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Nuclear dynamics at intermediate and
high energies by tranport models

Dense and hot
nuclear matter
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Transport models ?



The Discovery of Isotopes: A Complete Compilatio

Michael Thoennessen, Springer, 2016

Up to the end of 2018, 3386 nuclldes have been foundo Natural nuclides:
288 (Stable: 254, unstable: 34) , the others are man made radioactive isotopes.
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Low Energy

Fermi Energies: Peripheral

Fermi Energies: Central
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The master equation
%P(x, t) = 2 A, x',)p(x)P(x,t) - A(x',x,t) p(x"P(x",t)]
P(x,t)is probability density of state x at t, p(x)is weight,

Alx,x',t) transition probability from x* to x

Ist: A(x,x',t) p(x)P(x,t),gain term, from x'to x
2nd: A(x',x,0)p(x"\P(x't),loss term, from x to X



when x approaches x’, one expands this eq around x'=Xx,
up to the 2nd order of (x-x’), one gets Fokker-Plank eq

3 Pty ==L [ OP G D+~ [D (6,1, PG )]

Jt 0x 0x

v(x,t) : drift coefficient D(x,t): diffusion coefficient
v(x,t)=2u,(x, t) p(x 1)+ p(x, t) Mz(x )]
D(x,t) = u, (x,t)p(x,t)

U, (x,t)= f)L(x,x',t)(x'— x)*dx'

In nuclear reaction ,during time 7t ,v(x,t),D(x,t) are const ,
P(x,t=0)=0(x-x,),

one gets the solution:  Gaussian function

(x—x, —VvT)’

1
POST) = s P




For the average value <x> and its
mean square deviation o,?

+00

<X >= fo(x,t) =X, + VT

O =<x—< x>’ >= f(x —-x, —vt)P(x,t)dx =2D7

That means the <X> is proportional to v, and the mean square deviation

2
OX is also proportional to D
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Extended Time-Dependent Hartree-Fock Approximation with Particle Collisions

Chenk-Yin Wouy
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Wa krmatste an axtesdod time«depamtnat Hartree—Fock approximutiss shiol b lodes
particie collisions, Ad the configurntsun-apson analog of the guastam Boltemana squa-
tion, It oma be wrilizadd to wtudy the dynnmics of suelenr oy other (evmbsn syatems when
frreverniide disstpntion 16 preannt,
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EQUILIBRATION IN RELATIVISTIC NUCLEAR COLLISIONS.
A MONTE CARLO CALCULATION®

J. CUGNON**
WA Kellogg Radiaton Laporaney, Californta Insttnste of Technology, Pasadens, Californis 91125, USA
T, MIZUTAN
Inysitue de Physsque Nuclvawe, Ovsay, France
and
1. VANDERMEBEULEN
fmrsivinr de Phssique, Univessicd de Lidge, Lidge, Belgium

Received 4 March 1980
(Revised 2 June 1980)

Abstract: A relanvistic Monte Carfo colculation of the nucicus-mucleus interaction 1n the GeV range is
prescnted. The interaction proces s described =5 2 sequencoes of clamical, binary, an-shell haryon-
baryoa colibbomns. Plon production & Invoduced vis the (ormation of J-resoninces. The latter are
pivea o definite musas and » lifetime agaiost pron comssion largesr than ine collinion time. They are,
howeaver, sssumed (0 scutter ue disappear lo collisions with nucicons. At the end of the collision
procesa, they are ano-nd 12 decay. The model is used to study the equilibmation during » head-on
collinion between twa ““Ca nuclel. The system is found to be compecssed up to » tine 5-8 fm/ ¢ and
10 decompres very rapidly. The final nucleon and plon momentum distribytioss are aot completely
thermalized They are, however, ientatively described by eficctive wempersturcs. The rapadity
dstributions show larger temparntures than the perpendicalar muomentum disributions. Also,
mucleon 1emperatures are gemcrally Inrger than pion femperanites. The 1acorctical rransverse
lempermures and the pion multipbaities agroe faurfy well with the experimental deta. The role of the
delita particles is investigared. 1t s shown that the delta prodecrion guickens the oyuilibration
PrTOCEss Dy transforming longitwdinal kinetic energy into mass energy. Furthermore, if favours high
ompretsion of the syitem. Non-seotral collisions ure studied, The rerulls are consistont with the
concept of geametrical separation between participant and spectator nucleans. Hawever, aur model



Psuedoparticle, C.Y. Wong, PRC25(1982)1460

PHYSICAL REVIEW C VOLUME 25, NUMBER 3 MARCH 1982

Dynamics of nuclear fluid. VIII. Time-dependent Hartree-Fock approximation
from a classical point of view

Cheuk-Yin Wong
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Recetved 3 September 1981}

In order to facilitate the comparison of the time-dependent Hartree-Fock approximation
with other classical theories and to help guide our intuition in understanding the underlying
physics, we study the time-dependent Hartree-Fock approximation from a classical
viewpoint. We show that the time-dependent Hartree-Fock approximation is approximate-
ly equivalent to a purely classical pseudoparticle simulation. In this simulation, a collection
of pseudoparticles is introduced to discretize the phase space of spatial and momentum
coordinates. The dynamics is completely determined by following the pseudoparticle tra-
jectories which are the same as the trajectories of real particles moving in the seif-consistent
field. As an application of the concept of the pseudoparticle simulation, we study the ori-
gin of the nonfusion events in nearly-head-on heavy-ion collisions as obtained in the time-
dependent Hartree-Fock approximation. It is argued that for these nearly-head-on colli-
sions, the emergence of the most energetic pseudonucleons of one nucleus outside the far
surface of the other nucleus initiates a coberent flow-through motion because of self-
consistency and leads to the breakup of the composite system. Based on this picture, we
obtain quantitative estimates of the threshold energies and the low-/ fusion window which
agree quite well with the time-dependent Hartree-Fock results.



BUU model

PHYSICAL REVIEW C VOLUME 29, NUMBER 2 FEBRUARY 1984

Rapid Communications

The Rapid Communications section is intended jfor the accelerated publication of important new results. Manuscripts submined ro this section are
given priority in handling in the editorial office and in production. A Rapid Communication may be no fonger than 3% primted pages and must be
accompanied by an abstract. Page proofs are sent to authors, but, because of the rapid publication schedule, publication is not delayed for receipt of

corrections unless requested by the author.

Boltzmann equation for heavy ion collisions

G. F. Bertsch and H. Kruse
Cyelotron Laboratory and Department of Physics-Astronomy, Michigan State University,
East Lansing, Michigan 48824

8. Das Gupta
Physics Department, McGill University, Montreal, Quebec H34 218, Canada
(Received 11 Qctober 1983)

The sensitivity of inclusive observables in heavy ion collisions to the nuclear equation of state can be
tested with the Boltzmann equation. We solve the Boltzmann equation, including mean field and Pauli
blocking effects, by a method that follows closely the cascade model. We find that the ipclusive pion pro-
duction is insensitive to the nuclear equation of state, contrary to recent claims.



VUU model
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VOLUME 54, NUMBER 4 ] HYS[LAL REVIEW LFTTERS 28 JANUARY 985

Microscopic Theory of Pion Production and Sidewards Flow in Heavy-Ion Collisions

H. Kruse,'” B. V. Jacak, and H. Stocker
Deparmment of Physics and Astronomy, and National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824
(Received 9 July 1984)

Nuclear collisions from 0.3 to 2 GeV/nucleon are studied in & microscopic theory based on
Viasov's self-consistent mean field and Uehling-Uhlenbeck’s two-body collision term which
respects the Pault principle. The theory explains simultancously the observed collective flow and
the pion multiplicity and gives their dependznce on the nuclear equation of state.

PACS numbers: 25.7.-z



LV model

Muclcur Physics A365 (1987 317 -338
Natrth-Tialland, Amsterdam

SEMI-CLASSICAL DYNAMICS OF HEAVY-ION REACTIONS

C. GREGOIRF!, B. REMALUID?, F. SFBILLF?, [.. VINET! and ¥. RAFFRAY?
V' GANIL, B. .2 5027, 14821 Cuen Cedex, France

Institur de Phyrique, Lniversitd de Nanzes, 44072 Nantes Cedex. France

Received 22 Aprl 1986
[Rewised 30 October 1988

Abstraci: v present a semi-classical approach of the heavy-ion collision lheory in the intermediale
cavrey domain (10-100 MV incidemt kinclic ¢ncrgy per nucleun) based on the Viasov equalion
and is ¢xtension - the T.andau-Viasov equation — when the residual interaction is accounted for
through a collision kermel. 'We use the coherent state sel as an overcomplete basis for the
decomposition of the ouclcar phasce-space distribulions. We show thal the uniform reparticgon of
colicrent sidles in phase space pravides semi-classtcal descriptions of nuclei at equilibrium which
are the correct initial coanditions of the ¥Ylasov and Landau-Viasov dynamical equations.

In the slab geometry, we compare Lthe resulls of the Viasov equalion with thase of the TI2HF
theary for the crossing af a patential barrier and the coliision of two slabs. We prezent sample
1csulls of duree-dimcosivnal caleulations of hravyv-ion collisivns with a Skyrme scll-consisient
intcraction and inclusion af the Coulomb interaction; the individual eollisions being described by
the Llchling Uhlenbeck kernel. These calculations illustrate the incomplete tusion process for
central collisions at 27 MeV/ u incident energy and the onsce of an abrasion-like process for more
peripheral collisions at 35 McV/u.



—

Milestone of Transport models
(1987)

PHYSICS REPORTS (Review Section of Physics Letters) 160, No. 4 (1988) 189-233. North-Holland, Amsterdam

A GUIDE TO MICROSCOPIC MODELS FOR
INTERMEDIATE ENERGY HEAVY ION COLLISIONS

G.F. BERTSCH
Cyclotron Laboratory and Physics Department, Michigan State University, East Lansing, MI 43824, /.§. A.
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QMD J. Aichelin, PR202(1991)233

PHYSICS REPORTS {Review Section of Physics Letters) 202, Nos. 5 & 6 ({991) 233-36{1. North-Holland

“QUANTUM’' MOLECULAR DYNAMICS—A DYNAMICAL MICROSCOPIC
n-BODY APPROACH TO INVESTIGATE FRAGMENT FORMATION
AND THE NUCLEAR EQUATION OF STATE IN
HEAVY ION COLLISIONS

Jorg AICHELIN
Institut fiir Theoretische Physik der Universitar Heidelberg, D-6900 Heidelberg, Fed. Rep. Germany

Editor: G.E. Brown Reccived June 1990
Contents:
1. Imtroduction 235 5. Thc modcl
2. The nuclear equation of state 241 5.1. Initiahization
2.1. The nuclear equation of state 242 5.2. Propagation in the effective potential
2.2. Nonrelativistic nuclear matter calculations 243 5.3. Collisions
2.3. Relativistic nuclear matter calculations 245 5.4. Pauli blocKing
2.4. Momentum dependent versus density dependent in- 5.5. Numcrical tests
teractions 249 6. Multifragmentation
3. Kinetic equations 250 6.1. Experimcatal facts and review of the theories
3.1. Classical molecular dynamics approach 252 6.2. Confrontation of the model with data
3.2. Density matrix, reduced density matrix and their time 6.3. Predictions and results of the calculation
evalution 253 6.4. What causes fragmentation?
3.3. Different truncation schemes 255 6.5. Fragments and the nuclear equation of state
4. On the derivation of the guantum molecular dynamics 7. Probing the nuclear equation of state
approach 263 7.1. Velocity dependence versus compressibility
4.1. Scattering on a bound particle 264 7.2. Particle production and the equation of state
4.2. Wigner densities 269 7.3. Can we cxtract the nuclear equation of state
4.3. Scattering mn the Wigner density formalism 273 present data?
4.4. Scattering on a system of hound particles 280 8. Conclusions
4.5. Imitial Wigner density 284 References
4.6. Interfcrence between subscquent collisions 285 Note added in proof

4.7. Attempts to treat nucleons as fermions 293



Two Kinds of Transport Models

Version: QMD, IQMD, ImQMD, LQMD, CoMD, UrQMD , ......
AMD, FMD

(LB.VV_VFU( f)-vp) 7(7.51) = K (F) 0K (7. 5.1

oF m
f7.5) == D8 =135 P)

Two-body collision: occurs between test part.
Version: IBUUO4, BLE,......




QMD-like

The N-body phase-space distribution function
1 exp _(?—Fi)z B 20°
(wh)’ 200 W

wave function A= (5-5)"

i

Hamiltonian
equations

P;
H=T+U ul+U2+U3+USym+UW+UMDI

Co

e E———
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phase-space density constraint




Comparisons in 2004 and 2009
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Transport theories for heavy-ion collisions in the
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Comparisons in 2014, 2017, and 2019

PHYSICAL REVIEW C 95, 044600 016)

Understanding transport simulations of heavy-ion collisions at 1004 and 4004 MeV:
Camparison of heavy-fon transport codes under controlled conditions
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Comparison ol heavy-ion transport simulations: Collision integral in s box

Ying-Non Zhane " Yong-Jia Wang. ™' Maria Colomni,* * Pawel Dandelewicz,™ ! Akira Ono* ' Manyee Betty Tang™ !
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Boltzmann-Langevin equation
BBGKY Hierarchy (Born, Bogoliubov, Green, Kirkwood, and Yvon)

H = E(—pl +V(q,)) + E

I<i<j
V(q)
V..

ij
1,2,3,...s
Fi(q,,p,1), (4,95, 1> P2, 1), F5(41,95, 955 D> Pys P35 )5

Fs(qse-esqs Pyseees Pgst)
aF
ot

dps+l(2 ¢i,s+l’E9+l)
i=1

(4,B) = E( 04 08 — 04 aB) poisson
dq, op,  Ip; 94,

H = E(—p, +V(q,)) + E

I=i<j
BBGKY (Bogolmbov, Born, Green, Kirkwood, Yvon)

Liouville



s=1
OF, P, OR_V(g), 0F,

WV, , 9,

~ ~ — =nf[dq,dp, —
df  m 0q, g, Iy, ff 99,

b/

. F, F,,F, F,F, F,...

0  Pe Ty R 3
(‘§;+m V.- V. ULS) V,)ﬂ_r.p.:)

= K(fy+dK{r. p.t). (1)

K(f,)= /“P:dPsdPAWl12:34)]f:,j4(| - f1)(1 — f2)
—fi1 200 = f5)(1— f3)], (2)

(0K (ry,p1,81)0 K (rz, pa.ia))

= C(p1,Pa)o(r; —rq)o(t; = ta). (4)

Py



Bauer, Bertsch, and Das Gupta,1987

VOLUME $K, NuMBen 4 PHYSICAL REVIEW LETTERS 2 MARCH 1987

Fluctuations snd Clustering in Heavy-lon Collisions

W. Haver snd G. F. Bertach
Cyeiotram Ladorminey, Michiyan State Usiversity, Eant Lansing Mickigan, 40824

andd

S Daw Gupta

Fhydicz Depwrrmenr, McGIll Universivy, Montresd, Quebec, Canada M4 ITH
(Recelved ) Decmnbes | 944)

We propuse o new (Beory 16 et loctinition phesamenn tn heavyon renctions In practical teemm,
the wethod i s extansiom of the theories of the coe-body donlty hased on meas-Geid plus collisimnl
dymamies. In an oxpdutatory sty of the *Ne+ *Ne raaction, we find comsidurnbls (mgmentition with
rapldly fulling mass spectrum,

PACS st 3440 Ky, 3410=4, 2590 Ny



Ayik and Gregoire, 1988

Vislime 202, by 3 PHYSICSLETTERS Y 29 Septembhor 1954

FLUCTUATIONS OF SINGLE-PARTICLE DENSITY IN NUCLEAR COLLISIONS

S AYIK
Yenmessee Tovhmodogedd Damveesity, Covterdle, TN 338505, LS/

and

C, GREGOIRE
GANIL. BF 3027, F- (4021 Carn Covdex, France

Receaved 10 June 1988

In order Wi incorposie Muctuatium inta the extcaded TIMHF, a new appranch s proposed. The ovolution of the single-partscie
demity n convdered a a “genemdired Langevin procos™ insfinch the correlated pant of the tworbiod y cofliaons acteas » “madom
force™, In the semi<igatical approcimation. the cotrelation funchon of the madom force » calcslalod. A posuble alpornithm for
the tumierical slution |s diwusang.



Chomaz,Burgio,and Randrup, 1991

e 154, number 3.4 PHYSICSLETTERS D 24 lawuary 19}

Inclusion of fluctuations in nuclear dynamics

Ph, Chomaz ', G.F. Burgio “ and J. Randrup
N fear Scvrmce Inetidane. Lawrvoor Berhwles Latonsrory, Univeritr of Caldifvnns, Béebeley. €4 STH 1154

Rocrivad 10 Sepromber | 900 revised tranunctign sucetved 28 Ovtober (960

In 151y herter we proscrit 2 acw mathod o melnde fuctuation (o dynamical smubation of 1he Nordhetm type, @ which
initrvidual pucieons moving im their self-contistent men fiekd eaponence Pauit-t2ocked twe-body collimions. The method comins
of including & suttebly scaled atmoumt 0f 000 i thir Basic teo-body statiering procese. The metnod i (ustrated for b gas of
fermiions ot & twondnneusions) tores and (he resulls exhibil tho desarcd Bxhasior (A miogn phasc-apiae occupanty reaees iy
wiards the appropnate Formi o Dhrae distnbution, the ameciated sartance evolves o evpectod from guandom siadinio, snd the
covariance reflects the various corrrlations inhermemt i e Bwo-body cflison process



The differences among
the Vlasov, BUU and BL models
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Fluctuations in nuclear dynamics:
Comparison of different methods *
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Abstract: We compare scveral methods for incorporating the effect of the fluctuating collision
integral in Boltzmann-Uechling-Uhlenbeck simulations of nuclear dynamics: the method
of correlated pseudo-particle collisions proposed by Bauer, Berisch and Das Gupta, the
method of projection onto caollective vanables (specifically the local quadrupole moment
of the momentum distribution) proposed by Ayik and Gregoire, and the method of direct
simulation on & lattice in phase space recently proposed by Burgio, Chomaz and Randrup.
Considering a periodic two-dimensional nucicon gas in a constant onc-body ficld, we examine
the evolution of the fluctuations of the phase-space occupancy and their correlations.



Conclusion 1

6. Concluding remarks

In the present work, we have investigated severa! methods proposed for incorporating
the fluctuating part of the BUL! collision term imo numerical simulations of one-body
nuclear dynamics, First we briefly reviewed the lattice simulation method recently
developed by Chomaz, Burgio and Randrup '*) aad illustrated its ability to produce
the desired behavior of the Nuctuations in the phasesspace occupancy f(r.p) and
their associated currelations. This method presents a well-founded numencal solution
of the Boltzmann-Langevin type transport equation for the reduced one-body phase-
space density, However, 28 of yet, its practical applicability is severcly limited by the

F. Chapelie 1 al. 7 Fluctuations 259

computing speed and storage capacity of equipment readily available and it wounld be
highly desirable 10 develop further approximations.

However, because of its satisfactory behavior under well understood idealized con-
ditions, the method offers a valuabie 100l for testing more approximate methods that
may be more casily applicable to realistic situations. Therefore, we have examined two
approximate methods thal have been suggesied for the incorporation of the fluctuations
mto the BUU-tvoe dvnamics.



Conclusions 2

The method proposed by Ayik et al reduces the microscopic Boltzmann-Langevin
cquation to equations for a et of collective variables whose stochastic changes are
then used to make an approximaie reconstruction of the microscopic density. The
choice of coliective variables is of course somewhat arbitrary, as 15 the assocuted
reconstruction procedure, and the propooents of this method have in fact explored
several alternative prescriptions. However, our investigations indicate that none of these
yields a very satisfactory result, even though some improvement might be achicved
by careful adjusiments of the various numerical parameters involved, such as the size
of the time step, and the inclusion of more complicated collective vaniables (though
this is far from cerain), However, it would sppear that the resulting correlations
associated with the fluctuating onc-body density will tend 1o reflect the symmetries and
other characteristics of the employed reconstruction procedure rather than that of the
underlying physical Nuctuations. Therefore, at this stage of development, the method
appears unsuitable for calculating particle production which depends sensitively on the
details of the momentum distribution.



Conclusion 3

When applying the method proposed by Baver ¢ ol to our idealized system, we
found that it is able 10 produce fluctuations of the correct gencral magnitude, provided
that a switable coarse graining is performed and that these display some features
of the correlations expected from the basic charactenistics of the two-body collision
processes. However, the detailed momentum dependence of the variance in phase-
space occupancy deviates significantly from what is dictated by quantum statistics.
The method requires the definition of a distance (n phase-space, which is of course
assocated with some arbitranness, Since the particular distance defimition influences
the repartition of fluctuations, it should probably be adapted 1o cach different physical
case, sO 35 10 mimic the extension of the puclconic wave functions in phase space,
aithough this may not always be an casy task.

General conclusion

Finally, we wish 10 stress that as the complexity of the studied phenomena grows it
becomes increasingly important 10 subject the models 1o theoretical tests in idealized
scenarios where the physical behavior 1s well understood - only then 15 confrontation
with actual doa likely 10 be informative.
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Boltzmann-Langevin equation, dynamical instability,
and multifragmentation
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By urrng woralations of the Boluamanas - Langesin equation which (ecorpocates dynamical Nuctuaiions bevond wisal transport
theaness and by coupling 11 with & coalescence model, we obtain information on multdfagmentanon on bea vy aom collissons From
4 cakculanon of the “Ca » “Ua vystem we dhow that we can compute with confidence physical odmervables relaied 1o recent

mulifragmentation dats
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On transient effects in violent nuclear collisions

E. Suraud ". S. Ayik ", M. Belkacem !, Feng-Shou Zhang

* Growpe de Physigue Théovigue. Laboratowe de Physigue (uantigue, Universitd Paul Sabatier,
118 route de Narbonne, 31062 Toulouse Cedex, France
" Tennessev Techrmedogicnl Umpersty, TN 38505 Cookerille, 1ISA
“ GANIL, BPSG27, F14021 Caen Cedex, France
Y Institure of Moderr Pirvsics, Acaderria Sheice, P.O. Bax 11, Larshou 730000, Ching

Reccived 16 july 1995, revised 1] January 1994

Abstiruct

It & shown that the numerical simulations of the recently developed Boltzmann-Lan-
gevin model exhibit large dynamical fluctuntions in momenium space during the carly stages
of heavy-ion collisions, which arise from an interplay berween the nucicar mecan-ficld and
binary collissons. It is pointed ocut that this transient behaviour provides an initial seed for
the development of density fluctuations, and could strongly mfiuence the particle produc-
tion cross-sections at subthreshold energics.
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Analysis of multifragmentation in a Boltzmann-Langevin approach

Feng-Shou Zhanyg
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By using the Boltatany Langevin sguation, whick moerporates dytamies! fustustions heyund
winal tresspurt theories, we ainmbate the **Cas " Cp seactiun wystom at differem boam sunrgies
20, 60, nnd W) MeV /mncioon for different impact prramietems. Dynamival Anctustivan bovomns fnrger
wnd Larger with incowsslig Lambarding vamrgy std e sratom can reach deminltion corrssponding
tu the nastabibe regiom of Ve sockes satter squution uf stale a1 pesrgles above 80 MeV ascloon.
By voupling the Doltzmann. Langevin sqaation with s conlescencs model in the late stages of the
teaction, we obtain the diutribution of the Mtermweliste wmuse Gagnwats w soch event. From the
correlation sumlysis of tiewe fragmends, wo recover st trends of recett mailtifragmentation dats
A eritical behaviar analysls i also pravidedt.

PACS nambar(n): 2570 My
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Nuclear spinodal fragmentation
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Abstract

Spinodal muinfrngmentation m mocleor physion @ noviewed. Considormyg first spmodal imstalnlity winhm the
genetal famework of thermodynatics, we dincuss the intimade selationship between first-ooder phuse timnuitiats
nnd convextty ssomalics in the theemndynamic potentials clurtly the relationship between mechunical and
chemical iatabilty in two-component systems, and also addross finite syster. Then we amalyze the onsst of
spinodal fregmentanion by various hacar-response mothode Using the Landun theory of collective mades
bulk maticr a2 n sturting point, we firgt review the application of meoan-ficld methods for the tdemtification of
the unumsble collective modey und the determinanon of their wmectiors and the assoctated despersion relotioms
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We review e sew poanibiliness offsrsd Uy e reaction dynamucs of asvrmrrsagrse hegvygon collssions msang
sables and ummmbils Hearns We Dhow That i yepresents 2 rather muiges ool 10 probe regions of Nighly asvm.
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eqguanon of sado (E05) = rvgions far away fvom satmmston condinons bat always under laboramey controliod
condinons

Tiromodynanue propesties of ANM are szryeyed sartsy o porn-relarvnmesT and relanvishe effesrive ntes.
actiona. In the relanvistic case e roie of 1= faovertor-scalay daneson 3 srectsd The gualitazive paw feamures
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Kinetic equation of nuclear gas

Bo-jun Yang and Shu-guang Yao
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The kinctic equapon on nuclear gas s derived by means of the Bogoliwbov approach. It 15 an im-
proved Boltzmann.-Uchling-Uhlenbeck equution including correctional binary collisaons with many-
body cffects
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Equation (28) is the kinetic equation of a nuclear gas in the quasihomogeneous case. This is an improved BUU equation.
It is reduced to the usual BUU equation provided to neglect many-body effects and to take the first approximartion of the
term F:
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A wvel method o presented for ineoducing fucoastioes m ope-body dymamics. [ cossts of
emploving & Beownian foece in the Kioetic oquations.  For nuckenr mattee withia the spemodal riee, the
magninade of the Brownkas lone can be detemined by demtanding comyspoidence witl (he growth ol
the most nastable mode, 3¢ given by Holtemann Langevin sirealutions  The method o Hluatuted and
lested for adealized two-dimensionsl matter and promises 1 prowide u practical means for pdnesming
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Absztract

We sty the spinodal decompositon af hot and dilute nuciear sysicama using & stochasic one-body approach (o 3D, The
carly <hulenzation process appears Sorminsted by unstable modes wich well defined multipotarity and radial structure, which

can be relaied 10 infinite nuclear matier propertics, These instabifides favoor peimary partitioon of the system in nearly equal
muss fpgmenis, i sssociation with a lack of small clustens. Finally, we discuss how those features are affccted by the final

decay of the formed fregments.
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Wit o dynsmical description of miclear Srugmentution, bied oo (he Hywd pus phase tramitlon
wonano, we oxplore the relation hatwoen neutron-priton deusity fliuctistions and suclear symmeuy
erergy. We show than, slong the frogmentstion path, bovectar fuctuations follow the evolution of the Jocal
denddty md approach =0 equilibrium vl connected ¥ (he Jocul symemetry energy. Migher-demity
regions ae chamcterised by smaller average odymmetty snd marower iwdopie diatobations. This
dytamical analyds polets oot thal Dagiment fral stite lospin Dictuations can probe the sy nmtetry
everpy of the denuity domaims from which fragments ongmase

DOL 0L ROy e Lot A0 PACS sumbers 28900 04 (0L, 21300 200 -k



Xie, Su, Zhu, and Zhang, 2013

Pty Lommg B FER 000 133D 050

Contantx lstx pvsiiztia st SoiVures SoluccaDrmt
Physics Letters B

WO R e LSO Lty

Symmetry energy and pion production in the Boltzmann-Langevin approach
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Boltzmann-Langevin approach to pre-equilibrivum correlations in nuclear collisions

Scan Gavin,' George Moschelll,” and Chnstophet Zin'
'Depaartment of Physics and Astronowy, Wayne Stare University, Detrit, Michigan 35202, USA
ILawvenace Technologival University, 22000 West Ten Mile Rowd, Sowthfield, Michigan 48075, USA
(Received 21 Docember 2016; poblished 12 June 2017)

Corrolativnm born befure the oaset of hydrodynamic flow can leave otnervable trnces on the final-stute particles,
Messurement of these correlations yield important information o6 the sotroparation aid thermulation processes.
Suting from a Boltzmann. like kinetic theoey in the preseaco of dynamic Langevin notse, we derive u new partial
diffenontzal equation for the two-particle correlabion Tunction that respect the mictoscopsc coawervation laws,
Tor illostrate bow thexe equations cun be used, we tody the effect of thertalization on long.cange conelation.
We show quuste generally tha two-particle correlutions ut easly umes depend on §, the average probability that u
panon siffers po mterictions. We extract § from transverse momentinm fuctustinns nseasonod in suclens-auclem
vollimons and peodict the degree of partial thormulizition i protos-pucleus expenments,
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Multinucleon transfer in central collisions of U + U

S.Ayik' " B, Yilmuz,” O Yilmaz.' A. S, Umar,* and G. Turon'

Phsics Dvpartment. Tennessee Technologioal University, Covleville. Tennesser IR505, USA
‘Physics Department, Faculty of Sciences, Ankarn Univeryity, 06100 Ankars, Turkey
Phystes Dopartment, Middie Eaxt Techuical University, 0680 Ankara, Tarkey
*Dapwartiment of Phrvxics and Astrononry. Viuderhilt University, Nashville, Tonnessie 37235, USA
(Received 12 hune 2017; published 14 Augisst 2017)

Quantal diffusion mochamsm of nocheon exchange 1 audied m the contral collivions of **U 4+ “*U m the
framewaork of the stochastic inean-theld (SMF) approuch, For bombanding eneegles comsidered in this work, the
dinaclesr rocture o maintamed during the colhsion. Hence, it ix posaible 1o describe nuchoon exchange as 2
diffusion process foe s and churge asymiedry. Quantul ieidion and peatos diffusion coefficients, Inclading
nemory effects, are axtracted from the SMF approach and the primary fragment dustributions ane calcoulated,
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SMF for MNT

S. AYIK. B. YILMAZ, O. YILMAZ, AND A.S. UMAR
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FIG. 7. Primary fragment yield in *'Ca + U collisions at
E o = 193 MeV and comparison with data, The solid line is the
result of Eg. (48).
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Dynamics of clusters and fragments in heavy-ion collisions =
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ARTICLE INFO ADSTRACT
Articie Nty A raew i e omn i stutlies of formation of g clusters g heavier Dragmeents
Avadlatile ordine 11 Nowenitwy 2018 M Doavy-lon Coilssans At uSdem energies i soveral tens of MeVinooleon 1o sew eral

nondred MeVinucicon, focuseng on Synaanical 3apects and G Imruscope theoretcal
gescriptions. Existing experimentsal $ata already clanty bassc characieristics of expauding
andd Hagmenting sy stems sypecally in central collitions. whene csuxter cotrelations cantee
Do ignored. CIsies SOTTELtIONS JPPCAr SHNOAL cverywhete i oxcated low - Jensity nuackear
maryy - body W stema and mmciear mstier o statisticyl equilibrium where the progestics of
2 Clesier may be anfloenced iy the medint On the Other hand, transport models 10 solve
he tioe evolution tave heen developed Based on the singie- nacenn dastribation Tanorion
Dilferent types of (ransport medets Gre reviewed paiting cmphass Daoth on teearetacal
frarures and practical perionmances i e descripcion of fragmeniation. A Koy coooeps 1o
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The 23t comparision of the fluctuations in the
transport models, 2019

MD-Iike Boltzmann-like
- i o did?

2 AMD Akira Ono BLOB P. Napolitani
3 SINAP-QMD Guo-Qiang Zhang 2 SMF P. Napolitani
4 UrQMD Yong-Jia Wang 3  GiBUU(Sky) J. Weil
=1 4  GiBUU(RMF) J. Well
5 UrQMD Yong-Jia Wang
{Ssg) 5 RVUU Taesoo Song
6 BNU-QMD Jun Su
7 LQMD Zhao-Qing Feng 6 IBUU(04) Jun Xu
8 IQMD Ch. Hartnack 7 IBL Wen-Jie Xie
9 CoMD M. Papa 8 RBUU Kyungil Kim
10 ImQMD Ying-Xun Zhang 9 pBUU P. Danielewicz

11 ImQMD-drdp Ying-Xun Zhang
12 GXNU-QMD Ning Wang



How to select the same simple input
quantities: physical, numerical
1. Molecular dynamics: N-body approaches
QMD, CoMD,
IQMD, ImQMD,...
AMD, FMD...
2. Boltzmann-like: 1-body approaches

IBUU (BNV, LV)+Fluc, IBL, SMF, BOB...

Important: Input quantities, Numerical treatments, ...

Applications: Fragmentation, MNT, ...
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