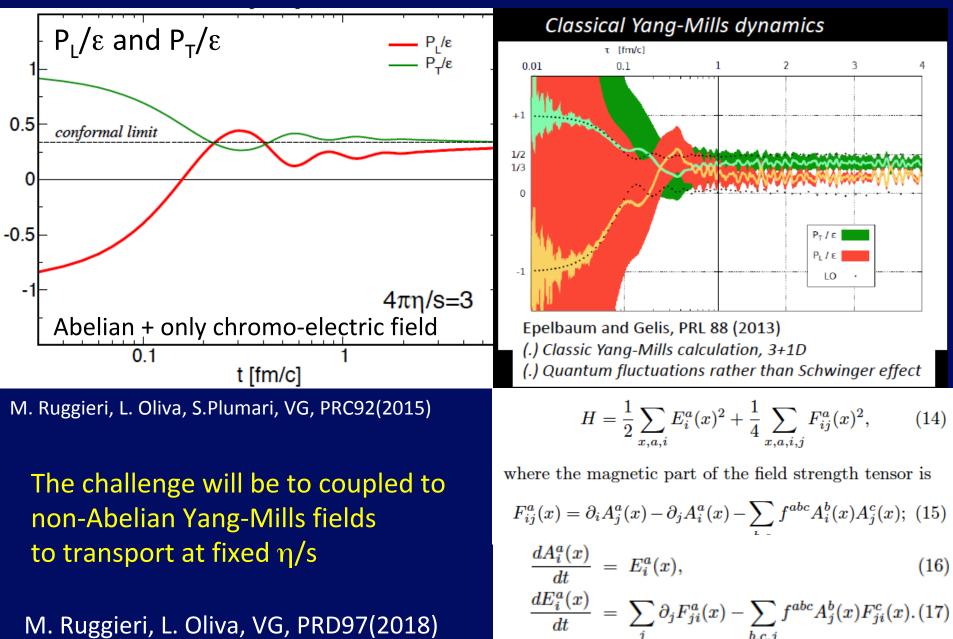
Massless quanta

Pressure isotropization



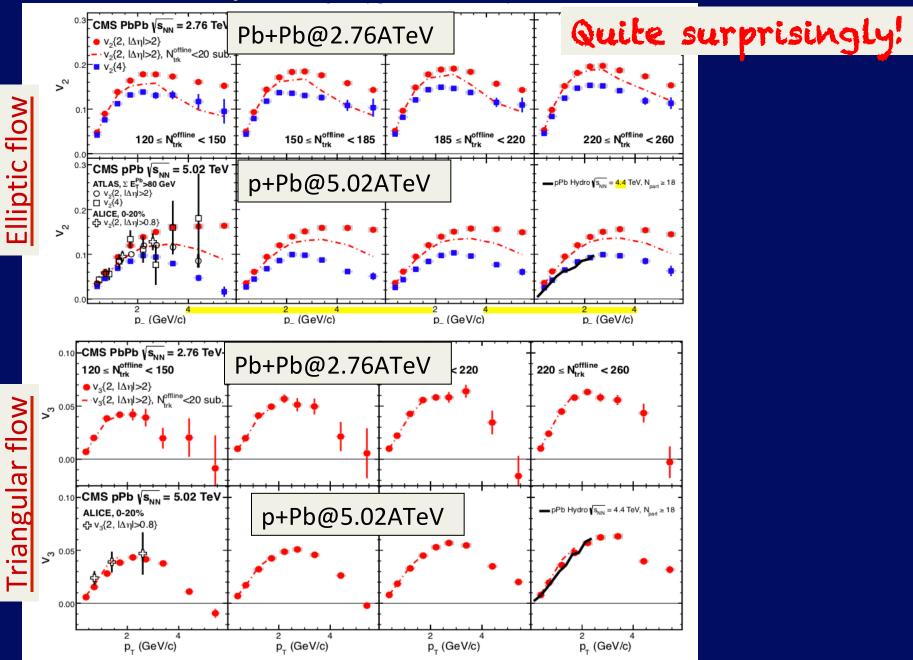
- t=0 pure field with negative field P_L
- t=0.2 fm/c \rightarrow P_L > 0 (particles pop-up) independently of η/s
- t \approx 0.5-1 fm/c nearly isotropization for $4\pi\eta/s<3$

Color flux tubes coupled to transport at fixed $\eta/s(T)$

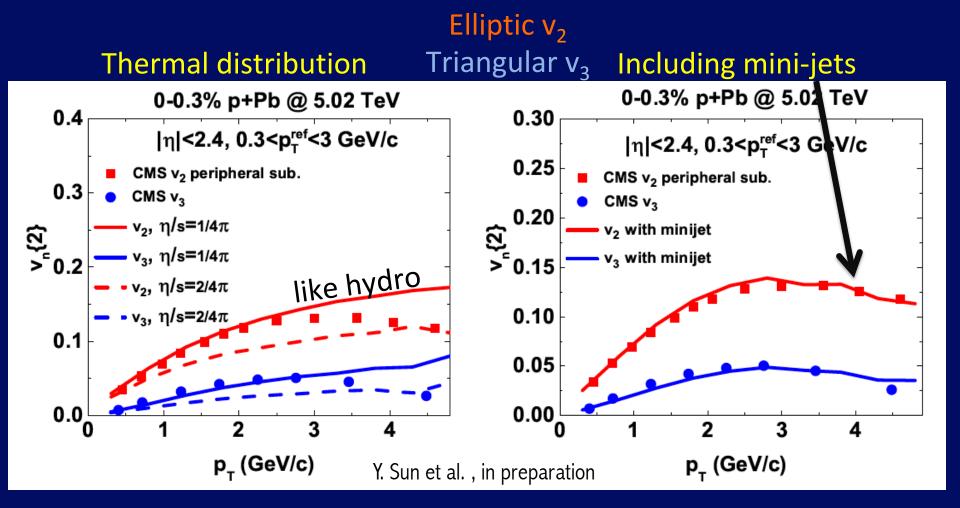


M. Ruggieri, L. Oliva, VG, PRD97(2018)

Is pA the baseline for AA?



Preliminary Results for pA with parton transport



However results with different initial state fluctuation w.r.t. AA And comparing partons with charged hadrons Work to be done and further physics to be included...

Challenges and future directions:

- Pre-equilibrium from Yang-Mills field dynamics
 [→ Color dynamics (Wong's Equation)]
- Extension to pA collisions \rightarrow AA and pA unified description
- Hadronization: statistical model vs coalescence (+ fragm.)
- Understanding relevance of freeze-out (depends on previous point)
- Contribute to develop 3+1D anisotropic viscous hydrodynamics

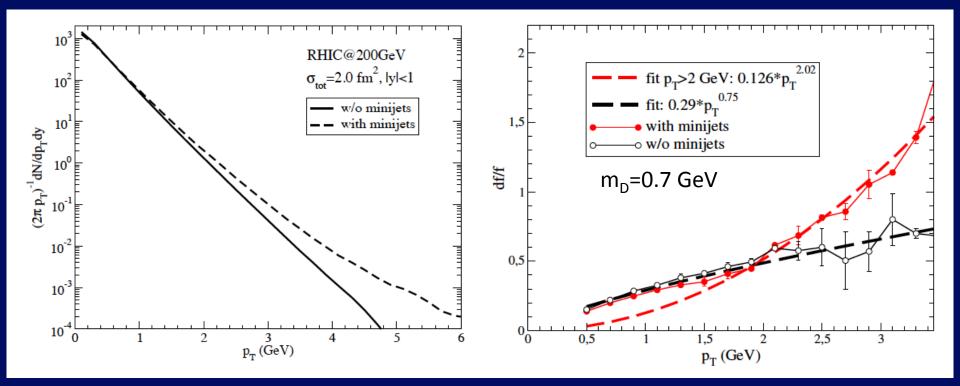
<u>Drawbacks</u> of transport w.r.t. Hydrodynamic

p_T≈3T Hydro ← Transport η/s<<1 Fixed relation between $\tau <-> \eta/s$, but...

Bulk viscosity not completely indipendent,

Computational time: (Bayesan analysis)

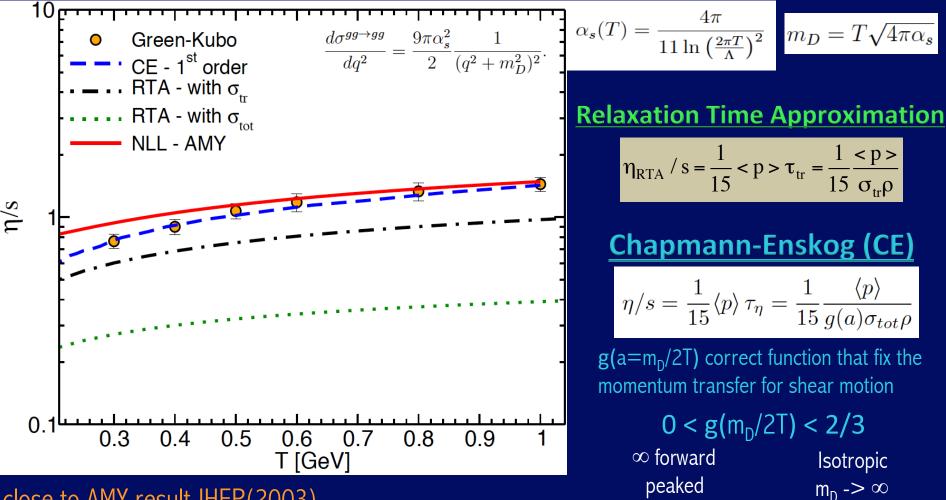
Viscous correction: Impact of minijets



The Grad'slike correction comes from minijets not included in a hydro approach

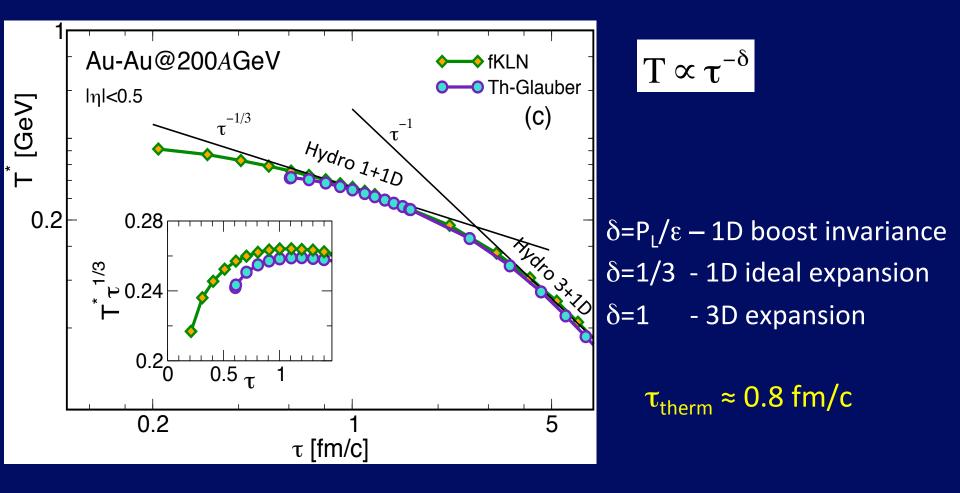
Viscosity of a pQCD gluon plasma

Agreement with AMY, JHEP 0305 (2003) 051



close to AMY result JHEP(2003), but there is a significant simplification: only direct u & t channels with simplified HTL propagator

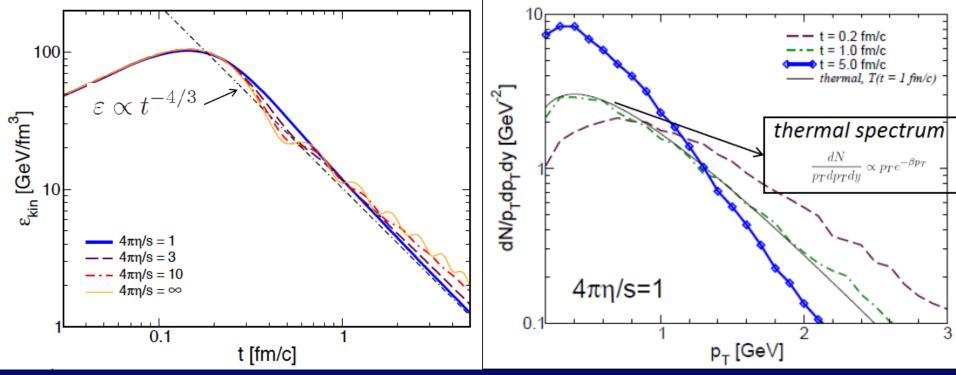
Temperature evolution



 $T^*=E/N$, in the local rest frame

Energy Density and p_T- spectra evolution

No divergency at $t \rightarrow 0$

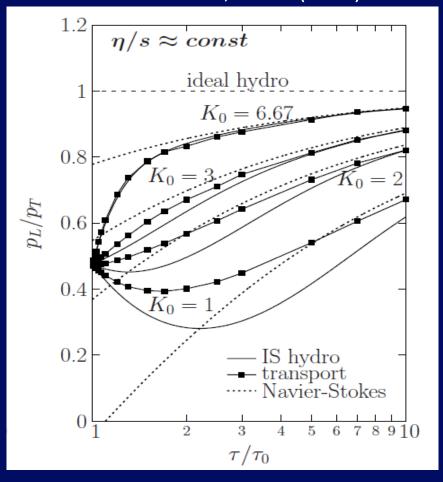


M. Ruggieri et al., PRC92(2015)

Does and when Boltzmann transport at fixed shear viscosity gives hydrodynamics?

Transport at fixed η /s vs Viscous Hydro in 1+1D

Comparison for the relaxation of pressure anisotropy P_L/P_T Huovinen and Molnar, PRC79(2009)



Knudsen number⁻¹

$$K = \frac{L}{\lambda} \longrightarrow \frac{\tau}{\lambda}$$

Large K small
$$\eta$$
/

$$K_0 = \frac{1}{5} \frac{T_0 \tau_0}{\eta / s}$$

S

$$\frac{\eta}{s} = \frac{1}{5}T \cdot \lambda$$

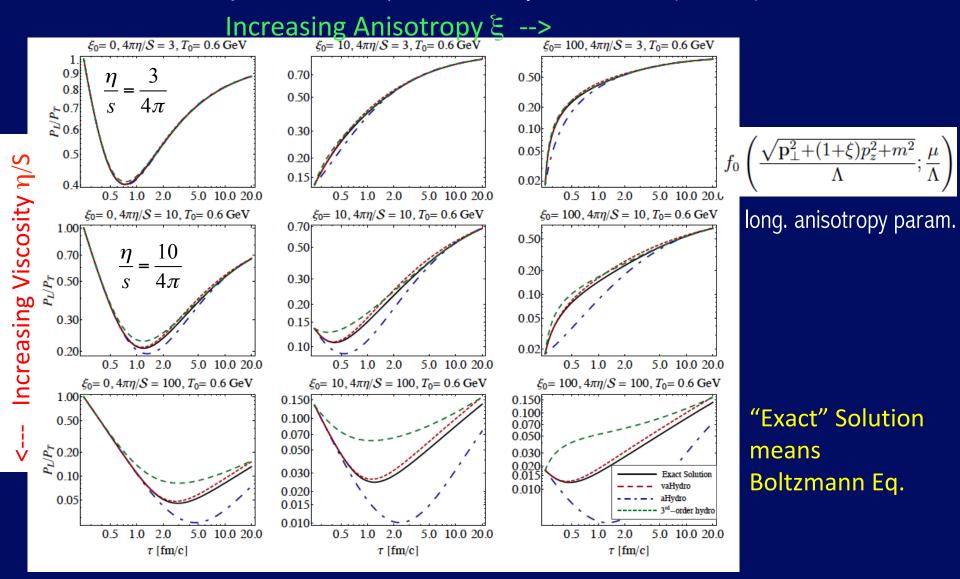
K increase with $(\tau/\tau_0)^{2/3}$

In the limit of small η /s (<0.16) transport converge to viscous hydro at least for the evolution P_L/P_T

Denicol et al. have studied derivation of viscous hydro from Boltzmann kinetic theory: PRD85 (2012) 114047

Test of vaHydro in 0+1 D –Heinz, Strickland

Use Boltzmann at fixed η /s in 1+1D to improve viscous hydro – U. Heinz (HP2015)



Bazow, Strickland, Heinz: arXiv:1311.6720 in 1+1D: Denicol et al., PRL(2014) Hydrodynamics for strongly anisotropic expansion:

Account for large viscous flows by including their effect already at leading order in the Chapman-Enskog expansion:

Expand the solution f(x, p) of the Boltzmann equation as

 $f(x,p) = f_0(x,p) + \delta f(x,p) \qquad (|\delta f/f_0| \ll 1),$

$$f_0(x,p) = f_0\left(rac{\sqrt{p_\mu\Omega^{\mu
u}(x)p_
u} - ilde{\mu}(x)}{ ilde{T}(x)}
ight),$$

where

- e $p_{\mu}\Omega^{\mu\nu}(x)p_{\nu} = m^2 + (1+\xi_{\perp}(x))p_{\perp,\mathrm{LRF}}^2 + (1+\xi_L(x))p_{z,\mathrm{LRF}}^2$
- $\tilde{T}(x)$, $\tilde{\mu}(x)$ are the effective temperature and chemical potential in the LRF, Landau matched to energy and particle density, *e* and *n*.
- ξ_{⊥,L} parametrize the momentum anisotropy in the LRF, Landau matched to the transverse and longitudinal pressures, P_⊥ and P_L. (McNelis, Bazow, UH, arXiv:1803.01810)
- P_{\perp} and P_L encode the bulk viscous pressure, $\Pi = (2P_{\perp} + P_L)/3 P_{eq}$, and the largest shear stress component, $P_L - P_{\perp}$.

7 / 24

◆□ > ◆□ > ◆ ■ > ◆ ■ > ● ● ● ●

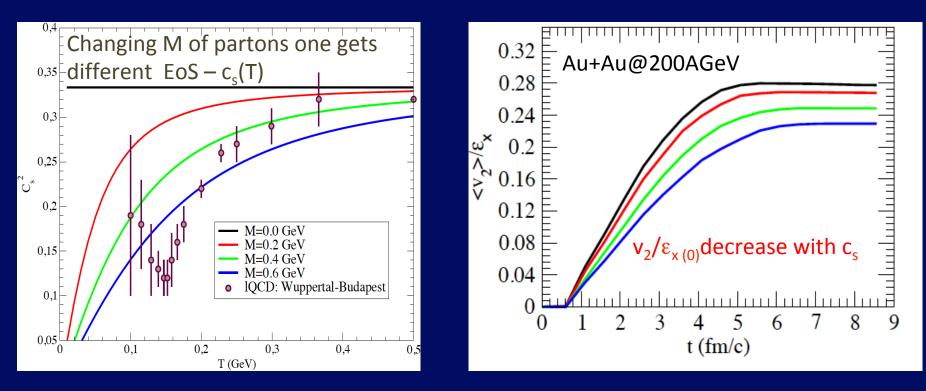
A variety of hydrodynamic approximations:

Different hydrodynamic approaches can be characterized by the different assumptions they make about the dissipative corrections and/or the different approximations they use to derive their dynamics from the underlying Boltzmann equation:

- **Ideal hydro:** local momentum isotropy $(\xi_{\perp,L} = 0)$, $\Pi^{\mu\nu} = V^{\mu} = 0$.
- Navier-Stokes (NS) theory: local momentum isotropy (ξ_{⊥,L} = 0), ignores microscopic relaxation time by postulating instantaneous constituent relations for Π^{μν}, V^μ.
- Israel-Stewart (IS) theory: local momentum isotropy $(\xi_{\perp,L} = 0)$, evolves $\Pi^{\mu\nu}$, V^{μ} dynamically, keeping only terms linear in $\text{Kn} = \lambda_{\text{mfp}}/\lambda_{\text{macro}}$
- Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps nonlinear terms up to order Kn^2 , $\text{Kn} \cdot \text{Re}^{-1}$ when evolving $\Pi^{\mu\nu}$, V^{μ} .
- Third-order Chapman-Enskog expansion (Jaiswal 2013): local momentum isotropy ($\xi_{\perp,L} = 0$), keeping terms up to third order when evolving $\Pi^{\mu\nu}$, V^{μ} .
- Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum anisotropy ($\xi_{\perp,L} \neq 0$), evolved according to equations obtained from low-order moments of BE, but ignores residual dissipative flows: $\Pi^{\mu\nu} = V^{\mu} = 0$.
- Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that additionally evolves residual dissipative flows Π^{μν}, V^μ with IS or DNMR theory.

Ulrich Heinz (OSU, CERN & EMMI)

Transport at fixed $\eta\text{/s}$ vs Viscous Hydro a test in 3+1D



- Time scales, trends and value quite similar to hydro evolution
- An exact comparison under the same conditions has not been done

 σ_{tot} =15 mb

Initial Conditions

♦ r-space: standard Glauber model

 \Rightarrow p-space: Boltzmann-Juttner T_{max}=1.7-3.5 T_c [p_T<2 GeV]+ minijet [p_T>2-3GeV]

We fix maximum initial T at RHIC 200 AGeV

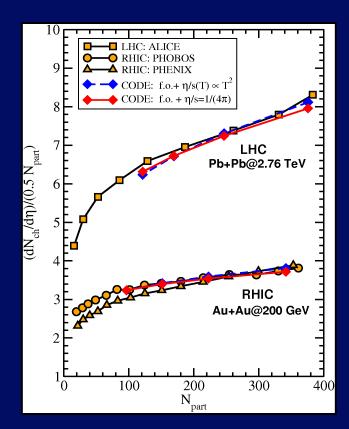
 $\begin{array}{l} {\sf T}_{{\sf max0}} = {\sf 340} \ {\sf MeV} \\ {\sf T}_0 \ {\sf \tau}_0 = {\sf 1} \ {\sf -> \tau}_0 = {\sf 0.6} \ {\sf fm/c} \end{array}$

<u>Typical hydro</u> <u>condition</u>

Then we scale it according to initial $\boldsymbol{\epsilon}$

$$\frac{1}{\tau A_T}\frac{dN_{ch}}{d\eta} \propto T^3$$

	62 GeV	200 GeV	2.76 TeV
T ₀	290 MeV	340 MeV	580 MeV
τ_{0}	0.7 fm/c	0.6 fm/c	0.3 fm/c

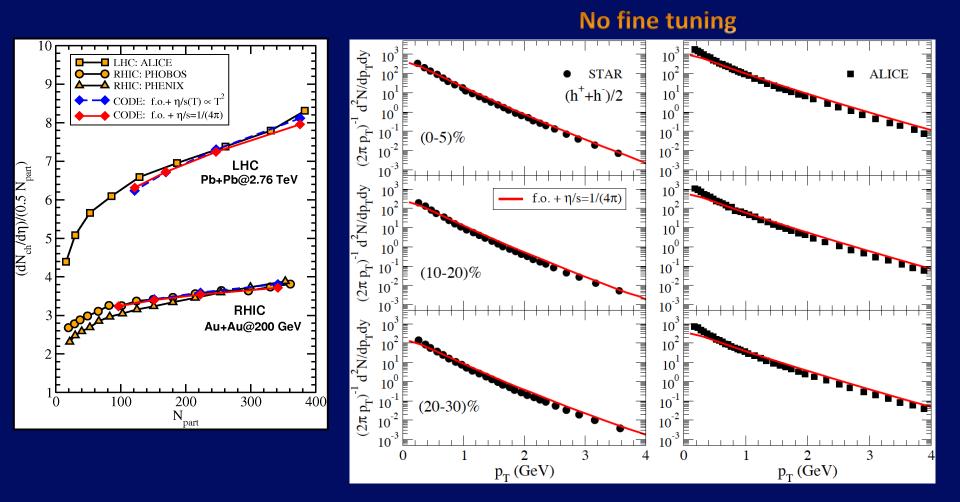


Discarded in viscous

Multiplicity & Spectra

♦ r-space: standard Glauber condition

 \Rightarrow p-space: Boltzmann-Juttner T_{max}=2(3) T_c [p_T<2 GeV]+ minijet [p_T>2-3GeV]



Simulate a fixed shear viscosity

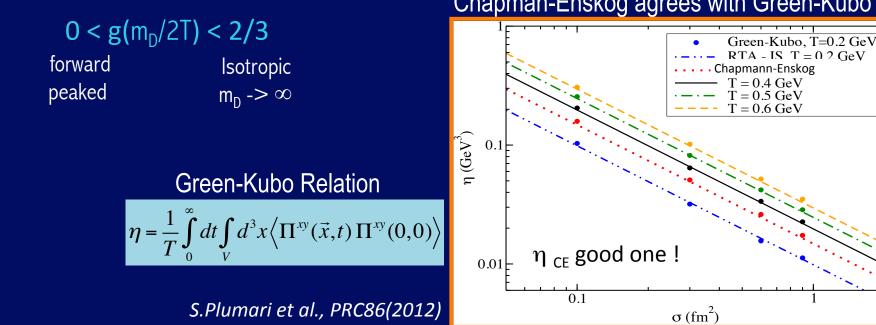
Usually input of a transport approach are cross-sections and fields, but here we reverse it and start from η /s with aim of creating a more direct link to viscous hydrodynamics

Chapmann-Enskog

$$\frac{\eta}{s} = \frac{1}{15} \langle p \rangle \cdot \tau_{\eta} = \frac{1}{15} \frac{\langle p \rangle}{g(\frac{m_D}{T}) \sigma_{TOT} \rho}$$

$$g(a) = \frac{1}{50} \int dy y^6 \left[(y^2 + \frac{1}{3}) K_3(2y) - y K_2(2y) \right] h\left(\frac{a^2}{y^2}\right)$$

 $g(a=m_D/2T)$ correct function that fix the relaxation time for the shear motion



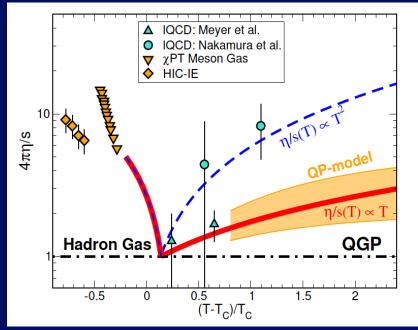
Transport code

Space-Time dependent cross section evaluated locally M. Ruggieri et al., PLB727 (2013), PRC89(2014)

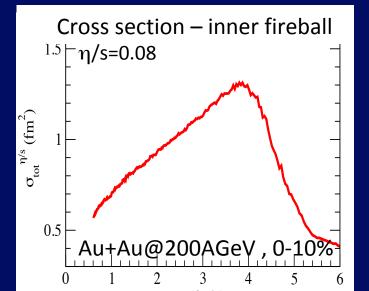
Chapman-Enskog agrees with Green-Kubo

Cross section and freeze-out

Freeze-out is a smooth process: scattering rate < expansion rate



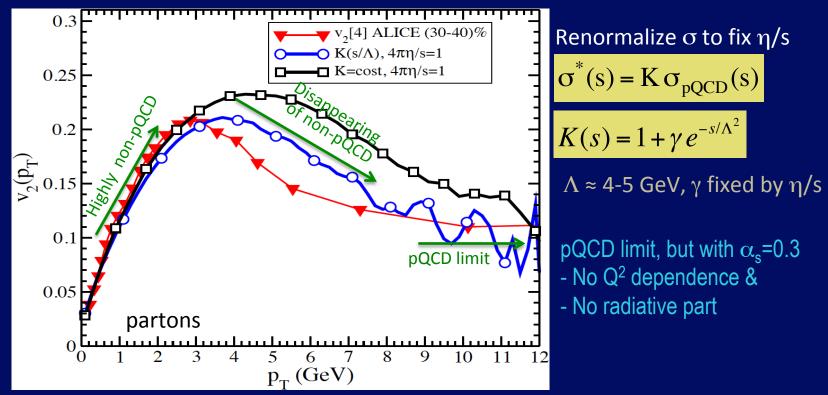
- η/s increases in the cross-over region, realizing a smooth f.o. selfconsistently dependent on h/s:
- Different from hydro that is a sudden cut of expansion at some T_{f.o.}.
- ✓ By definition freeze-out ≠ Hydro



$$\sigma^* = g(a)\sigma_{tot} \approx \frac{1}{15} \frac{\overline{p}}{\rho} \frac{1}{\eta/s}$$

 $\rho(\tau_0)$ =23 fm⁻³, η /s=0.08 $\rightarrow \sigma_{ToT}$ = 6 mb

Natural extension from low to high p_T

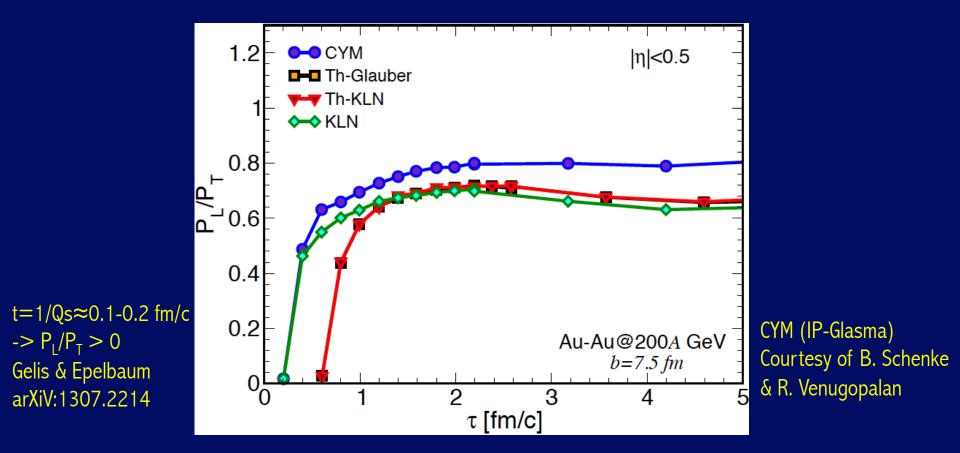


 $\alpha_{\rm s}$ =0.3 and m_D=0.7 GeV

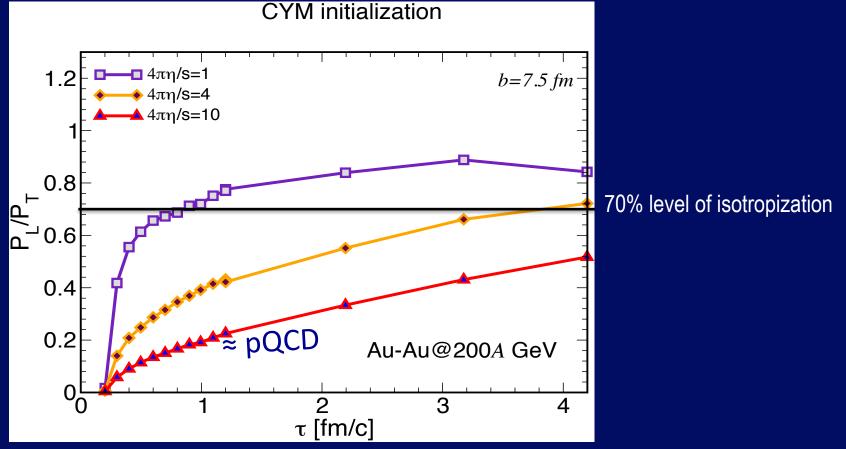
Boltzmann transport describes rise and fall of v₂(p_T) Transition between low and high p_T in a unified framework! No Fine tuning! Employed the relaxation time approximation!

S. Plumari and VG, EPIC@LHC, AIP1422(2012)- arXiV:1110.4138 [hep-ph]

Longitudinal and transverse pressure



Longitudinal and transverse pressure



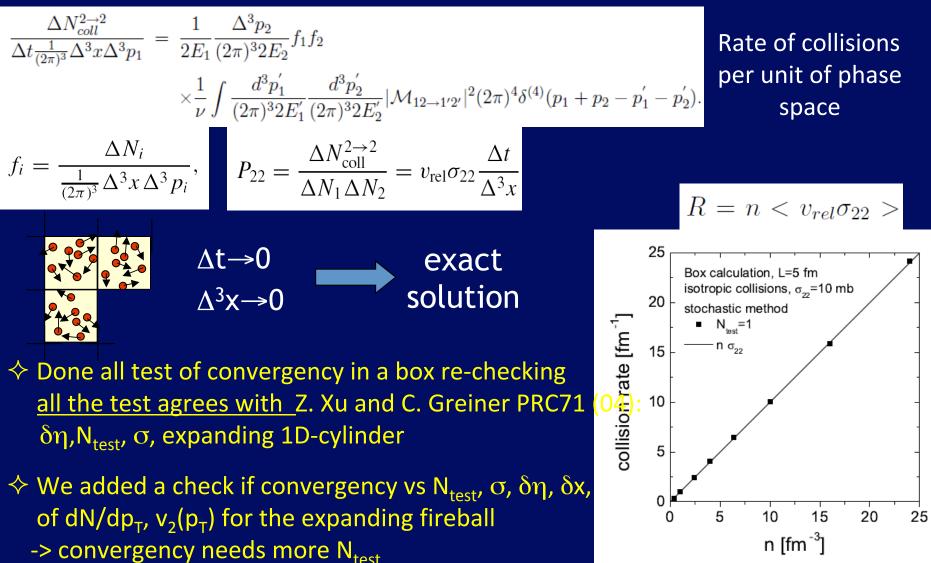
↔ For η/s > 0.3 one misses fast isotropization in P_L/P_T ($\tau \ge 2-3$ fm/c) ↔ For η/s ≈ pQCD no isotropization

♦ Semi-quantitative agreement with Florkowski et al., PRD88 (2013) 034028 our is 3+1D not in relax.time but full integral but *no gauge field*

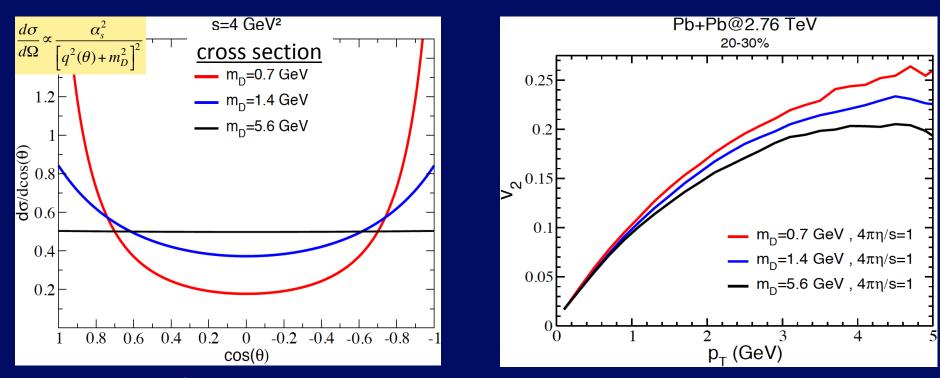
Stochastic approach

$$p_{\mu}\partial^{\mu}f = C^{2 \leftrightarrow 2} + \dots$$

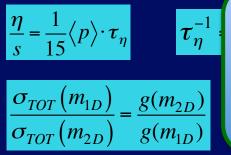
Solved discretizing the space in $(\eta, x, y)_{\alpha}$ cells



$\eta \mbox{/s}$ or details of the cross section?



Keep same η/s means:



 $\uparrow \eta$ /s is really the physical parameter determining v₂ at least up to 1.5-2 GeV

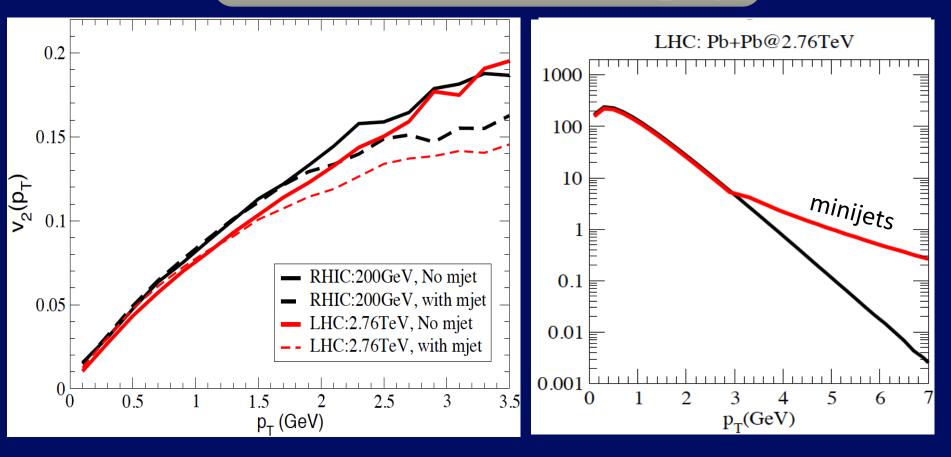
 \diamond microscopic details become relevant at higher p_T

 \diamond First time η /s<-> v₂ hypothesis is verified!

Differences arises just where in viscous hydro δf becomes relevant

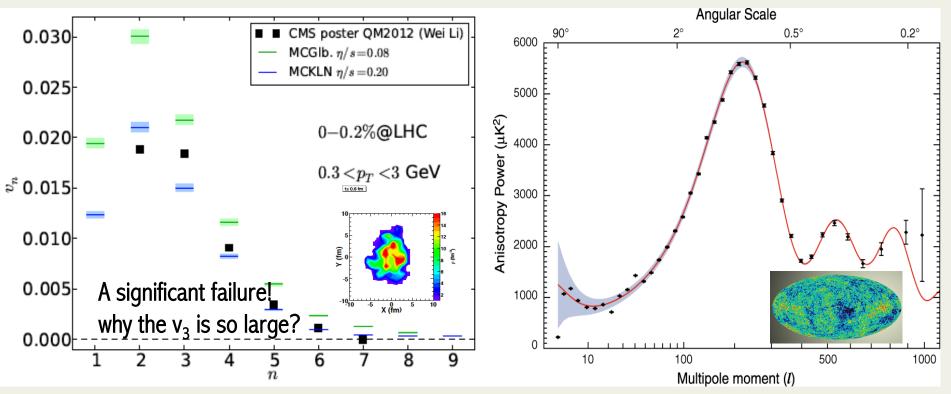
$$\delta f = \frac{\pi^{\mu\nu}}{\varepsilon + P} \frac{p_{\mu}p_{\nu}}{T^2} f_{eq}$$

Non equilibrium at larger p_T : impact of minijets on $v_2(p_T)$



Mini-jets starts to affect $v_2(p_T)$ for $p_T > 1.5$ GeV Effect non-negligible. Again a flatter spectrum leads to smaller v2

Going deeply into Hot QCD matter



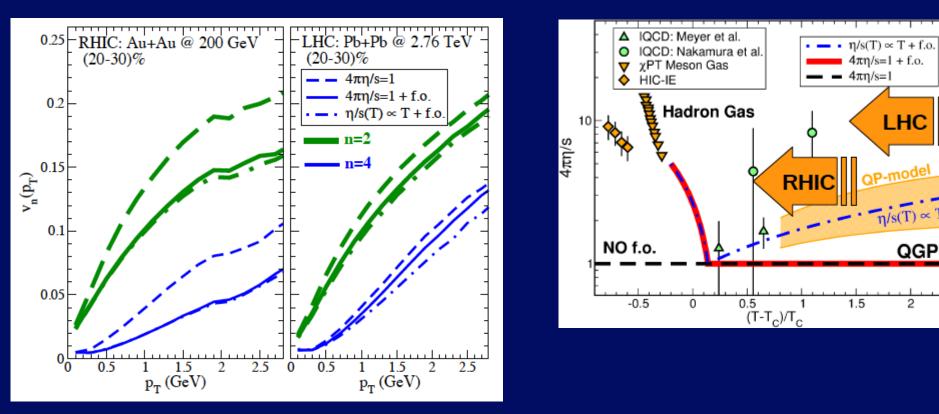
- Initial QCD quantum fluctuations
- \circ T dependence of η /s
- o Equation of State
- Freeze-out dynamics

Keeping size and time of QGP (p_T spectra)

- Standard Model Matter
- Cold Dark Matter
- Dark Energy
- Hubble Constant

Keeping Age and Flatness of the Universe

Include Initial State Fluctuations : v_n(p_T) & η/s(T)



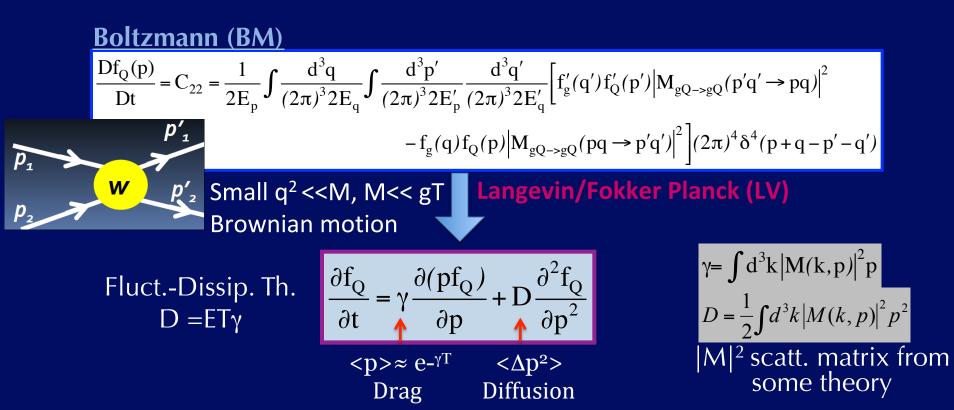
v_{2,3} at RHIC affected by freeze-out dynamics
 v_{2,3} at LHC determined essentially by the QGP η/s

Another sector where Boltzmann transport is playing a role in the QGP physics: Heavy Flavor

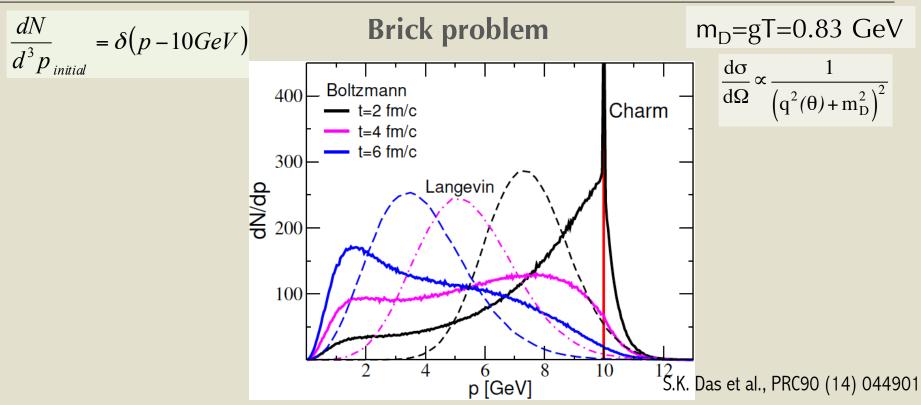
HQ diffusion in the expanding QGP

Two main approaches:

- **1) Langevin approach** (T<<m_q soft scattering) [*TAMU*, *Duke*, *Nantes*, *Torino*, *Catania*, ...]
- **2)** Boltzman kinetic transport (...Kadanoff-Baym-PHSD) [*Catania, Nantes, Frankfurt, LBL, CCNU,...*]



Boltzmann vs Langevin for Heavy Quarks



♦ Kinematics of collisions (Boltzmann) can throw particles at very low p soon.

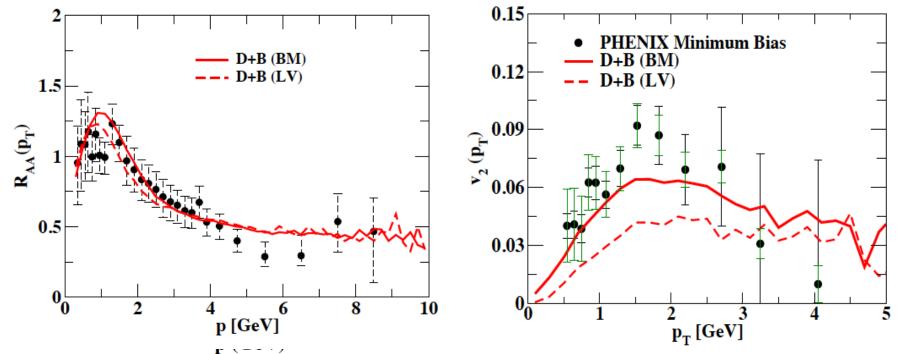
- ♦ The motion of single HQ does not appear to be of Brownian type, on the other hand $M_c/T \approx 3$ -> $M_c/<p_{bulk}> \approx 1$ & p>>m_Q
- ♦ Evolution of is nearly identical in BM & LV

X. Dong & VG, Prog.Part.Nucl.Phys.(2019)



R_{AA} & v₂ Boltzmann vs Langevin

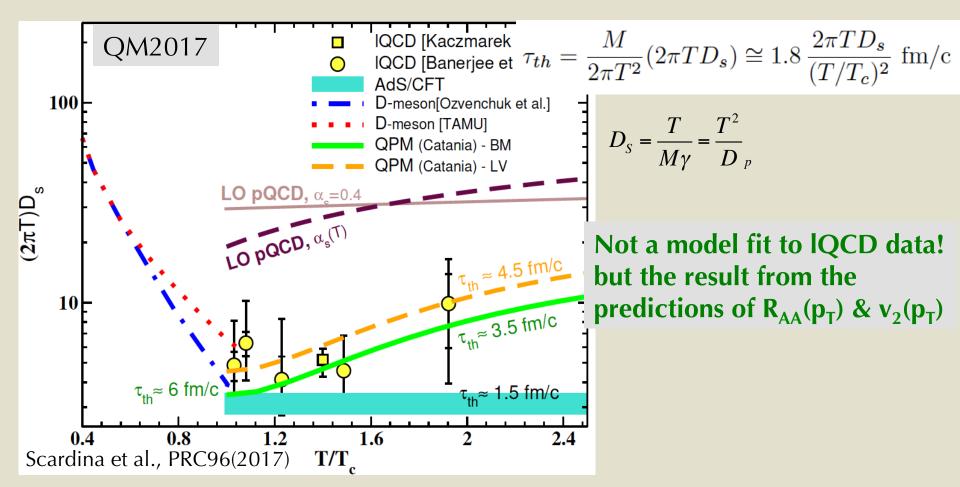
One Preliminary result: Au+Au@200AGeV, b=8 fm



✓ Fixed same $R_{AA}(p_T) \rightarrow v_2(p_T)$ about 25% higher

- dependence on the specfic scattering matrix (isotropic case -> larger effect)
- \checkmark This may be the reason of the large v₂ in BAMPS
- ✓ Angular DD correlation? Work under progress

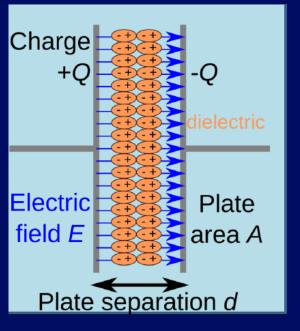
What is the underlying D_s?



Other <u>more differential observables</u> are <u>more sensitive</u> to the difference between BM and LV This will come after the ALICE upgrade

Schwinger Mechanism in Electrodynamics

Vacuum with and E-field unstable under pair creation



Quantum Effective Action of a pure electric field, has an imaginary part responsible for field instability

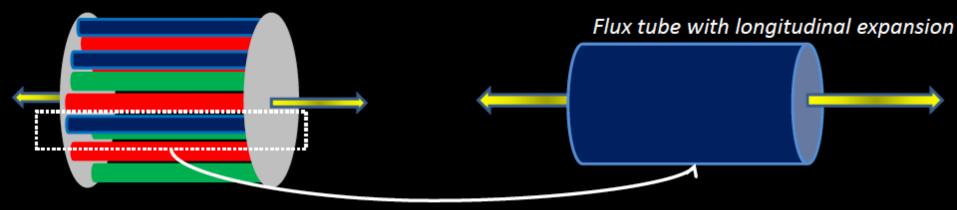
Vacuum Decay Probability Per unit space-time to create electron-proton

$$\mathcal{W}(x) = \frac{e^2 E^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{n\pi m^2}{|eE|}\right)$$

Quantum tunneling interpretation - Casher et al., PRD20 (1979) describe Schwinger effect as a dipole formation , $p = 2g \frac{E_T}{|g\vec{E}|}$

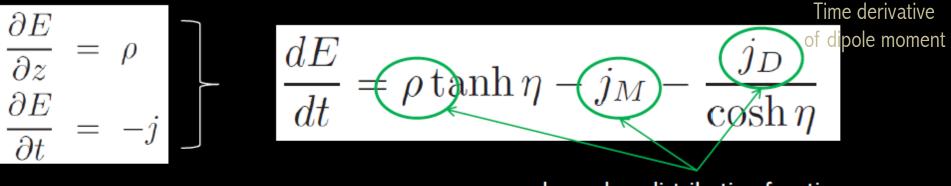
Once the pair pop-up charged particles propagate in real time and produce an electric current $J = \sigma E$ – dieletric breakdown

Boost invariant 1+1D expansion



$$(p_{\mu}\partial^{\mu} + gQ_{jc}F^{\mu\nu}p_{\mu}\partial^{p}_{\nu})f_{jc} = p_{0}\frac{\partial}{\partial t}\frac{dN_{jc}}{d^{3}xd^{3}p} + \mathcal{C}[f]$$

We assume field dynamics is **boost invariant**. This means $E=E(\tau)$, hence independent on η :



depend on distribution functions

Link Maxwell equation to kinetic equation