

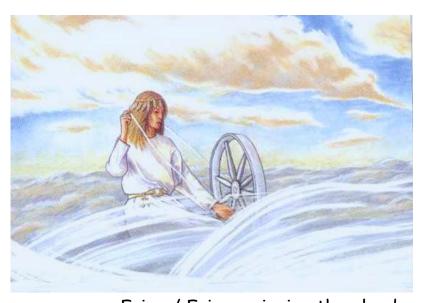
Sequential clustering in transport dynamics

by <u>A. Le Fèvre</u>¹, Y. Leifels¹, J. Aichelin², Ch. Hartnack²
¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

²SUBATECH, IMT Atlantique - IN2P3/CNRS - Université de Nantes, France

Sequential clustering in transport dynamics

by <u>A. Le Fèvre</u>¹, Y. Leifels¹, J. Aichelin², Ch. Hartnack² ¹GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany


²SUBATECH, IMT Atlantique - IN2P3/CNRS - Université de Nantes, France

- The FRIGA clustering approach.
- The achievements of the static approach.
- Spectator versus fireball cluster formation: cold-static versus hotexpanding-sequential clustering.
- Sequential FRIGA: new developments and results.

Fragment Recognition In General Applications

Frigg / Friga, spinning the clouds Friga (Frigg), goddess of harmonious weddings and alliances, setting order in the chaos, in the old Germanic mythology.

Fragment Recognition In General Applications

* Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:

Frigg / Friga, spinning the clouds

Fragment Recognition In General Applications

- * Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:
- * P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390

Frigg / Friga, spinning the clouds

Fragment Recognition In General Applications

- * Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:
- * P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390
- * FRIGA = 2010-2017 development version: Le Fèvre, A. et al. Nuovo Cim. C39 (2017) no.6, 399. a more complete publication submitted to Phys. Rev. C.

Frigg / Friga, spinning the clouds

Fragment Recognition In General Applications

- * Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:
- * P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390
- * FRIGA = 2010-2017 development version: Le Fèvre, A. et al. Nuovo Cim. C39 (2017) no.6, 399. a more complete publication submitted to Phys. Rev. C.
- * So far applied with various transport models: BQMD, IQMD, PHQMD, ...

Frigg / Friga, spinning the clouds

Fragment Recognition In General Applications

- * Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:
- * P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390
- * **FRIGA** = 2010-2017 development version: Le Fèvre, A. et al. Nuovo Cim. C39 (2017) no.6, 399. a more complete publication submitted to Phys. Rev. C.
- * So far applied with various transport models: BQMD, IQMD, PHQMD, ...
- * Applicable from the Fermi energy domain (50 A.MeV, multi-fragmentation) up to (ultra-)relativistic energies (spectator participant decay).

Frigg / Friga, spinning the clouds

Fragment Recognition In General Applications

- * Simulated Annealing Procedure: PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) with:
- * P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390
- * FRIGA = 2010-2017 development version: Le Fèvre, A. et al. Nuovo Cim. C39 (2017) no.6, 399. a more complete publication submitted to Phys. Rev. C.
- * So far applied with various transport models: BQMD, IQMD, PHQMD, ...
- * Applicable from the Fermi energy domain (50 A.MeV, multi-fragmentation) up to (ultra-)relativistic energies (spectator participant decay).
- * Prediction of (light and heavy) (hyper)isotope yields and full phase space distribution.

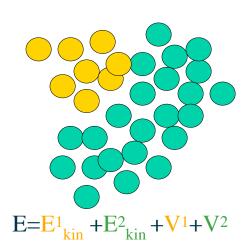
Frigg / Friga, spinning the clouds

Simulated Annealing Clusterization Algorithm (SACA): The principles

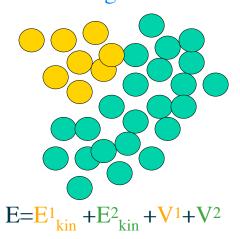
If we want to identify fragments early, one has to use momentum space info as well as coordinate space info.

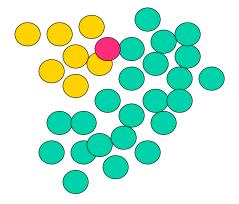
Idea by Dorso et al. (Phys.Lett.B301:328,1993):

- a) Take the positions and momenta of all nucleons at time t.
- b) Combine them in all possible ways into fragments or leave them as single nucleons.
- c) Neglect the interaction among clusters.
- d) Choose that configuration which has the highest binding energy.


Simulations show: Clusters chosen that way at early times are the pre-fragments of the final state clusters, because fragments are not a random collection of nucleons at the end but initial-final state correlations.

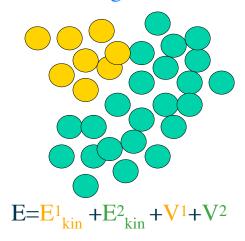
Steps:

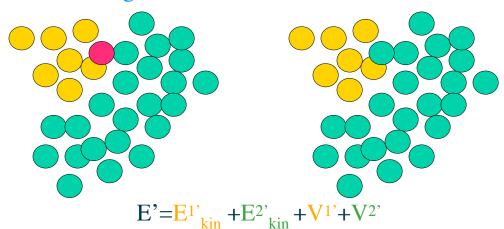

1) Pre-select good «candidates» for fragments according to proximity criteria: coordinate and momentum space coalescence = Minimum Spanning Tree (MST) procedure.



Steps:

- 1) Pre-select good «candidates» for fragments according to proximity criteria: coordinate and momentum space coalescence = Minimum Spanning Tree (MST) procedure.
- 2) Take randomly 1 nucleon out of one fragment

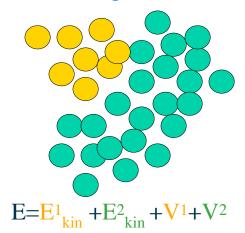


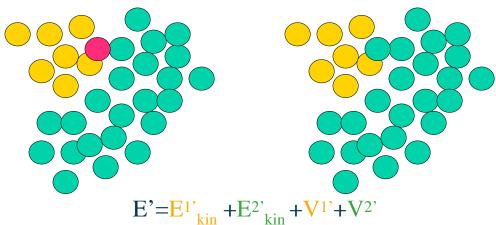


Steps:

- 1) Pre-select good «candidates» for fragments according to proximity criteria: coordinate and momentum space coalescence = Minimum Spanning Tree (MST) procedure.
- 2) Take randomly 1 nucleon out of one fragment

3) Add it randomly to another fragment


Steps:


1) Pre-select good «candidates» for fragments according to proximity criteria: coordinate and momentum space coalescence = Minimum Spanning Tree (MST) procedure.

2) Take randomly 1 nucleon

out of one fragment

3) Add it randomly to another fragment

If E' < E take the new configuration

If E' > E take the old with a probability depending on E'-E

Repeat this procedure very many times... (Metropolis procedure)

It leads automatically to the most bound configuration.

Ingredients of the binding energy of the clusters :

Ingredients of the binding energy of the clusters:

① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- ② Surface effect correction: Yukawa term.

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

And optionally:

(5) Asymmetry energy: 23.3 MeV. $(<\rho'_B>)^{\gamma_{ASY}}$. $[(<\rho'_n>-<\rho'_p>)/<\rho'_B>]^2$

Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

- **5** Asymmetry energy: **23.3** MeV. $(<\rho'_B>)^{\gamma_{ASY}}$. $[(<\rho'_n>-<\rho'_p>)/<\rho'_B>]^2$
- 6 Extra « structure » energy $(N,Z,\rho) = B_{MF}(\rho).((B_{exp}-B_{BW})/(B_{BW}-B_{Coul}-B_{asy}))(\rho_0)$

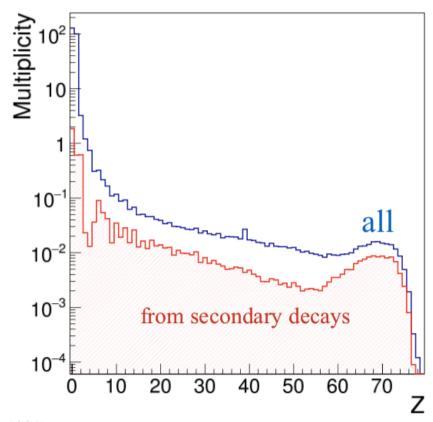
Ingredients of the binding energy of the clusters:

- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

- (5) Asymmetry energy: 23.3 MeV.($<\rho'_B>$) $^{\gamma}_{ASY}$.[($<\rho'_n>-<\rho'_p>$)/ $<\rho'_B>$]²
- ⑥ Extra « structure » energy $(N,Z,\rho) = B_{MF}(\rho).((B_{exp}-B_{BW})/(B_{BW}-B_{Coul}-B_{asy}))(\rho_0)$
- 7 Secondary decay: GEMINI.

Ingredients of the binding energy of the clusters:

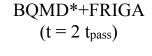
- ① Volume component: mean field (Skyrme, dominant), for NN. For N Λ (hypernuclei), we consider the strange quark as inert as a first approach \Rightarrow U(N Λ) = 2/3.U(NN)
- (2) Surface effect correction: Yukawa term.
- ③ For light clusters (up to A=6), Skyrme does not provide the right binding energy in the ground state \Rightarrow a renormalization (shift) is adopted (depending on the isotope).
- ④ For deuterons, the (attractive) potential energy is reduced by 4 when the n-p spins are not aligned (spin initially randomly allocated when the transport model does not provide it).

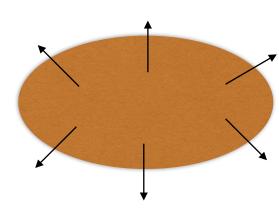

- **5** Asymmetry energy : **23.3** MeV. $(<\rho'_B>)^{\gamma_{ASY}}$. $[(<\rho'_n>-<\rho'_p>)/<\rho'_B>]^2$
- 7 Secondary decay: GEMINI.
- Rejection of « non-existing » isotopes and hyper-clusters.

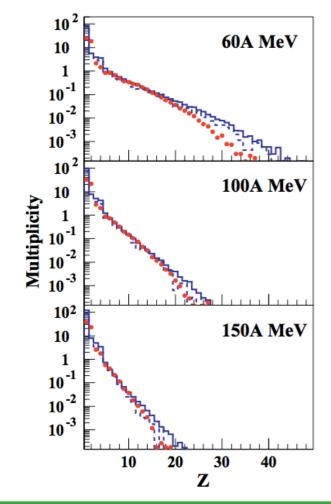
Influence of the secondary decays on light isotope yields

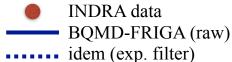
An example: Au+Au @ 600 A.MeV (min. bias), b<6 fm (passing time = 2 t_{pass}) from BQMD*+FRIGA

*: J. Aichelin. Phys. Reports 202, 233 (1991).






Some successful applications at intermediate energies


INDRA central Au+Au

K. Zbiri et al., PHYSICAL REVIEW C 75, 034612 (2007)

*: J. Aichelin, Phys. Rep. **202**, 233 (1991).

Some successful applications at intermediate energies

INDRA Au+Au excitation function A. Le Fèvre and J. Aichelin - PRL 100, 042701 (2008)

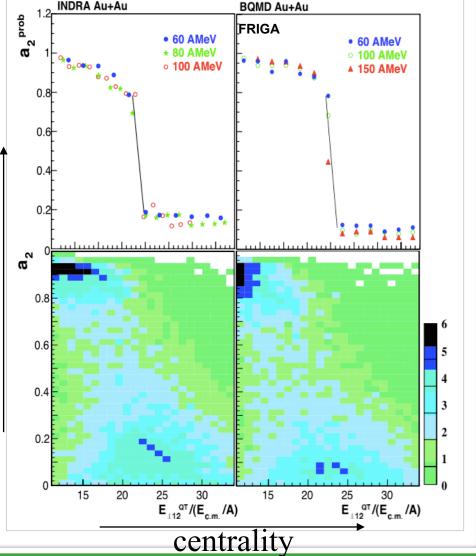
$$BQMD*+FRIGA (t = 2 t_{pass})$$

=> Bimodality** = a mechanical instability (critical phenomenon, metastability)

fragment size asymmetry

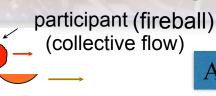
$$a_2 = (Z_1 - Z_2)/(Z_1 + Z_2)$$

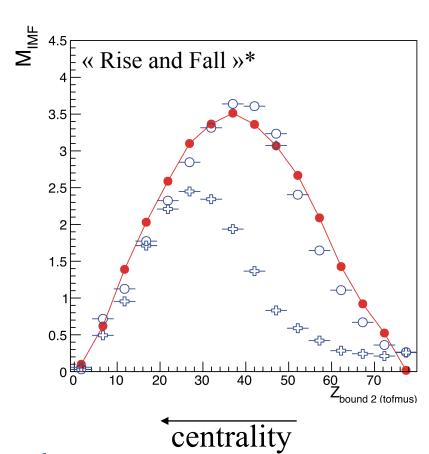
=> sufficient fluctuations necessary in transport models

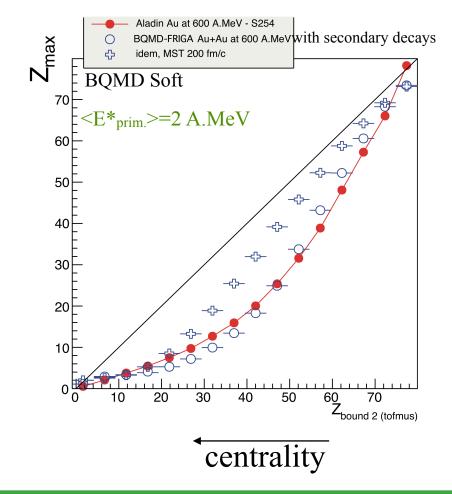

**: also found in Xe+Sn system in

M. Pichon et al, INDRA-ALADIN Coll.,

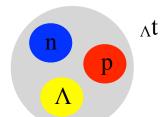
Nuclear Physics A 779 (2006) 267–296

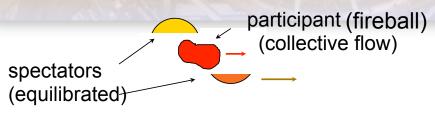


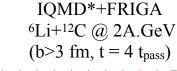


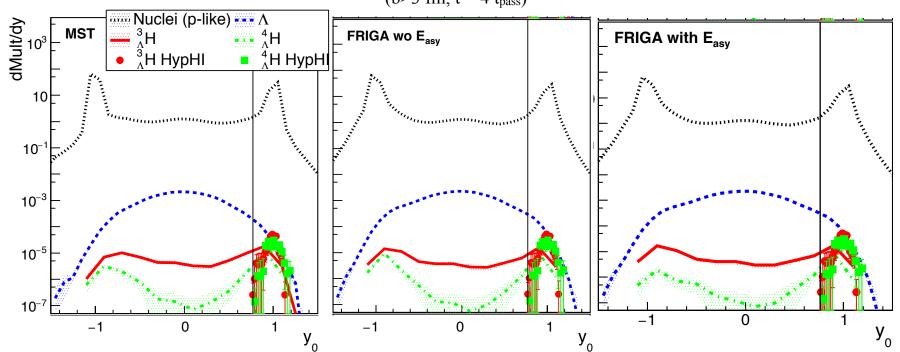

spectators (equilibrated)

Some successful applications in the spectator regime

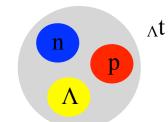

ALADiN Au+Au @ 600 A.MeV (S254 exp., 2003)

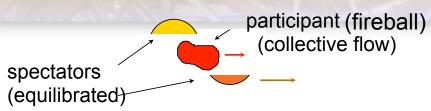




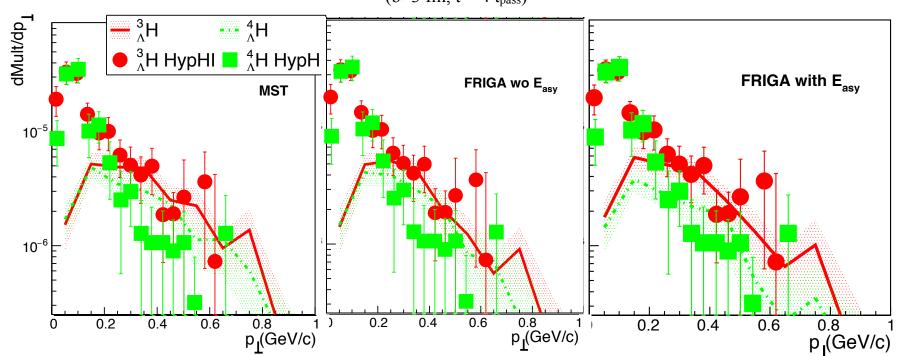

Some successful applications in the spectator regime (hypernuclei)

HyPHI experiment @ GSI Ch. Rappold et al., PLB 747 (2015) 129–13





*: Ch.Hartnack et al., Eur. Phys. J. A 1(1998) 151.


Some successful applications in the spectator regime (hypernuclei)

HyPHI experiment @ GSI Ch. Rappold et al., PLB 747 (2015) 129–13

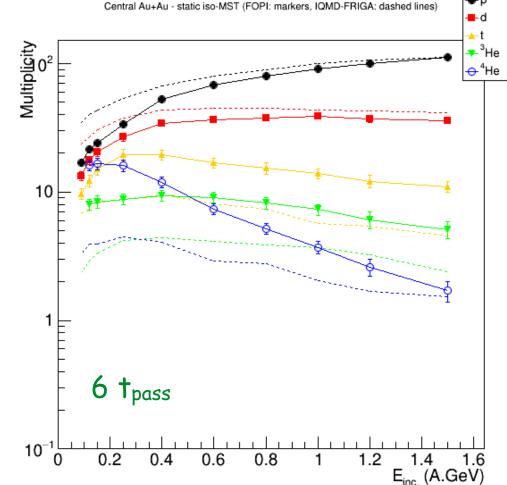
IQMD*+FRIGA $^{6}\text{Li}+^{12}\text{C}$ @ 2A.GeV (b>3 fm, t = 4 t_{pass})

*: Ch.Hartnack et al., Eur. Phys. J. A 1(1998) 151.

participant (fireball) (collective flow)

spectators (equilibrated)

Central


Au+Au:

IQMD-FRIGA (dashed lines)

VS

FOPI data (markers)*

static iso-MST*

 $^{*\}Delta r_{pp} < 2.5 \text{ fm}$ $\Delta r_{nn,np} < 3.8 \text{ fm}$

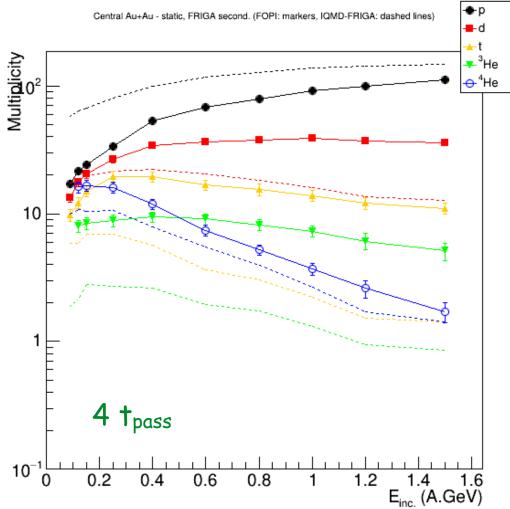
*: W. Reisdorf at al., FOPI Collaboration / Nuclear Physics A 848 (2010) 366-427

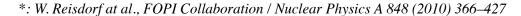
participant (fireball) (collective flow)

Central

(equilibrated)

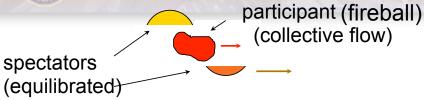
spectators

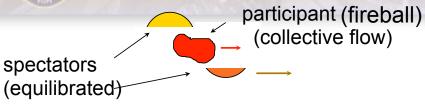

Au+Au:


IQMD-FRIGA (dashed lines)

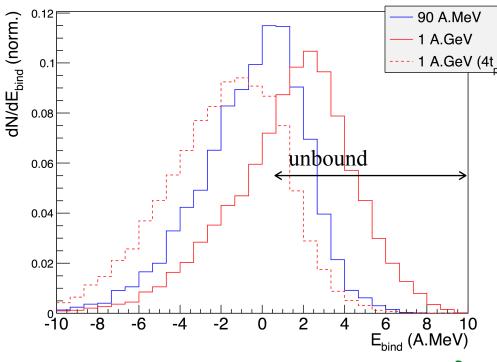
VS

FOPI data (markers)*


static FRIGA (with B_{asy}, second.)



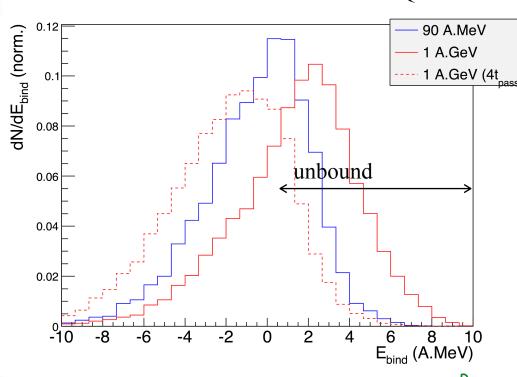
- ⊃ In central collisions, the static/instantaneous FRIGA strategy (including asymmetry and structure binding energies) provides inaccurate light isotope yields
- ⇒ Reversely, the MST static coalescence approach is more reliable at the highest SIS energies.



Central Au+Au:

IQMD-FRIGA

Binding energy of early (2 t_{pass}) tritons identified with coalescence (MST)

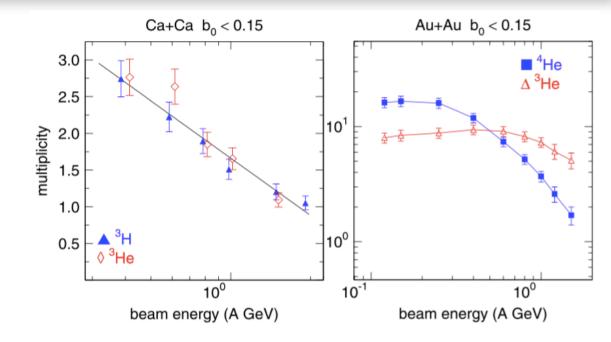


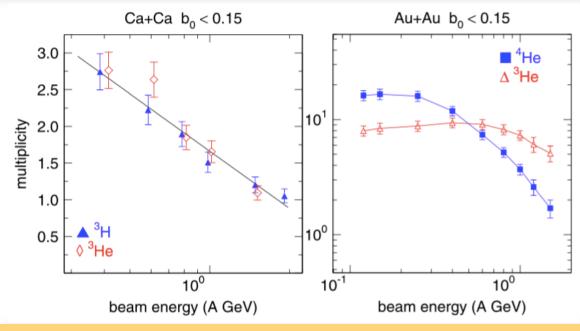
participant (fireball)
(collective flow)
spectators
(equilibrated)

- 1- On the contrary of the rather cool central source of intermediate energies (and spectator), in the hot fireball, early pre-fragments are mostly hot and unbound.
- 2- In a fireball, the hot expanding medium needs more time to generate clusters than the spectator regime (fast clustering from a rather cold non expanding medium)
- ⊃ Invalidity of static/instantaneous FRIGA as an early « afterburner » in the fireball regime. Better alternative: follow the process of cluster formation up to a relatively longer time.

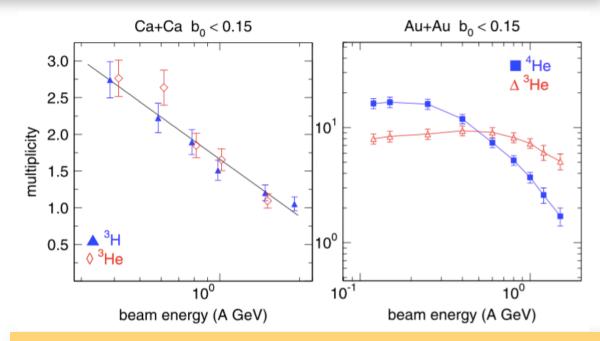
Central Au+Au: IQMD-FRIGA

Binding energy of early (2 t_{pass}) tritons identified with coalescence (MST)


B_{asy} on B_{struct} on



A simple perturbative coalescence model cannot explain this behavior.

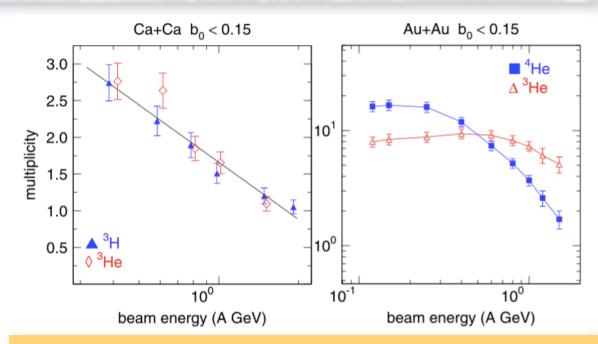


FOPI Collaboration / Nuclear physics A 848 (2010) 366-427

A high degree of clusterisation even at high energies: extrapolation of FOPI@GSI trend -> clustered fraction >10% up to 4A GeV. Persistence of a significant probability to clusterize at freeze-out up to an available energy per nucleon more than two orders of magnitude higher than typical nucleonic binding energies

- Signal of local cooling accompanying the fireball expansion
- ⊃ Strong constraint on the associated entropy.

A simple perturbative coalescence model cannot explain this behavior.



FOPI Collaboration / Nuclear physics A 848 (2010) 366-427

A high degree of clusterisation even at high energies: extrapolation of FOPI@GSI trend -> clustered fraction >10% up to 4A GeV. Persistence of a significant probability to clusterize at freeze-out up to an available energy per nucleon more than two orders of magnitude higher than typical nucleonic binding energies

- Signal of local cooling accompanying the fireball expansion
- ⊃ Strong constraint on the associated entropy.

A simple perturbative coalescence model cannot explain this behavior.

An interpretation: Increased stopping (right panels) <-> increased compression <-> increasing radial flow developed thereafter in the expansion phase coupled to increased cooling ('droplet formation')

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

Pre-detect a partition of clusters with FRIGA/MST

• At each subsequent time step of the collision (typically every fm/c):

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

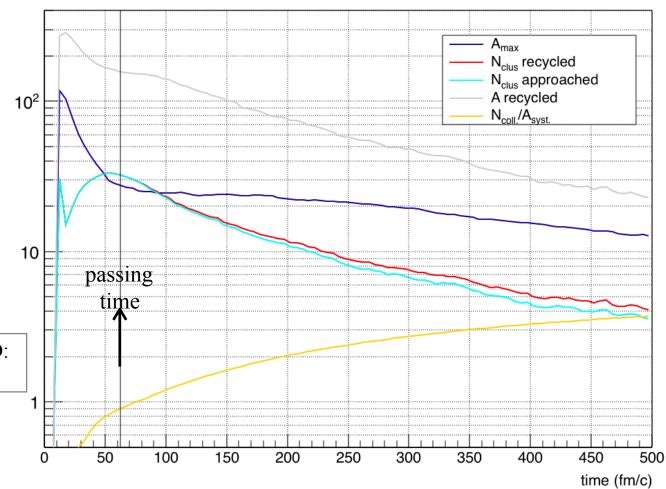
- At each subsequent time step of the collision (typically every fm/c):
- 1) <u>To circumvent the spurious disassembly</u> of small clusters (over time) in the transport model, due to a missing quantum treatment, <u>let survive</u> clusters of the previous time step that have not suffered from any collision and that have not been approached (at coalescence proximity) by an external hadron in the meanwhile.

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

- At each subsequent time step of the collision (typically every fm/c):
- 1) <u>To circumvent the spurious disassembly</u> of small clusters (over time) in the transport model, due to a missing quantum treatment, <u>let survive</u> clusters of the previous time step that have not suffered from any collision and that have not been approached (at coalescence proximity) by an external hadron in the meanwhile.
- 2) Otherwise set all its constituents as free.

• Start from a first time step of the collision (typically when the 2 nuclei start to collide):

- At each subsequent time step of the collision (typically every fm/c):
- 1) <u>To circumvent the spurious disassembly</u> of small clusters (over time) in the transport model, due to a missing quantum treatment, <u>let survive</u> clusters of the previous time step that have not suffered from any <u>collision</u> and that have not been approached (at coalescence proximity) by an external hadron in the meanwhile.
- 2) Otherwise set all its constituents as free.
- 3) Process with MST/FRIGA free hadrons only.

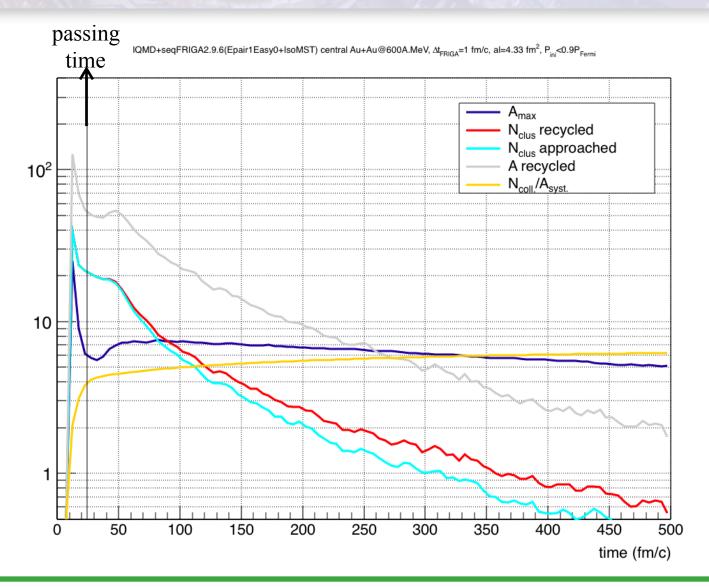

 $IQMD+seqFRIGA 2.9.6 (Epair1Easy0+IsoMST) \ central \ Au+Au@90A.MeV, \ \Delta t_{FRIGA}=1 \ fm/c, \ al=4.33 \ fm^2, \ P_{ini}<0.9 P_{Ferminos}=1.00 \ fm^2 \ fm^$

Central

Au+Au: IQMD-FRIGA

90A MeV

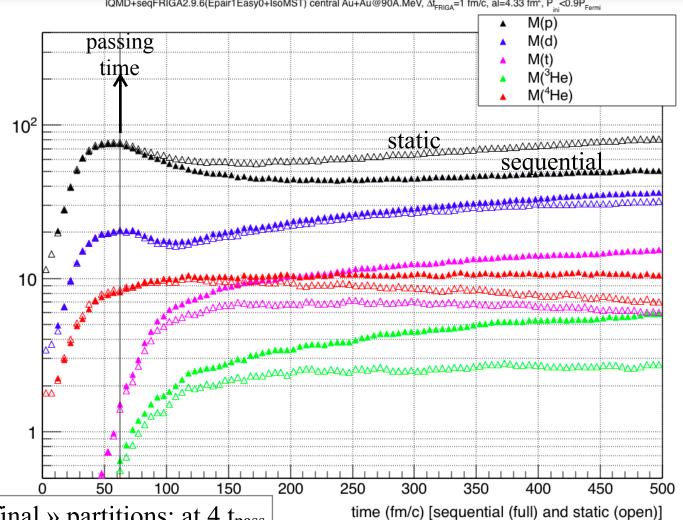
General trend with IQMD: A_{max} leak after 250 fm/c



Central

Au+Au: IQMD-FRIGA

600A MeV



IQMD+seqFRIGA2.9.6(Epair1Easy0+IsoMST) central Au+Au@90A.MeV, Δt_{FRIGA} =1 fm/c, al=4.33 fm², P_{ici}<0.9P_{Fermi}

Central

Au+Au: **IQMD-FRIGA**

90A MeV

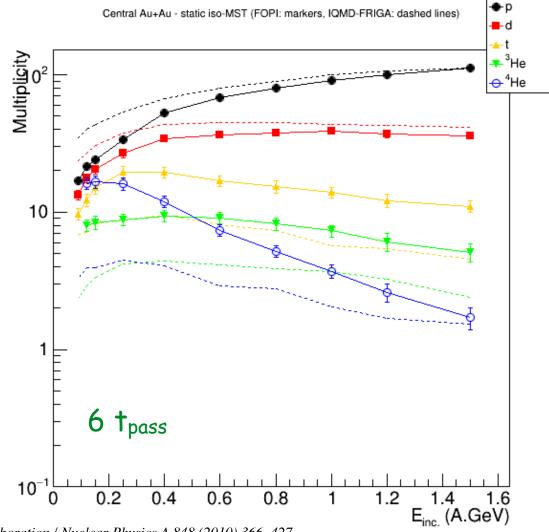
Best compromise for « final » partitions: at 4 t_{pass}

Central

Au+Au: IQMD-FRIGA

600A MeV

Central


Au+Au:

IQMD-FRIGA (dashed lines)

VS

FOPI data (markers)*

static iso-MST*

Central

Au+Au:

IQMD-FRIGA (dashed lines)

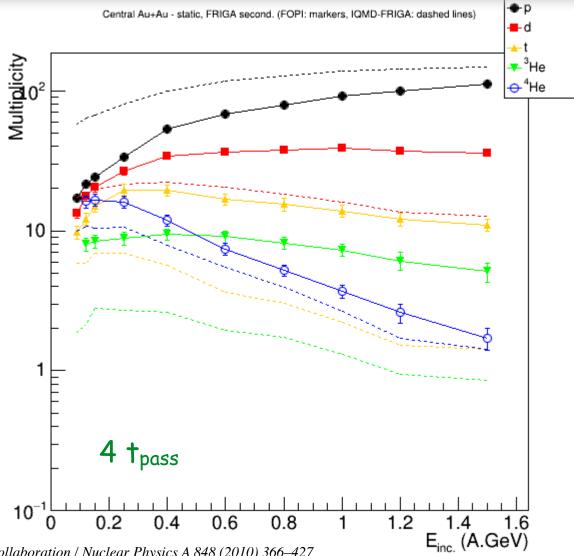
VS

FOPI data (markers)*

sequential iso-MST

*: W. Reisdorf at al., FOPI Collaboration / Nuclear Physics A 848 (2010) 366-427

Central


Au+Au:

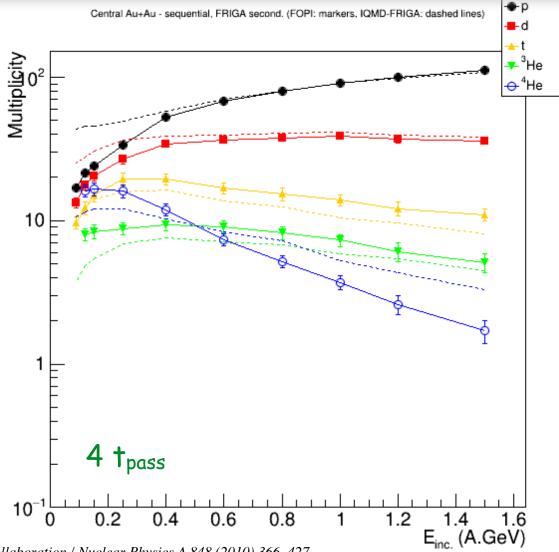
IQMD-FRIGA (dashed lines)

VS

FOPI data (markers)*

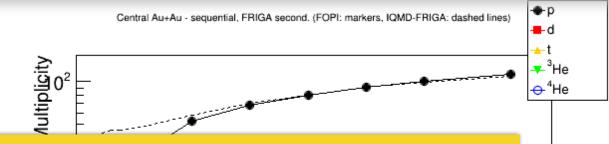
static FRIGA (with B_{asy}, second.)

Central


Au+Au:

IQMD-FRIGA (dashed lines)

VS


FOPI data (markers)*

sequential FRIGA (with Basy, second.)

Central

Au+Au: **IQMD-FF**

VS

- FOPI date Sequential strategy: predicts light cluster yields in much better agreement with experimental data
 - The FRIGA approach remains better than the simple coalescence method.
 - ☐ The ³He/⁴He crossing of multiplicities in the FOPI excitation function is only found by the FRIGA approach.
 - ⊃ Still discrepancies at the lowest incident energies: deuterons and proton yields too large, ⁴He yields too small.
 - ☐ IQMD creates a probably to hot/evaporative medium + missing quantum binding between nucleons forming small clusters.

*: W. Reisdorf at al., FOPI Collaboration / Nuclear Physics A 848 (2010) 366-427

Einc. (A.GeV)

Summary:

Summary:

Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

New developments needed on the side of the transport models:

* Apart from the compulsory system stability + necessary amplitude of fluctuations during collisions that QMD has (to produce valid cluster partitions),

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

- * Apart from the compulsory system stability + necessary amplitude of fluctuations during collisions that QMD has (to produce valid cluster partitions),
- * Limitations (visible at low incident energy) seem to arise from the absence of proper quantum correlations within small clusters in QMD.

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

- * Apart from the compulsory system stability + necessary amplitude of fluctuations during collisions that QMD has (to produce valid cluster partitions),
- * Limitations (visible at low incident energy) seem to arise from the absence of proper quantum correlations within small clusters in QMD.
- * Clusters do not interact as state (wave function) of their own with the rest of the system during the dynamical development; probably necessary.

Summary:

- * Supplying FRIGA with a more precise description of nuclei binding energy at abnormal density allows promising, realistic predictions of absolute isotope yields, and hypernuclei.
- * Whereas the early clustering with FRIGA gives good results in the spectator / intermediate energy regime, the fireball regime needs a relatively longer time to pre-form clusters (droplets?).

New developments done:

- * Sequential clustering: allow clusters to be formed all along the expansion phase coupled to increased cooling.
- * Promising description of light cluster yields in the fireball regime at SIS energies. Can be extrapolated to higher beam energies?

- * Apart from the compulsory system stability + necessary amplitude of fluctuations during collisions that QMD has (to produce valid cluster partitions),
- * Limitations (visible at low incident energy) seem to arise from the absence of proper quantum correlations within small clusters in QMD.
- * Clusters do not interact as state (wave function) of their own with the rest of the system during the dynamical development; probably necessary.

