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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.   

Motivation 

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination. 

The problem is that they generally fail when some control parameter in the 
Hamiltonian matrix exceeds some threshold value. 
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We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

Eigenvector continuation 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501 



Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 
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We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 
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Perturbation theory 

convergence	region	
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Bose-Hubbard model 

In order to illuminate our discussion with a concrete example, we consider 
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional 
cubic lattice. 

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be 
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Perturbation theory fails at strong attractive coupling 
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Restrict the linear space to the span of three vectors 
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analytic	continuation	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 
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The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities. 



Let us define a monodromy transformation T (z) which corresponds to  
traversing a counterclockwise loop in c around the branch point z. 
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Suppose there are k eigenvectors of H(c) which comprise an irreducible 
representation of the monodromy transformation T (z).  Let us label these 
eigenvectors as 

with corresponding eigenvalues   

These eigenvalues will be degenerate at c = z.  The characteristic polynomial 
for H(c) is analytic everywhere.  Hence the monodromy transformation 
generates a cyclic permutation of the eigenvalues.  Without loss of generality,  

We can now define a new basis for the k eigenvectors   
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such that the action of the monodromy transformation is a cyclic 
permutation on the eigenvectors  

We now diagonalize the monodromy transformation and obtain a new basis 
where each basis state is analytic at z 

If we perform eigenvector continuation using these basis states there are no 
convergence problems due to the branch point at z. 

Of course, we don’t know a priori how to construct this new basis.  But if 
we perform eigenvector continuation for all k degenerate eigenvectors 
together, we remove convergence problems due to the branch point at z. 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 
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Application: Neutron matter simulations 

We consider lattice effective field theory simulations of the neutron matter at 
the leading order. 

As a challenge to the eigenvector continuation technique, we use a lattice 
action for one-pion exchange that causes severe Monte Carlo sign oscillations. 

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,  
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421] 
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Solve the generalized eigenvalue problem by finding the eigenvalues and 
eigenvectors of 

Use Monte Carlo simulations to compute projection amplitudes 

Eigenvector continuation 
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Eigenvector continuation for six neutrons (L = 8 fm) 
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Eigenvector continuation for fourteen neutrons (L = 8 fm) 
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121 (2018) 032501 



Eigenvector continuation with error stabilization 

D. Frame, N. Li, B.-N. Lu, D.L.   

Work in progress 
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Work in progress 
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Superfluidity and pairing in the unitarity limit 

R. He, N. Li, B.-N. Lu, D. L. 

Work in progress 

Ketterle, Zwierlein 
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unitarity limit	



Fermi gas in the unitarity limit 

The Fermi gas in unitary limit describes non-relativistic two-component 
fermions with mass m in the limit that the range of the interactions is 
zero, and interactions are attractive, with the scattering length tuned to 
infinity.  Therefore we are sitting at the threshold where the bound state 
has zero energy. 

Since the unitary limit has no intrinsic length scales, all many-body 
observables must equal some dimensionless number times the appropriate 
power of the Fermi momentum, kF.  For energies and temperatures, there 
will also be a factor of the inverse particle mass, m-1.  
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For example, the energy per particle must be proportional the Fermi 
energy, EF .  This similar to the case for a free non-interacting Fermi gas.  
For the free Fermi gas, the ground state energy per particle in the 
thermodynamic limit is   

It is conventional to define the parameter    for the ratio between the 
ground state energy per particle in the unitary limit and the ground state 
energy per particle for the free gas. 
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Theory: 0.372(5) Carlson, Gandolfi, Schmidt, Zhang, PRA 84 (2011) 061602(R) 
Experiment: 0.376(4) Ku, Sommer, Cheuk, Zwierlein, Science 335 (2012) 563 
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Yang, RMP 34, 694 (1962) 

The two-body density matrix is defined as 

Superfluidity and pairing correlations  

Long-range correlations in the two-body density matrix is a signature  
for pair superfluidity:  
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Experiment: 0.46(7) Zwierlein, Stan, Schunck, Raupach, Kerman, Ketterle, PRL 92 (2004) 120403 
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Consider a lattice Hamiltonian for one non-relativistic particle interacting 
with a delta potential at the origin with coupling c, 
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Homework for August 2 

 
Find the ground state energy of this system in a cubic periodic lattice of  
length 20, mass m equal to 1 (in lattice units), and coupling c ranging  
from 0 to -10 (in lattice units).   
 
Now use eigenvector continuation with training values  
c = 0.0, -0.2, -0.4, -0.6, -0.8 to find a variational approximation to the  
ground state energy for coupling c ranging from 0 to -10 (in lattice units)   
using the first one, two, three, four, and five training eigenvectors. 



Results should look like this: 

exact 
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