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@ Pauli
o Alittle about 1 — f in AMD
@ Clusters

o Clusters and fragments in transport models
e Effects of clusters on collision dynamics
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Transport theories (BUU equation without fluctuation)

A many-body system is approximately described by using one-body distribution function
f(r,p, 1) in phase space or one-body density matrix p(r, r’).

af(r,p,t) Oh Of Oh Of
==~ —— =+ Ll
ot or dp OJp Or

@ Mean field, or single-particle Hamiltonian [ f](r, p, 1)

@ Collision term with Pauli blocking

dpz

Lal[f1(r,p, 1) = (2xh)

Jaaw(58) {re e nr@panls - repol - fwpen]

—f(x,p.0)f (r,p2,1)[1 - f(r,ps. )] [1 —f(r,p4,t)]}

@ How can one describe many-body dynamics with the one-body distribution function?
— Fluctuation of f, or more generally many-body correlations
@ How to guarantee the Pauli principle.

e Technical/fundamental problems due to the use of test particles.
@ Quantum case beyond local-density approximation.
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Pauli principle for f(r, p)

The Wigner transform of the one-body density operator g for a many-body state |¥)

p=A T ¥

f(r,p) = /(r — Islplr+ s)e®s/Mds

Slater determinant

PP=p o [fEp)cos(iiN)f(r,p)=f(r,p) ~~ f=1or0, forhi—00r =0

with A = (9 /ar) - (8 /op) — (3 /op) - (8 /o).

In general, the Pauli principle for the one-body density may be expressed as

0<Wipl) <1, u e 05// AP D) f(Ep) <1 ~~ 0<f<1 forfim0
(2nh)3

where g(r, p) is the Wigner transform of |)(y/|, for any normalized one-body wave function .
So g(r, p) must satisfy the uncertainty principle.
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Box Homework 1: Problem of Pauli blocking probability

Zhang et al., PRC97, 034625 (2018)
QMD models

2
The nucleon coordinates (Ry., P;.) are samples taken from

the Fermi-Dirac probability distribution f.

The evaluated f for the collision final states:

A

2 2

f(r,p) Z o~ (r-Ri)*-B(p-Py)
k=1

[Vl

f(p)

A fundamental problem

il The original f cannot be reproduced by the evaluated f.

il
@ The evaluated ( f) is more broadly distributed than

the original f.

@ The blocking probability cannot be greater than 1,
and therefore (min(f,1)) < (f).

e N
0 200 400 0 200 400 . .
5> (MeV/c p (MeV/c) = affects the stability of a nucleus and a Fermi gas.
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Wigner and Husimi functions for AMD wave function

i
Z; = \WD; + ——K;
i W i 2hW v

AMD wave function

@ O§ > v : Width parameter = (2.5 fm)~2

@(2) = dgt[ exp{—v(rj—ﬁ)z})(ai (j)J Xa; © Spin-isospinstates = p T,p l,n T,n |

W

Wigner function for the AMD wave function

_ _R. 2 _(p_P..)2 /02 _
fa(r’p):szze 2v(r-Ryj)? ,~(p~Pi;)*/2h YBijB;!, a=plplnlnl
i€a jea

* 3 " -d@:-z;)?
Rij = 5= (Z; +Z)), Pij =ihW(Z; -Z;), By =e 2%

Husimi function for the AMD wave function

dr’dp’
Fo(R,P) = (RP|p|RP) = —_—
a(RP) = ®P[5IRP) = [ e
= D D IR PR ]

JEakea

—2v(r'-R)? ef(p’fP)z/thvfa(rr, p)
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Wigner or Husimi for Pauli blocking

The Wigner and Husimi functions calculated for the AMD states |®(z, event)) for the blocking of

the final nucleon in NN — NA, in 1245y 4 132G central collisions at 270 MeV/nucleon.

dN/dp [c/GeV]
a5&

w— (min(max(f,0),1))
fto

]

PB(amd) | o

s

B 08

B 0.4

b 0.2

dN/dp [c/GeV]
cunbh

t t t
— (min(max(f,0),1))
¢ fio i

PB(amd-h) |

’erl re

@ The Wigner function can be f > 1 and f < 0 by its nature. = (min(max(f,0),1)) < (/)

1
0.4 0.6
p [GeVic]

0.8

1.0 0.0

0.2 0.4 0.6 0.8 1.0

p [GeVic]

@ The Husimi function satisfies 0 < F(r, p) < 1, but it has been smeared.

What is a good way for the Pauli-blocking factor, (1 — f)?

= lkeno’s talk

J
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Fraction of protons in clusters and fragments in heavy-ion collisions

He Li-B C-Ne Na-P

SZ%SCFW-. 1] !IIIIIIIIIIIIIIHHIHWI

Xe+Sn
50 AMeV

t |h

p

Xe+Csl
150 AMeV }

Au+Au
I 150 AMeV |
Xe+Csl
250 AMeV
°
(*) p.| Au+Au

° ° 0 250 AMeV |

Au+Au
[* ] 400 AMeV |
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')

o ZiYil Zin

INDRA: Hudan et al., PRC67 (2003) 064613.
FOPI: Reisdorf et al., NPA 848 (2010) 366.
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Recognition of clusters and fragments

Assume that we know the many-body state |\V') at an intermediate time of a heavy-ion collision.

Problem of counting clusters (maybe ill-posed)

What is the probability (or number) of finding clusters and fragments in |¥')?

To recognize clusters and fragments that will be observed in the final state e “F| ) (1 — co).
@ Find clusters and fragments at a very late time (by MST), in QMD/AMD.
@ Coalescence method applied to the one-body distribution f(r, p) at a late time, in BUU.

@ Recognition of clusters and fragments at a relatively early time in QMD (e.g. SACA, FRIGA).

To find cluster correlations in a many-body state |¥), which then affects the dynamics.

@ AMD with clusters

To represent the state explicitly with clusters fp, fu, fa, ft. ---

e pBUU
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Can we count the number of clusters in a many-body state |¥')?

Creation operator of a deuteron (M = 1), [e.g. Ropke and Schulz, NPA 477 (1988) 472]
tpyo [ 9P o1 tip_
)= [ S Bvaw) af 5P+ )] (GP-p)
Caution: These are not boson operators, [a;(P), aZ(P’)] # Opp’-

In a coalescence method for BUU, [e.g. L.W. Chen, C.M. Ko, B.A. Li, NPA 729 (2003) 809]
for an uncorrelated state |'¥) = |fp f) at a late time, the deuteron spectrum is calculated as

dridraodp

(1)l (P)ag(P) ¥ (1) = s $(r1 = T20B) fp1(1, 3P+ Bu0) fup(r, FP -0

where g (r, p) is the Wigner transform of |y 4).

This is valid in a dilute system. In general, however,

dpP dl‘1dl’2dp1dp2 1
Ny = = [ EOERRERR2 ek L(py - P11 P2t
d /(2nh)3( ) / ah)p ga(r1 =12, 3(p1 = p2)) fp1(re, p1,1) fu1(rz, p2,1)

cannot be the number of deuterons, because Ny canbe Ny > Nj,1 or Ng > Nyq.
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NN collisions in AMD (with cluster correlations)

Y @) = P
O

What is the probability for that ...

Wiy = BECEFIVI¥D PS(Er — Ei)
In the usual way of NN collision, only the
@ the scattered nucleon forms a state

¥4 with another nucleon, and

{|‘I’f>} = {|¢/<1 (M, (2)¥(3,4,.. ‘)>} @ they are propagated as a cluster until
it collides with something,

two wave packets are changed.

(ignoring antisymmetrization for simplicity of presentation.)

® more than included in the usual AMD.

Extension for cluster correlations

Include correlated states in the set of the
) L. =c @ + Yeont
final states of each NN collision.
e—th .
— ce ! + Yeont(t)

{10} 2 lor, (Dwa@ 302@,. ), ..

The cluster is not isolated but coupled with the rest of the system. (Danielewicz, Ropke)

ECT* 2019/05/?? 10/22
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Construction of Final States

Clusters (in the final states) are assumed to have (Os)N configuration.

Bi(n 1) B1 By
Ba(n 1) S B2
e [ B @ o L ® ¢
N. N@B:
N(p 1T » » e N
)? B3(n 1) H B3 : B3 Y )
: [ - o - [ : By
o o o o
|D9) () |D) |D5)
After p©@ - p© 4+ g N+ By — Cq N+ By — Co N + Bg — (

Final states are not orthogonal: N;; = ((I)l’.|(I>J’.) # 0jj
The probability of cluster formation with one of B’s:

P= Y NOONG (@), P=(@YP|0%) % (@0
ij i

P = Choose one of the candidates and make a cluster.

1 — P = Don’t make a cluster (with any n7).
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NN collisions with cluster correlations

(p/
Ni+By + No+By — Cq +Cs N L L,
1
@ N¢, N» : Colliding nucleons 0
N2 2 ) C
@ By, B> : Spectator nucleons/clusters 2 ol 2
2
@ C1,Cr: N,(2N),(38N), (4N) (up to « cluster) Ba
1 — 0)
Transition probability Prel = 3(P1 — P2) = Prei€2
0
, ) pr=p” +
W(NBNB — CC) = 2% |(CC|V|NBNB)|25(E; - E;) o
P2=p, —q
vdo o |<901|901q>| |<€02|¢2q>| |M|25(Ef E)preldpre|d§2 ¢ 79 = exp(+iq - Ty, )<p(0)
|M|2 = [(NN|V|NN)|?: Matrix elements of NN scattering tﬁz = exp(-iq: rN2)¢2

< (do/dQ)N in free space (or in medium)
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More about cluster production in NN collisions

Ni{+By + No +B> — Cq +C»
_ O(2)|H|D(Z
vdor o< (1161 PN gple; OIF 1M 6Er — B9 pydpads B, By = oo

PrelzdQ

2
P(C1,Ca, pret, @ ><|M © e x
= P(C4,C2, prel, 2) (prel Prets ) 9E;[0prai

@ Gaussian width v¢ = 0.24 fm™2 for the overlap factors.
@ There are a huge number of final cluster configurations (C1, C»).
Z P(Cq,Co, pre, Q) =1 for any fixed (pre, )
C4Co
@ The energy-conserving final momentum depends on the cluster configuration

Prel = Prel(C1,C2, Q)
When clusters are formed, p¢| tends to be large, and the effect of collisions will increase.
e the phase space factor T
e Pauli blocking | (collision probability T)
e momentum transfer T
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Effect of cluster correlations: central Xe + Sn at 50 MeV/u

Without clusters With clusters

= E xe+sn g
=l 140 50MeViu ‘G e|{40
10° g 30 10t £
s 420 = 420
x 410 o o ®
Q 100 < 0 é\ 100 < 1 1 1 1 0
= S npd tiHea
=3 =3
§ 10" - § 107 £ B
107 E 1072 ¢ 4
L]
L)
107 % 1072 L I L
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z z

*2019/05/??
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Stopping

K
(_© N Strong stopping
Initial state = e
A
« —  Weak stopping
e

A quantity to represent stopping

1.0
2) E;
0.8
Y. : for all charged products (Z > 1) - Au + Au
% 0.7 - 4
H o
Stopping should depend on & 06F ,
@ Inmedium NN cross sections 05 : /’iﬁ:iﬂ: gi Elﬂgiﬁj xc:i 1
F o Au+Au, vartl (INDRA, E%2) 4
@ Treatment of Pauli blocking o4 o AE:AE, XZLI EFOPI, ER;'?')
0.3 L - L L L L
o Effective interaction (EOS) 02 50 100 200 500 1000

Epeam/A [MeV]

@ How to select central events
INDRA: Lehaut et al., PRL104 (2010) 232701.

Itis a many-body quantity. FOPI: Reisdorf et al., NPA 848 (2010) 366.
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Stopping

A

K 2
(_© N Strong stopping
— N
A
(_@_) Weak stopping
e
— ‘

Initial state

A quantity to represent stopping .‘ R ‘+A‘
[ u u
Z(Ex + Ey) 0.8 - A Xg+§sl B
RE = ———+— I @ Ni+Ni
2y E;
0.6 |- B
> : for all charged products (Z > 1) g
7 04t 4
Stopping should depend on
0.2 B
@ Inmedium NN cross sections | 0.25A GeV
@ Treatment of Pauli blocking ‘2 ‘ ; ‘ és ‘ ;
z

@ Effective interaction (EOS)

FOPI: Reisdorf et al., NPA 848 (2010) 366.
@ How to select central events

It is a many-body quantity.
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Results with full clusters

@ Custer(full) and oy (free)

10 T T T T 10%
-@- R(Z-weighted)
[ FOPI vartl XeCsl@250
12 08l 1 10
12g, 4 120G,
270 MeV/u
1.0+ A o 06 1 % 10°
g s
) 3
0.8 - - @ o4 4 32 100
102, 4 120y,
2 o o2l 270Meviu
S o06- R ’ — AVMD
=] ® Exp. XeCsl@250
[ 00 L - Aalhastane
|- , o 2 4 6 8 10 o 2 4 6 8 10
0.4 2 2
0zl | Without Cluster
- @ Cluster(full), o(free) |
0 10 T 10°
without cluster @ R(Z-weighted) .
0.0 L L . . . - [ FOPI vartl XeCsl@250
10 20 50 100 200 500 1000 08} 1 10t
Eveam/A [MeV] 122y 4 t24gn
270 MeViu
o 06f g 2 100k
1= =}
.. e =
Central collisions (b < 1-2 fm) g £
O 04 4 S 10t 4
132g), 4 1235, .
@ Xe+ Snfor E < 50A MeV 02l | w02l 270 MeViu ]
— AMD
® Exp. XeCsi@25
@ 132gn 4 1243 at 2704 MeV ool A ) i
o 2 4 6 8 10 o 2 4 6 8 10
z z

FOPI data: Xe + Csl at 250A MeV
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Results with full clusters

@ Custer(full) and oy (free)

1.2
1.0 q
0.8 4
[=2)
£
S o06- mﬂ/h B
o
7]
0.4 q
@ Cluster(full), o(free)
02r @ Cluster(full) 7
without cluster
0.0 . . L L L i
10 20 50 100 200 500 1000

Ebeam/A [MeV]

Central collisions (b < 1-2 fm)

@ Xe + Snfor E < 50A MeV

@ 132gn 4 124gn at 2704 MeV
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10 r T r r 102
@ R(Z-weighted)
[ FOPI vartl XeCsl@250
08 1 10t
132G 4 120G,
270 MeV/u
o 06 1 2 10°
£ ]
H £
& o4t 1 3 10t
132G, 4 120G,
270 MeViu
02t 1 107 4
— AMD
® Exp. XeCsl@250
00 L L L L 10 . . .
0 2 4 6 8 10 0 2 4 6 8 10
z z
L 2 Cluster(full) and oy (in-medium)
10 r r r r 102
@ R(Z-weightet))
[ FOPI vartl XeCsl@250
08 1 10t
3fsn + 2sn
270 MeViu
o 06 1 2 10°
£ S npd tHea
g £
& o4t > 1 3 w0t 4
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02t 1 107} E|
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A cluster in medium

Equation for a deuteron in uncorrelated medium

o |e(1P+p) +e(3P - p)] (D)
| o, —)
‘.\ =2 1 1 dp, INT (!
+[1- @GP+ - rGP-p)| [ ZZ=lp)I®)
£ ()
= Ey(p)
800 T T T T
rrrrrrr 2pr @ A bound deuteron cannot exist inside the
700 - —— T=0MeV b
sook E ?oMn:\e/v Fermi sphere, except at very low densities.
_ —— T=20MeV | e .
g soor A @ A deuteron can exist if its momentum is
% 400 |- 1 high enough.
< T 1 @ In AMD, Pauli blocking has already been
200 [ q
ool | considered for NN collisions. More
P ‘ ‘ ‘ suppression of clusters may be introduced.
0.0 0.2 0.4 0.6 0.8 1.0 ) )
(0lpo)”3 c.f. (f)a < 0.2 by Danielewicz et al.,
Formula from Répke, NPA867 (2011) 66. NPA533 (1991) 712.
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Condition to switch on/off clusters

With or without clusters

Ni{+ No+ By + By —» Cy +Co or N1+ N> — Ny + No
The condition to switch on clusters

0o < pe,  pec=0.125fm~3 or 0.060 fm~ etc.

Density with a momentum cut for the nucleon N; (i = 1,2)

. oy 2
p;(lnl) _ (_V) 2 Z G(Pcut > |P; - Pk|) e—2v(Ri—Rk)2
b8
k(i)
) oy 2 ]
p;(fln) _ (_V) 2 z 8(pout > |P§f|n) —Py) o2 (Ri—Ry)?
b8
k(#i)

,:( A(ini) _#(fin) _s(ini) /(ﬁn))II

P =1(py Py Py Py

An energy-dependent momentum cut was chosen, peut = (375 MeV/¢) e=¢/(225 MeV) yhere ¢ is
the collision energy (i.e. the sum of the kinetic energies of Ny and N, in their c.m. frame).
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Effects of in-medium cluster suppression, with oy (in-medium)

Stopping

1.2
1.0 q
0.8 fm 4
0.6 - q
0.4 q
@ Cluster(full), o(free)
@ Cluster(full)
0zr @ Cluster(0.125)
without cluster
0.0 . . L L L L
10 20 50 100 200 500 1000

Ebeam/A [MeV]

Central collisions (b < 1-2 fm)

@ Xe + Snfor E < 50A MeV

@ 132gn 4 124gn at 2704 MeV
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@ Cluster(full) and oy (in-medium)

10 T 10% LI
—@— R(Z-weightedl) i} 175
[ FOPI vartl XeCsl@250 s
08l 1 10t 3 . 150
=
3tsn + 2sn 125
* [ ]
270 MeViu <
o 06 1 2 10° R 1Y
£ ] He a
H £
o o4t > 1 210t E
1326y, 4 124G,
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02 1 107t 3
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® Exp. XeCsl@250
00 . . . . 102 . . .
0 2 4 6 8 10 [ 2 4 6 8 10
z z
[ Cluster(0.125), and oy (in-medium)
10 T T T T 10? T T T 100
—@— R(Z-weighted) S 175
[ FOPI vartl XeCsl@250 s
08l 1 10t 3 . 150
1328, 4, 124 =
Sn + 2'sn 125
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o 06 1 2 10° S50
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g 5
o o4t 1 3 w0t E
1326y, 4 124G,
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0.2 1 1071 3
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® Exp. XeCsl@250
00 L L L L 10 . . .
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Effects of in-medium cluster suppression, with onn(free)

@ Cluster(full) and oy (free)

1.0 T T T T 107 T T 71— 100
—@— R(Z-weighted) S 175
70 FOPI vartl XeCsl@250 =t
08 1 10t 3 450
12 T2 4 1215 % g o
o osh 270 MeViu | > 1 fet e o
g 3
1.0 F . § é He a
? o4l 1 3 w0t 4
08 g 125 4 1245
) 0zl | 02| 27OMeviu ]
= — AMD
a 06 B ® Exp. XeCsl@250
9 00 L 100 Al
2] o 2 4 6 8 10 o 2 4 6 8 10
04 B z z
ozl ® Clustr(ul), ofiee Bl Cluster(0.060) and oy (free)
B Cluster(0.060), o(free) 10 - - - . 102 100
0.0 I i i i i L -@- R(Z-weighted) 15
"10 20 50 100 200 500 1000 sl [ FOPIvarl XeCsl@250 | w0t 150
Eneam/A [MeV] 126y 4 12051 15
> o6k 270 MeV/u_ 2 10 o
£ S
Central collisions (b < 1-2 fm) g g
@ oaf 1 3 10t 1
L2 4 12450
@ Xe + Snfor E < 50A MeV o el 2T0MeV
’ — AMD
® Exp. XeCsl@250
@ 132gn 4 12450 at 2704 MeV I e LT P ec@z0
o 2 4 6 8 10 o 2 4 6 8 10
z z
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Summary on clusters and stopping

@ Cluster correlations can have strong impacts, not only on the cluster emission, but also on
the collision dynamics (e.g. stopping) in central heavy-ion collisions.

@ Suppression of clusters at high (phase-space) densities was considered, in the cluster
production process in AMD.

@ Information on stopping can give a constraint on a combination of the in-medium

suppression of clusters and the in-medium NN cross section (and ...).

e Too strong suppression (e.g. without clusters ) cannot be compatible with the
experimental data of the cluster yield and the cluster-size dependence of stopping.
e In some range of the degree of suppression (~ o-n ~), the fragment observables

can be roughly consistent with data.

@ What can fix the degree of suppression of clusters (and in-medium NN cross section)?

@ How is the isospin dynamics, i.e. the difference of neutrons and protons?
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Discussions on “clustering and correlations in transport”

© What are clusters?

o Different aims and concepts of production/recognition of clusters
o How to count the number of clusters in a dense system

® Interplay of one-body dynamics < cluster correlations

o Thermodynamics, EOS
@ Collision dynamics

@ Clusters in the existence of many other nucleons

o Change of binding energy and wave function. Spectral function.
e Atlow and high densities
@ In general many-body states? (correlated and/or time-dependent)

@ Handling clusters in transport models
L4 fprnvfdvft:ﬁ/ufa;

o Have a many-nucleon state |¥) and try to find clusters in it.

® Fluctuation / branching / bifurcation
® Clusters in usual QMD
o Is it really the problem of binding energies?

@ Off-shell transport?
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®

Antisymmetrized Molecular Dynamics (very basic version)

@

i
AMD wave function Zi = \Di + TN

v : Width parameter = (2.5 fm)~2

Xa; : Spin-isospinstates =p T,p |,n T,n |

|©(Z)) = dl,?t[ exp{—V(rj—%)z}Xm(j)]

Equation of motion for the wave packet centroids Z

d .
ZZi ={Zi,H}pg + (NN collisions)

{Z;, H }pg: Motion in the mean field

_ (©(2)|H|D(2))
(©(2)|0(Z))

H: Effective interaction (e.g. Skyrme force)

+ (c.m. correction) Winyr = 27”|<‘I’f|V|‘I’i)|26(Ef—E,')

@ |V|2 or oy (in medium)

@ Pauli blocking

Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.
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A cluster put into a nucleus in AMD

« cluster |a,Z) : Four wave packets with different spins
Uz and isospins at the same phase space point Z.

‘ E, : A |, Z)|'?*Sn)
Ey:  AL)'™Sn) N=pT.plnlnl)
—Bo =AEq = Eq —(Epy + Ep + Egp + Ep)

(Energies are defined relative to |'24Sn).)

ReZ _
10 ———— Fek =0.y.0),

124
5 o addedto “'Sn | 2y ImZ
\/\ \FT =(0,0,v;)

0 @ Distance from the center: y
s 5 ~ Dependence on density
(]
=
= 1 @ Dendence on P, = Myv;
i}
< 15 @ Due to the density dependence of the
20 Skyrme force, the interaction between
nucleons in the a cluster is weakened in
25 the nucleus.
-30 .
° ? ¢ ¢ ¢ 1 Energy is OK, but dynamics is
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NN collisions wi t or with cluster correlations

Wif = 2%—”|(‘I’f|V|‘Pi)|26(Ef —E;) O Phase space or the density of states for two
nucleon system

In the usual way of NN collision, only the two

Molecular Dynamics

wave packets are changed.

frep} = {len (er@¥64,.. 0]

(ignoring antisymmetrization for simplicity of presentation.)
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NN collisions without or with cluster correlations

O

Wif = 2%—”|(‘I’f|V|‘Pi)|26(Ef —E;) -@b Phase space or the density of states for two

nucleon system
Exact Quantum Mechanics

In the usual way of NN collision, only the two .
y y Molecular Dynamics

wave packets are changed.

frep} = {len (er@¥64,.. 0]

(ignoring antisymmetrization for simplicity of presentation.)

Extension for cluster correlations (K) —-BE 0 Erel
Include correlated states in the set of the final —)E
states of each NN collision. V)

{rept s len va 3re@,. ), .
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Combinations of oy and the in-medium cluster suppression
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FOPI data: Xe + Csl at 250A MeV
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n~ /™ ratio in central 32Sn + 124Sn collisions at 300 MeV/nucleon

Ikeno, Ono, Nara, Ohnishi,
PRC 93 (2016) 044612,

Erratum PRC 97 (2018) 069902.

35
: - ot
= with cluster Final 2~ /x
31 g
w/o cluster (n~ /7 )iike at ¢ = 20 fm/c
25+ i 2
o (N/Z)2 e Ly
© (N/Z)? at high density &
2y high momentum
with cl., soft —— 1}
15+ wi}h cll.,stiIf ——
., soft =-4-- .
Vv,‘ﬁ, &.,iﬁff -y @ Cluster correlations
i ‘ ‘ _JAM —-e-
N2, 2Ry At @), @ Symmetry energy

Motivation and Question for this talk

Where and when do clusters start to appear? How strong should cluster correlations be?
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Branching / bifurcation

time %@ %6 o $ 00
S
S
2
S
S
[ [
Vlasov Boltzmann Langevin

How does randomness appear while the original Schrédinger equation is deterministic?

0
iha‘l”(n,l‘z, oa .,l‘A,l‘) = H"P(l‘1,l‘2, oa .,l‘A,l)
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Disentangling components

Coupled two subsystems. (A nucleon + the rest, for example)

We can decompose the product state as we like.

WD) = c1|y1)|D) + calir) | D) + - - @ ame @
—_—
Time evolutions under mean field approximation
with emission without emission

mean field U
_—

[/} 1) (1)) |D(1))

mean field U4
ey

1) |D) 1 (£))1@1(1))

. mean field Us o
Y2} | @) ————— [y2(1))|D2(1))

Different results for different ways of decomposition, because of the non-linearity introduced by
the mean field approximation.

[ (D)) # el (1)) | D1 (1)) + calpo (D)) | Do(2)) + - - -

What is a good way of decomposition? < Choice of a model
We also want to ignore interference between components (treating as fluctuation).
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Density matrix

Many-body density operator ,[)(A) = |¥)(¥|, for a normalized pure state ¥.
One-body density operator

Slater determinant

Slater determinant < ﬁ2 =p withTrp=A

Anything can be written by p, such as the two-body density operator

PP =AA-1) Tt PN = Appipe,  Ap=1-Prp

In general, the many-body state ¥ does not continue to be a Slater determinant, and then the
equation for p cannot be closed.

d a2
ih—p=[L2" 5 50 53
ih—-p =lza7. A1+ TH012, P
However, usual transport theories assume e.g. ,5(2) = Aq201p2 (i-e. the absence of

correlations), to close the equation.
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sport code comparison: Initial density and stability

An example of the importance of Pauli principle

the saturation property of nuclear matter and the ground-state nuclei

Time evolution of the ground-state Au nucleus
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J. Xu et al., PRC93 (2016) 044609.
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Box Homework 1: Violation of Pauli principle

As the time progresses, the Fermi-Dirac distribution is gradually destroyed, because of imperfect

Pauli blocking.
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F<  t=0fm/c AL N — imawmp
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etrization of in-medium NN cross section

The matrix element |M|? is obtained from the NN cross section.
@ Free cross section oyee(€), taken from the JAM code.
@ In-medium cross section which depends on p’ (with momentum cut).

o(p',€) = dotanh(oiee(€)/o0), 70 = 0.5 % (/)2

parametrization by Danielewicz
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Correlations to bind several clusters

Several clusters may form a loosely bound state.

eg., Li=a+1—25MeV
Need more probability of | + ) — |”Li) etc.

CC c;

* Ric(ij) Pretif)

A}
\

e Cy
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Production of light nuclei

12G 4+ 12¢ at 95 MeV/nucleon

Tian et al., PRC 97 (2018) 034610. Some light nuclei are emitted at large angles

(B1ab > 20°) almost in their ground states, at

107 Li Li ¢t = 300 fm/c.
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Does the probability fluctuate?

f(r,p) is a probability distribution. Does it make sense to say that the probability fluctuates?

Even if the probability f fluctuates in such a way that f = f; with a probability w;, the eventual
probability is

fe,p) = > wifi(r,p)
i
11111 1] 1 1 1 1 1
[g‘ 5'6'6'8° g] =05x [3,0, 3.0, 3,0] +0.5X% [0, 3.0,3,0,
This is equivalent to the original idea that the probability is f(r, p).

INICNY 2 [R5,
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