

Particle production and hypernucleus formation in heavy-ion collisions

Zhao-Qing Feng (冯兆庆)

South China University of Technology, Guangzhou

- Introduction
- Particle production in heavy-ion collisions and in hadron induced reactions near threshold energies
- \triangleright In-medium and isospin effects on particle production (π, η, Κ, Λ, Σ, Ξ)
- Hypernuclear formation
- Summary

I. Introduction

Advantages of heavy-ion collisions on hypernucleus production

- 1. Neutron-rich/proton-rich hypernuclear isotopes
- 2. Hypernucleus with s=-2 by capturing $\Xi^{-,0}$ by nucleonic fragments
- 3. Λ - Λ correlation in dense nuclear matter

H. Tamura, *Prog. Theor. Exp. Phys.* (2012) 02B012

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Physics Letters B 697 (2011) 203–207

A.S.Botvina, J.Steinheimer, E.Bratkovskaya, M.Bleicher, J.Pochodzalla, Physics Letters B 742 (2015)7–14

transport model+coalescence approach

Challenges to Transport Theory for Heavy-Ion Collisions, May 20-24 2019, Trento

home.cern/about/accelerators/low-energy-antiproton-ring

Low Energy Antiproton Ring at CERN (1982-1996)

Proton Synchrotron (PS), Antiproton Collector (AC), Antiproton Accumulator (AA) Physics: highly excited nucleus, delayed fission process, cold QGP, hadrons in-medium

PANDA detector from http://www-panda.gsi.de/

PANDA(antiProton Annihilation at Darmstadt)

May 20-24 2019, Trento

Physics purpose:

Hadron Spectroscopy, Nucleon Structure, **Hadron in Baryonic Matter, Hypernucleus**

Provided by Jian-Cheng Yang

HIAF (High-Intensity Heavy Ion Accelerator Facility)

	lons	Energy	Intensity	
SECR	238U35+	14 keV/u	0.05- <mark>0.1</mark> pmA	
iLinac	238U35+	17 MeV/u	0.028-0.05 pmA	
FRing	238U35+	0.35 GeV/u	~2.0×10 ¹¹ ppp	
BRing	238U35+	1.0 GeV/u	~1.0×10 ¹² ppp	
	238U92+	3.8 GeV /u	~5.0×10 ¹¹ ppp	
SRing	RIBs: neutron-rich, proton-rich	0.84 GeV/u(A/q=3)	~10 ⁹⁻¹⁰ ppp	
	Fully stripped heavy ions H-like, He-like heavy ions	0.8 GeV/u(²³⁸ U ⁹²⁺)	~10 ¹¹⁻¹² ppp	

II. Model description

Lanzhou Quantum Molecular Dynamics (LQMD) transport model

Nuclear dynamics from 15 MeV/nucleon – 5 GeV/nucleon for HICs, antiproton (proton, π , K, etc)

- > Dynamics of low-energy heavy-ion collisions (dynamical interaction potential, barrier distribution, neck dynamics, fusion/caption excitation functions etc)
- ➤ **Isospin physics at intermediate energies** (constraining nuclear symmetry energy at sub- and suprasaturation densities in HICs and probing isospin splitting of nucleon effective mass from HICs)
- In-medium properties of hadrons in dense nuclear matter from heavy-ion collisions (extracting optical potentials, i.e., $\Delta(1232)$, N*(1440), N*(1535)), hyperons (Λ,Σ,Ξ,Ω) and mesons (π ,K, η , ρ , ω , ϕ ...), hypernucleus dynamics)
- ightharpoonup Hadron (antiproton, proton, π^{\pm} , K^{\pm}) induced reactions (hypernucleus production, e.g., $\Lambda(\Sigma)X$, ΛX , ΞX , $\overline{\Lambda}X$ (S=1), in-medium modifications of hadrons, cold QGP)

Density, isospin and momentum-dependent single-nucleon potential in LQMD

$$U_{\tau}(\rho, \delta, \mathbf{p}) = \alpha \frac{\rho}{\rho_{0}} + \beta \frac{\rho^{\gamma}}{\rho_{0}^{\gamma}} + E_{\text{sym}}^{\text{loc}}(\rho)\delta^{2} + \frac{\partial E_{\text{sym}}^{\text{loc}}(\rho)}{\partial \rho} \rho \delta^{2} + E_{\text{sym}}^{\text{loc}}(\rho)\rho \frac{\partial \delta^{2}}{\partial \rho_{\tau}}$$

$$= \frac{1}{\rho_{0}} C_{\tau,\tau} \int d\mathbf{p}' f_{\tau}(\mathbf{r}, \mathbf{p}) [\ln(\epsilon(\mathbf{p} - \mathbf{p}')^{2} + 1)]^{2}$$

$$+ \frac{1}{\rho_{0}} C_{\tau,\tau'} \int d\mathbf{p}' f_{\tau'}(\mathbf{r}, \mathbf{p}) [\ln(\epsilon(\mathbf{p} - \mathbf{p}')^{2} + 1)]^{2}.$$

$$C_{\tau,\tau} = C_{mom} (1 + x), C_{\tau,\tau'} = C_{mom} (1 - x) \ (\tau \neq \tau')$$
supersoft.

Table 1: The parameters and properties of isospin symmetric EoS used in the LQMD model at the density of 0.16 fm^{-3} .

Parameters	$\alpha \; ({\rm MeV})$	$\beta \; ({\rm MeV})$	γ	$C_{mom} \text{ (MeV)}$	$\epsilon \; (c^2/{\rm MeV^2})$	m_{∞}^*/m	$K_{\infty} \; (\mathrm{MeV})$
PAR1	-215.7	142.4	1.322	1.76	$5\!\times\!10^{-4}$	0.75	230
PAR2	-226.5	173.7	1.309	0.	0.	1.	230

Isospin splitting of nucleon effective mass on isospin emissions in heavy-ion collisions

(Nucl. Phys. A 878 (2012) 3)

$$\left| \frac{m_{\tau}^*}{m} = \left[1 + \frac{m}{\hbar^2 k} \frac{\partial U_{\tau}}{\partial k} \right]^{-1} \right|$$

Challenges to Transport Theory for Heavy-Ion Collisions, May 20-24 2019, Trento

Particle production channels in the LQMD model

π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

Collisions between resonances,

 $NN^* \leftrightarrow N\Delta$, $NN^* \leftrightarrow NN^*$

Strangeness channels:

$$BB \to BYK$$
, $BB \to BBK\overline{K}$, $B\pi \to YK$, $B\pi \to NK\overline{K}$, $Y\pi \to N\overline{K}$, $N\overline{K} \to Y\pi$, $YN \to \overline{K}NN$

Reaction channels with antiproton:

$$\overline{p}N o \overline{N}N, \ \overline{N}N o \overline{N}N, \overline{N}N o \overline{B}B, \overline{N}N o \overline{Y}Y$$
 $\overline{N}N o \text{annihilation}(\pi, \eta, \rho, \omega, K, \overline{K}, K^*, \overline{K}^*, \phi)$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

Challenges to Transport Theory for Heavy-Ion Collisions.

May 20-24 2019. Trento

Mean-field potentials for resonances, hyperons and mesons

1. Mean-field potentials for resonances (Δ (1232), N*(1440), ...) are considered based on nucleon potentials, but distinguishing isospin effect.

$$U_{\Delta + +} = U_p(\rho, p), U_{\Delta +} = 2U_p(\rho, p)/3 + U_n(\rho, p)/3, U_{\Delta 0} = U_p(\rho, p)/3 + 2U_n(\rho, p)/3, U_{\Delta -} = U_n(\rho, p)$$

2. Mean-field potentials for hyperons and antiprotons in nuclear medium

$$H_M = \sum_{i=1}^{N_M} \left(V_i^{\text{Coul}} + \omega(\mathbf{p}_i, \rho_i) \right)$$

$$\omega(\mathbf{p}_i, \rho_i) = \sqrt{\left(m_H + \Sigma_S^H\right)^2 + \mathbf{p}_i^2} + \Sigma_V^H$$

$$V_{opt}(\mathbf{p}, \rho) = \omega(\mathbf{p}, \rho) - \sqrt{\mathbf{p}^2 + m^2}$$

3. Mean-field potentials for pion dynamics

ZQF et al, PRC92, 044604 (2015)

$$\omega_{\tau_z}(\rho, \vec{p}) = \omega_{isoscalar}(\rho, \vec{p}) + C_{iso}^{\pi} \tau_z \delta \left(\frac{\rho}{\rho_0}\right)^{\gamma_{\pi}}$$

τ_{7} =1, 0, -1 for π^{-} , π^{0} and π^{+}

$$\omega_{isoscalar}(\mathbf{p}_i, \rho_i) = S_{\pi}(\mathbf{p}_i, \rho_i) \omega_{\pi\text{-}like}(\mathbf{p}_i, \rho_i) + S_{\Delta}(\mathbf{p}_i, \rho_i) \omega_{\Delta\text{-}like}(\mathbf{p}_i, \rho_i)$$

$$S_{\pi}(\mathbf{p}_i, \rho_i) + S_{\Delta}(\mathbf{p}_i, \rho_i) = 1$$

$$S(\mathbf{p}_i, \rho_i) = \frac{1}{1 - \partial \Pi(\omega) / \partial \omega^2}$$

Details in PRC47 (1993) 788, 55 (1997) 411

The energy balance in the decay of resonance

$$\sqrt{m_R^2 + \mathbf{p}_R^2} = \sqrt{m_N^2 + (\mathbf{p}_R - \mathbf{p}_\pi)^2} + \omega_\pi(\mathbf{p}_\pi, \rho)$$

4. Mean-field potentials for η transport (J. Chen, Z. Q. Feng et al., Eur. Phys. J. A (2017) 53: 128)

$$\omega_{\eta} = \sqrt{\left(m_{\eta}^2 - \frac{\Sigma_{\eta N}}{f^2} \rho_s\right) \left(1 + \frac{\kappa}{f^2} \rho_s\right)^{-1} + p^2}$$

$$V_{\eta}^{opt} = \omega_{\eta}^{*} (\mathbf{p}_{i}, \rho_{i}) - \omega_{\eta} (\mathbf{p}_{i}, \rho_{i})$$

$$= \sqrt{(m_{\eta}^{*})^{2} + \mathbf{p}_{i}^{2}} - \sqrt{m_{\eta}^{2} + \mathbf{p}_{i}^{2}}$$

$$10^{-2} \qquad \qquad 10^{-4} \qquad \qquad 10^{-12} \qquad \qquad 10^{-12} \qquad \qquad 10^{-14} \qquad$$

 $m_{L} (MeV/c^2)$

ansport Theory for Heavy-Ion Collisions, May 20-24 2019, Trento

5. Mean-field potentials for kaons and antikaons

J.Schaffner-Bielich et al., Nucl. Phys. A 625 (1997) 325, Z. Q. Feng, Nucl. Phys. A 919 (2013) 32-45

$$\omega_K(\mathbf{p}_i, \rho_i) = \left[m_K^2 + \mathbf{p}_i^2 - a_K \rho_i^S - \tau_3 c_K \rho_{i3}^S + (b_K \rho_i + \tau_3 d_K \rho_{i3})^2 \right]^{1/2} + b_K \rho_i + \tau_3 d_K \rho_{i3}$$

$$\omega_{\overline{K}}(\mathbf{p}_{i}, \rho_{i}) = \left[m_{\overline{K}}^{2} + \mathbf{p}_{i}^{2} - a_{\overline{K}}\rho_{i}^{S} - \tau_{3}c_{K}\rho_{i3}^{S} + (b_{K}\rho_{i} + \tau_{3}d_{K}\rho_{i3})^{2} \right]^{1/2} - b_{K}\rho_{i} - \tau_{3}d_{K}\rho_{i3}.$$

 $b_K = 3/(8f_{\pi}^{*2}) \approx 0.333 \text{ GeV fm}^3$ with assuming $f_{\pi}^* = f_{\pi}$, the a_K and $a_{\overline{K}}$ are 0.18 GeV² fm³ and 0.31 GeV² fm³, respectively,

The parameters $c_K = 0.0298 \text{ GeV}^2 \text{ fm}^3$ and $d_K = 0.111 \text{ GeV fm}^3$

$$\frac{d\mathbf{p}_{i}}{dt} = -\frac{\partial V_{i}^{\text{Coul}}}{\partial \mathbf{r}_{i}} - \frac{\partial \omega_{K(\overline{K})}(\mathbf{p}_{i}, \rho_{i})}{\partial \mathbf{r}_{i}} \pm \mathbf{v}_{i} \frac{\partial \mathbf{V}_{i}}{\partial \mathbf{r}_{i}}$$

III. (1) Particle production in HICs

Particle production π , K, Λ and Σ in the reaction ¹⁹⁷Au+¹⁹⁷Au at 1.5A GeV (Phys. Rev. C 82 (2010) 057901)

In-medium modifications on elementary cross section via effective mass, e.g., $\pi N \rightarrow KY$

$$\sqrt{s_{th}} = m_Y^* + m_K^*$$

Threshold energies for $E_{th}(\pi^0)$ = 0.28 GeV, $E_{th}(\eta)$ = 1.25 GeV, $E_{th}(K^+)$ = 1.58 GeV, $E_{th}(K^-)$ = 2.5 GeV

Temporal evolution of production rate and density profiles of particles in collisions of ¹⁹⁷Au+¹⁹⁷Au

Nucl. Sci. Tech. 29, 40 (2018)

Production of neutral particles in central ⁴⁰Ca+ ⁴⁰Ca collisions

FOPI: Nucl. Phys. A 781 (2007) 459 TAPS: Phys. Rev. C 67 (2003) 024903

Challenges to Transport Theory for Heavy-Ion Collisions, May 20-24 2019, Trento The ratio of K^-/K^+ as a function of transverse mass (kinetic energy) in collisions of $^{12}\text{C} + ^{12}\text{C}$ and protons on ^{12}C and ^{197}Au at the beam energies of 1.8A GeV and 2.5 GeV, respectively.

Antiproton production in HICs

$E_{th}(\bar{p}) = 5.62 \text{ GeV}$

III. (2) K⁻ induced nuclear ractions

III. (3) antiproton induced reactions

LEAR (Low-Energy Antiproton Ring) at CERN (P. L. McGaughey et al., Phys. Rev. Lett. 56, 2156 (1986))

III. (4) Isospin effects in HICs

The yields of free nucleons and 'gas-phase' nucleons (nucleons, hydrogen and helium isotopes) from the neck fragmentations at the fermi energy of 35 MeV/nucleon within the collision centralities of 6-8 fm

《中国科学》杂志社 SCIENCE CHINA PRESS

III. (5) Hypernuclear formation in HICs

Classical coalescence approach

The rapidity and kinetic energy distributions of nucleonic fragments, Λ -hypernuclide fragments and free hyperons

中高能重离子碰撞中奇异粒子产生和超核形成机制

冯兆庆

中国科学院近代物理研究所, 兰州 730000 E-mail: fengzhq@impcas.ac.cn

III. (6) Hypernuclear formation in antiproton induced reactions

III. (7) Hypernuclear formation in K⁻ induced reactions

VI. Summary

- Dynamics of strange particles and hypernuclear formation in heavy-ion collisions near threshold energies have been investigated by using the LOMD transport model.
- The mean-field potentials and in-medium modifications on elementary cross sections are of importance on particle emission in phase space. The available experimental data can ben well understood within inclusion of the mean-field potentials.
- Dynamics of hypernuclide formed in heavy-ion collisions and in antiproton (K-) induced reactions is discussed and proposed in the future experiments. Thank you for your attention!