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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq

h
is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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New weight factors factoring in other constraints such as 
color singletness, parity, angular momentum, strangeness. 
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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w
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is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w
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h is totally anti-symmetric, we can introduce the reduced weights w̃
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h which are the
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fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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these reduced weights, Eq. 1 can be re-written as
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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(b1,b2···bA)
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✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq

h
is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
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✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !
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For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with
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The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
terms of quark fields as

B̄(b) =
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
terms of quark fields as
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,

the weights, w̃(a1,a2,a3),k
b , have been presented in [11] (the colour factors necessary for our formulation are not included

, k

, k



Easier to work with baryon blocks and tabulate the corresponding weights:

Number of reduced 
baryonic weights

2

then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
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The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA)

=
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (6)
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proton (constructed at a single point) is 9.
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deuteron  (constructed at a single point) is 21.
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Example: Consider radium-226 isotope. 
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in Ref. [11] but can be trivially added). The process of deriving the reduced weights w̃

(a1,a2···anq ),k

h from Eq. 6, can
be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS

In this section, we consider how the interpolating fields constructed in the previous section can be used to generate
the correlation functions of multi-baryon systems. A general multi-hadron two point function is given by

hN h
1 (t)N̄ h

2 (0)i =
1

Z
Z

DUDqDq̄ N h
1 (t)N̄ h

2 (0) e
�SQCD

, (8)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:

Ba1,a2,a3

b (p, t;x0) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0) , (9)

where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.
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consider them further. The procedure described has been used to perform the contractions needed for the large class
of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by
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where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.
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where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
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0
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be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS

In this section, we consider how the interpolating fields constructed in the previous section can be used to generate
the correlation functions of multi-baryon systems. A general multi-hadron two point function is given by

hN h
1 (t)N̄ h

2 (0)i =
1

Z
Z

DUDqDq̄ N h
1 (t)N̄ h

2 (0) e
�SQCD

, (8)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:
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where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.
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of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

=

Z
DqDq̄ e

�SQCD[U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
q(a0jnq

) · · · q(a0j2)q(a0j1)⇥ q̄(ai1)q̄(ai2) · · · q̄(ainq
) , (13)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

= e

�Seff [U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
S(a0j1 ; ai1)S(a

0
j2 ; ai2) · · ·S(a0jnq

; ainq
) , (14)

where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
S(a0j ; ai) for a

0
j 2 a

0 and ai 2 a

�a0
j ,ai

otherwise , (15)

Can also start propagators at different locations.

The new scaling is:

Number of terms 
in the source

Number of terms 
in the sink

An example of a more efficient algorithm:



Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane, et al. (NPLQCD), Phys.Rev. D87 (2013) , Phys.Rev. C88 (2013)

INT-PUB-16-033, JLAB-THY-16-2362, MIT-CTP-4844, NT@UW-16-12

Proton-proton fusion and tritium �-decay from lattice quantum chromodynamics

Martin J. Savage,1, 2 Phiala E. Shanahan,3, 2 Brian C. Tiburzi,4, 5, 6, 2 Michael L. Wagman,7, 2 Frank Winter,8

Silas R. Beane,7, 2 Emmanuel Chang,1 Zohreh Davoudi,3, 2 William Detmold,3, 2 and Kostas Orginos9, 8

(NPLQCD Collaboration)
1
Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA

2
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

4
Department of Physics, The City College of New York, New York, NY 10031, USA

5
Graduate School and University Center, The City University of New York, New York, NY 10016, USA

6
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

7
Department of Physics, University of Washington, Box 351560, Seattle, WA 98195, USA

8
Je↵erson Laboratory, 12000 Je↵erson Avenue, Newport News, VA 23606, USA

9
Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795, USA

(Dated: October 14, 2016)

The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding

NUCLEI OBTAINED FROM SUCH AN APPROACH (AT A HEAVIER 
QUARK MASSES)



According to the naive counting, how many contractions are required for a nucleus at the 
source and sink with atomic numbers A = 4, 8, 12, 16? How many contractions are there 
with the use of the efficient algorithm described? There are even more optimal algorithms 
that lead to a polynomial scaling with the number of the quarks.

EXERCISE 2



ii) EXCITATION ENERGIES OF NUCLEI ARE MUCH SMALLER THAN THE 
QCD SCALE.



Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Getting radium directly from QCD will remain challenging for a long time! One should 
first compute A = 2, 3, 4 systems well. This is till not that easy: B_d = 2 MeV!

Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



With a given amount of computational resources, you have achieved a 1% statistical 
uncertainty on the extracted mass of the nucleon from your lattice QCD calculation. By 
what factor should you increase your computing resources (your statistics) to also achieve 
a 1% statistical uncertainty on the binding energy of the deuteron?

EXERCISE 3



SO WHAT TO DO?

• With the most naive operators with similar overlaps to all states, unreasonably 
large times are needed to resolve nuclear energy gaps.

• The key to success of this program is in the use of good interpolating operators 
for nuclei. Since nucleons retain their identity in nuclei, forming baryon blocks 
at the sink turns out to be very advantageous.

• Ideally need to use a large set of operators for a variational analysis, but this has 
remained too costly in nuclear calculations.

• Methods such as matrix Prony that eliminate the excited states in linear 
combinations of interpolators or correlations functions have shown to be useful.

Applications in mesonic sector: Briceno, 
Dudek and Young, Rev. Mod. Phys. 90 025001.

A good review: Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).

See the previous section.

See exercise 4!



Consider a simple two-state model in the spectral decomposition of an Euclidean two-point 
function. Demonstrate that the time scale to reach the ground state of the model with a 
finite statistical precision can depend highly on the corresponding overlap factor for the 
state. It is sufficient to show this numerically and for a set of chosen energies and overlap 
factors.

EXERCISE 4



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

Michael (1985)
Luescher and Wolf (1990)



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

An example

Single-meson operators
Two-meson operators

Two-meson operators

Meson spectroscopy in 
the P-wave                       
channel:

⇡⇡ �KK

Wilson et al (HadSpec), Phys. 
Rev. D 92, 094502 (2015).
Briceno, Dudek and Young, Rev. 
Mod. Phys. 90 025001.



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

An example

Meson spectroscopy in 
the P-wave                       
channel:

⇡⇡ �KK

Wilson et al (HadSpec), Phys. 
Rev. D 92, 094502 (2015).
Briceno, Dudek and Young, Rev. 
Mod. Phys. 90 025001.
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FIG. 2: Pion mass e↵ective mass plots on the b ⇡ 0.09 fm ensembles.

Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)
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FIG. 2: Pion mass e↵ective mass plots on the b ⇡ 0.09 fm ensembles.

Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)
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In order to guarantee the inverse can be found, enough times must be summed over to ensure
the corresponding matrices are of full rank. One then solves the eigenvalue equation for the
principal correlators,

T̂ (⌧)qn = (�n)
⌧qn , with �n = e�En . (17)

A point that di↵erentiates the Matrix-Prony method from other variational methods is
the sum over time slices in Eq. (15). Most variational methods pick a reference time at which
to perform the diagonalization of the correlation functions, whereas with Matrix-Prony, one
must sum over a number of time slices greater than or equal to the number of correlation
functions. Moreover, one can increase confidence in the subsequent analysis by maximizing
�t in Eq. (15). The original ansatz (12) is satisfied if over the range of time, t

0

to t
0

+ �t,
the resulting principal correlation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the choices of t
0

and �t are varied over
a wide range, with �t & 0.5 fm. For each choice, the ground state principal correlation
function is fit with a single exponential, Eq. (9), over ranges of time ti � tf , chosen indepen-
dently of t

0

and �t. The initial and final times in the fit are also varied over a wide range
under the constraint tf � ti & 0.5 fm. For each fit, the Q value is recorded along with the
statistical uncertainty of the fit. The various fits are then averaged with the weight similar
to that of the pions, but also suppressed by the statistical uncertainty of the fit;

m̄ =

P
i miwiP
j wj

with wi =
Qi

�i
. (18)

In this way, the plateaus at later times, with larger uncertainties, and hence larger Q values,
do not dominate the determination of the fitting systematic. The resulting fits are displayed
along with e↵ective mass plots of representative Matrix-Prony determinations of the ground
state principal correlation function in Figs. 3 and 4. In these figures, the colored e↵ective
mass points correspond to the time window over which the Matrix-Prony method is applied
in the representative choice of times t

0

and �t, while the gray e↵ective mass points lie
outside this region. As is evident, the resulting systematic mass-probability distribution
tends not to be Gaussian. For simplicity, we still take the 16% and 84% quantiles to define
the systematic uncertainty. The inner colored bands represent the statistical uncertainty,
and the outer gray bands represent the statistical and systematic uncertainties added in
quadrature.

C. Scale setting

To convert from lattice units to physical units we use the scale setting procedure described
in Ref. [99]. The dimensionless lattice results are converted into r

1

units with r1
b (bml, bms, �)

determined by the MILC Collaboration on each ensemble. But importantly, it is not the
value computed on a given ensemble that is used; it is rather the values that have been
extrapolated to the physical light- and strange-quark mass point, r1

b (bmphy

l , bmphy

s , �), which
have also been determined by the MILC Collaboration [46, 103], listed here in Table II. While
depending upon reference quark mass values, this amounts to a quark-mass independent scale
setting procedure, such that all remaining light- and strange-quark mass dependence of the
computed observables is that of interest. The MILC Collaboration has also determined the
physical value of r

1

,
rphy
1

= 0.31174(20) fm , (19)

8

The method is useful when the correlation function matrix is not square or positive-definite 
matrix necessarily. It finds suitable linear combination of the correlates that are dominated 
by single exponentials.

MATRIX PRONY
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX
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y(t + ⌧)yT (t)

!�1

, V =
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Consider:

Which can be 
satisfied by:

Finally:
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)

7

0 10 20 30 40
t

0.090

0.095

0.100

0.105

0.110

1 3
co

sh
�1

� C
(t

+
3)

+
C

(t
�3

)
C

(t
)

�

/pi/m0031m031 40x96 LS12/px0py0pz0

0.00 0.03 0.06
P(m)

0.090

0.095

0.100

0.105

0.110
systematic

m
co

sh
e
f

f
(t

,�
)

0 10 20 30 40
t

0.090

0.095

0.100

0.105

0.110

1 3
co

sh
�1

� C
(t

+
3)

+
C

(t
�3

)
C

(t
)

�

/pi/m0031m0186 ml0035ms0423/px0py0pz0

0.00 0.04 0.08
P(m)

0.090

0.095

0.100

0.105

0.110
systematic

m
co

sh
e
f

f
(t

,�
)

FIG. 2: Pion mass e↵ective mass plots on the b ⇡ 0.09 fm ensembles.

Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
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In order to guarantee the inverse can be found, enough times must be summed over to ensure
the corresponding matrices are of full rank. One then solves the eigenvalue equation for the
principal correlators,

T̂ (⌧)qn = (�n)
⌧qn , with �n = e�En . (17)

A point that di↵erentiates the Matrix-Prony method from other variational methods is
the sum over time slices in Eq. (15). Most variational methods pick a reference time at which
to perform the diagonalization of the correlation functions, whereas with Matrix-Prony, one
must sum over a number of time slices greater than or equal to the number of correlation
functions. Moreover, one can increase confidence in the subsequent analysis by maximizing
�t in Eq. (15). The original ansatz (12) is satisfied if over the range of time, t

0

to t
0

+ �t,
the resulting principal correlation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the choices of t
0

and �t are varied over
a wide range, with �t & 0.5 fm. For each choice, the ground state principal correlation
function is fit with a single exponential, Eq. (9), over ranges of time ti � tf , chosen indepen-
dently of t

0

and �t. The initial and final times in the fit are also varied over a wide range
under the constraint tf � ti & 0.5 fm. For each fit, the Q value is recorded along with the
statistical uncertainty of the fit. The various fits are then averaged with the weight similar
to that of the pions, but also suppressed by the statistical uncertainty of the fit;

m̄ =

P
i miwiP
j wj

with wi =
Qi

�i
. (18)

In this way, the plateaus at later times, with larger uncertainties, and hence larger Q values,
do not dominate the determination of the fitting systematic. The resulting fits are displayed
along with e↵ective mass plots of representative Matrix-Prony determinations of the ground
state principal correlation function in Figs. 3 and 4. In these figures, the colored e↵ective
mass points correspond to the time window over which the Matrix-Prony method is applied
in the representative choice of times t

0

and �t, while the gray e↵ective mass points lie
outside this region. As is evident, the resulting systematic mass-probability distribution
tends not to be Gaussian. For simplicity, we still take the 16% and 84% quantiles to define
the systematic uncertainty. The inner colored bands represent the statistical uncertainty,
and the outer gray bands represent the statistical and systematic uncertainties added in
quadrature.

C. Scale setting

To convert from lattice units to physical units we use the scale setting procedure described
in Ref. [99]. The dimensionless lattice results are converted into r

1

units with r1
b (bml, bms, �)

determined by the MILC Collaboration on each ensemble. But importantly, it is not the
value computed on a given ensemble that is used; it is rather the values that have been
extrapolated to the physical light- and strange-quark mass point, r1

b (bmphy

l , bmphy

s , �), which
have also been determined by the MILC Collaboration [46, 103], listed here in Table II. While
depending upon reference quark mass values, this amounts to a quark-mass independent scale
setting procedure, such that all remaining light- and strange-quark mass dependence of the
computed observables is that of interest. The MILC Collaboration has also determined the
physical value of r

1

,
rphy
1

= 0.31174(20) fm , (19)

8

The method is useful when the correlation function matrix is not square or positive-definite 
matrix necessarily. It finds suitable linear combination of the correlates that are dominated 
by single exponentials.

MATRIX PRONY
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
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. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,
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A solution to Eq. (15) is given by
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To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)

7

de Prony (1795)



Linear combos. at the level of correlation functions

An example

Beane et al (NPLQCD), Phys.Rev.D79:114502 (2009).



Linear combos. at the level of sink construction

Berkowitz et al (CalLatt), arXiv:1710.05642(2017).
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Figure 1: (Left) The e↵ective mass plot of the original SS and PS nucleon correlation functions as well as the optimized
ground state correlation functions. (Right) The e↵ective mass of the two linear combinations of SS and PS correlation functions
constructed from the MP analysis.

• This method is substantially less expensive than the full variational method as it relies upon a
smaller number of quark propagators, and many fewer contractions. This method also o↵ers a
numerical savings over the more traditional method of computing two and more nucleon correla-
tion functions: the standard approach requires the contractions to be computed for all the di↵erent
choices of sink operators. For values of the pion mass used in present day calculations, the con-
traction cost is a substantial fraction of the total cost of the calculation, often exceeding the cost of
obtaining propagators. Our new method requires the contractions to be computed only once with
the optimized linear combination of sink operators.

We note that the NPLQCD collaboration has previously investigated the application of MP to two-
nucleon correlation functions [6, 27] by constructing sinks with all possible di↵erent combinations of
single-nucleon operator smearings [31], gaining benefits from the reduction of single-nucleon excited
states, but possibly leading to the di�culties which can occur when trying to tune more than two
operators. Only by imposing the selection of the single-nucleon MP combination that eliminates the
first excited state explicitly before constructing two-nucleon operators do we gain the full advantage
of our method. As we will show below, combining this method with spatially displaced two-nucleon
operators [9] to help reduce overlap onto the first elastic two-nucleon excited states reveals the full
power of this method.

2.3 Results

As a first test of this new method, we apply it to the same set of gauge ensembles used in our previous
calculation, Ref. [9], where we introduced the use of displaced nucleon operators at the source which
were found to significantly improve the coupling to the ground states of interest 2 . This allows us
to provide a direct comparison with known results. Specifically, for this comparison, we performed
calculations on the smallest volume with L/a = 24, using a reduced set with one quarter the statistics.

In Fig. 1, we show the e↵ective mass of the nucleon generated from a point sink, a gaussian sink
and optimized linear combination produced with MP, with a subset of 829 configurations. As can
be seen, the optimized ground state MP correlation function plateaus 5-6 time slices earlier than the
original SS and PS correlation functions.

2 These configurations were generated by the WM/JLab group using an isotropic clover action, at the SU(3) flavor symmetric
point with m⇡ ⇠ 800 MeV and a ⇠ 0.145 fm. For more details, see Ref. [8].
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iii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.
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ū
ūN
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is three pions and not two nucleons:
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THE GROUND-SATATE OF THE 
VARIANCE CORRELATOR IS 3 
PIONS AND NOT TWO NUCLEONS:

Parisi (1984) and Lepage (1989).

Beane et al, NPLQCD 
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ū
ū
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Magnitude - Phase Decomposition

mR(t) = ln
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2
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Magnitude and phase of generic hadron correlation functions are 
empirically observed to be approximately decorrelated

MW and Savage, arXiv:1611.07643
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Wagman and Savage (2016,2017).
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Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

Let’s consider the magnitude and the phase of 
the correlation functions:

4

The Sign(al-to-Noise) Problem
Statistical estimation of an exponentially decaying average 

phase always has exponential StN degradation
⌦
ei✓i(t)

↵
q⌦

|ei✓i(t)|2
↵ ⇠ e�m✓t

Average correlation functions are real. Individual correlation 
functions in generic gauge fields are complex 

Is the LQCD signal-to-noise problem in all or part a sign problem?

G(t) = hCi(t)i =
Z

DU e�S(U)+R(t,Ui)+i✓(t,Ui) =
1

N

NX

i=1

eRi(t)+i✓i(t)

Ci(t) = eRi(t)+i✓i(t)

Standard LQCD methods equivalent to reweighting a complex action

Can we understand better the noise in nuclear 
correlation function and control it?
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A phase reweighting method seems to work:
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Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)
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Phase Reweighted Effective Mass

Calculable by re-analyzing existing 
correlation functions

m✓(t) = ln

✓
G✓(t,�t)

G✓(t+ 1,�t+ 1)

◆

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

MW and Savage, arXiv:1704.07356

Data from Orginos et al, Phys.Rev. D92 (2015)
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DESPITE CHALLENGES, PROGRESS HAS BEEN MADE. LQCD COMBINED 
WITH EFTS IS ON RIGHT TRACK TO DELIVER RESULTS ON IMPORTANT 

NUCLEAR PHYSICS QUANTITIES.

IN THE NEXT TWO LECTURES, WE WILL GO THROUGH A FEW 
EXAMPLES THAT DEMONSTRATE SUCH A PROGRESS.

QUESTIONS?



TWO-BODY ELASTIC SCATTERING
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T ! 1, a ! 0
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+ . . .
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+

+ . . .
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Let’s review the Luescher’s method first (see module I for more details). 
A QFT derivation goes as follows:

Kim, Sachrajda and Sharpe, 
Nucl.Phys.B727(2005)218-243.
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Finite-volume function Scattering amplitude

det
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�GV (E⇤) +M�1(E⇤)

⇤
= 0

Kim, Sachrajda and Sharpe, 
Nucl.Phys.B727(2005)218-243.
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S-wave approximation, 
valid at low energies:

S-wave phase shift



Two-baryon states with SU(3) symmetry

6

in the NR limit [42, 65, 69, 70]. Here, 

(1) is the infinite-volume binding momentum of the state
and Z

2 is the residue of the scattering amplitude at the bound-state pole. Note that the occurrence
of negative k

⇤2 values in a system in a finite volume is not necessarily an indication of a bound state,
and the movement of the state on the real energy axis must be examined as function of volume,
according to the above form, to ascertain that the energy (shift) remains in the negative region
towards infinite volume. Here, this will be referred to as a direct method to obtain the binding
energy. A crucial feature of calculations performed in this work is that two-baryon systems are
studied at multiple volumes in order to provide unambiguous signatures for the existence of bound
states once negative-valued energy shifts are observed. In particular, for the largest volume used,
with a spatial extent of ⇡ 6.7 fm, the FV corrections to the infinite-volume binding momenta are
very small for the bound states in the 27, 10 and 8A irreps, see Sec. III C. Since the closed form of
the FV corrections to the binding momenta are known [42, 65, 69, 70], the significance of the terms
that are dropped from the expansion in Eq. (8) can be evaluated order by order.

Another method of obtaining information about a bound state is to first constrain the scattering
amplitude and its parametrization in terms of energy using Lüscher’s methodology. An analytic
continuation to negative energies then allows the bound state energy to be obtained from the pole
location(s) of the scattering amplitude,

k

⇤
cot �|k⇤=i(1) + 

(1)
= 0. (9)

Since this method involves an intermediate step to obtain the binding energies, it is referred to here
as an indirect method. The advantages of this method are that it makes no assumption about the
suppression of higher-order exponentials in the extrapolation form as in Eq. (8), and that it provides
information about the existence or absence of a bound state even near threshold. The disadvantage
of this method is that it relies on a parametrization of the scattering amplitude. Often, including
additional parameters to improve the goodness of the fit increases the uncertainty of constraints
on the location of the pole. Bound state(s) extracted this way must be shown to be robust against
changes in the parameterization, and the scattering amplitude at the bound state energy must
be shown to satisfy certain physical conditions. These features will become more apparent in
Sec. III C, where the determinations of the binding energies in the various baryon-baryon channels
are discussed.

B. Two-baryon scattering with SU(3) flavor symmetry and large-Nc predictions

The number of distinct FV spectra in the baryon-baryon systems is dictated by the SU(3)

flavor symmetry of the present calculations. The flavor representation of two octet baryons, each
transforming in the 8 irrep of SU(3), has a decomposition of the form:

8 ⌦ 8 = 27 � 10 � 10 � 8S � 8A � 1. (10)

Flavor channels belonging to the totally symmetric irreps 27, 8S and 1 have a total spin equal to
zero, while those belonging to the totally antisymmetric irreps 10, 10 and 8A have a total spin equal
to one. The SU(3) classification of the flavor channels is summarized in Appendix A for reference.
The use of interpolating operators that transform under irreps of the SU(3) decomposition of
the product of two octet baryons allows for these distinct spectra to be determined in a LQCD
calculation. The two-baryon interpolating operators used in this study, however, transform under
the isospin subgroup of SU(3), with strangeness treated as a quantum number. As a result, the
excited spectra corresponding to the 8S and 1 irreps cannot be rigorously determined unless multiple
interpolating operators in flavor space are used to isolate the lowest-lying states of the systems. For

{n, p,⌃+,⌃0,⌃�,⌅0,⌅+,⇤}

SU(3) decomposition of states:

Let’s see what these states are…

Now let’s see an application of Luescher’s method to obtain elastic scattering amplitudes 
of two hadrons from lattice QCD: Wagman et al.(NPLQCD), Phys.Rev.D 96,114510(2017).
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Appendix A: TWO-BARYON STATES AT THE SU(3) FLAVOR-SYMMETRIC POINT

Two octet baryons (combined in a positive-parity state) can be arranged in 64 distinct flavor
states when the up, down and strange quark masses are different. With SU(3) flavor symmetry,
these divide among 6 irreps of the SU(3) decomposition of the product of two octet baryons,
27�10�10�8S �8A �1. Besides parity and baryon number, states are also classified according to
the total angular momentum, i.e., either 0 or 1 for two baryons in an S wave. Since the interpolating
operators used in this work are constructed in the flavor basis, with only the isospin and strangeness
quantum numbers governing the classification of states, it is useful to tabulate these flavor channels
and their relation to the SU(3) classifications. These are presented in Fig. 17 for the irreps with
J = 0, and in Fig. 18 for the irreps with J = 1. The phase convention used in constructing the
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FIG. 17: Diagrammatic representation of the 27, 8S and 1 irreps resulting from the SU(3) decomposition of
the product of two octet baryons, along with the corresponding two-baryon states with J = 0. Strangeness
decreases from top to bottom in the diagrams, while the third component of isospin increases from left to
right. Mixed states that are colored alike have the same total isospin and strangeness quantum numbers.
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states in these tables is that dictated by the special embedding of the octet baryon fields in the
octet baryon matrix in Eq. (12). As is seen in the tables, there occurs mixings among flavor states.
Flavor states that mix with one another necessarily have the same electric charge, strangeness and
total angular momentum. As an example, consider the “25” entry of the 27 irrep and the “6” entry
of the 8S irrep, denoted as ⇤⌅
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0. With an exact SU(3) symmetry, two linear
combinations of these degenerate flavor states can be formed such that each transforms in either
the 27 irrep or the 8S irrep. In the absence of SU(3) symmetry, the two flavor states are no longer
degenerate; further, their mixing can no longer be uniquely determined via a straightforward basis
transformation.
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FIG. 18: Diagrammatic representation of the 10, 10 and 8A irreps resulting from the SU(3) decomposition
of the product of two octet baryons, along with the corresponding two-baryon states with J = 1. Strangeness
decreases from top to bottom in the diagrams, while the third component of isospin increases from left to
right. Mixed states that are colored alike have the same total isospin and strangeness quantum numbers.
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⌧ [l.u.] ⌧ [l.u.]

10

L

3 ⇥ T � bmq b [fm] L [fm] T [fm] m⇡L m⇡T Ncfg Nsrc

24

3 ⇥ 48 6.1 -0.2450 0.1453(16) 3.4 6.7 14.3 28.5 3822 96

32

3 ⇥ 48 6.1 -0.2450 0.1453(16) 4.5 6.7 19.0 28.5 3050 72

48

3 ⇥ 64 6.1 -0.2450 0.1453(16) 6.7 9 28.5 38.0 1905 54

1

TABLE I: The parameters of the gauge-field ensembles used in this work. See Ref. [20] for more details.

ten Hybrid Monte Carlo evolution trajectories to reduce autocorrelations, with the total number of
configurations used for each ensemble, Ncfg given in Table I. An average of Nsrc measurements are
performed on each configuration. Various other properties of the ensembles are listed in Table I.
Given the large values of T and L relative to the inverse pion mass, both the thermal contamination
and the exponential finite-volume contamination of single-hadron masses and two-baryon energies
from pion propagation through the boundaries are strongly suppressed.

Sources are smeared with a gauge-invariant Gaussian profile with stout-smeared gauge links.
The quark propagators at the sink are either not smeared (smeared-point combination, SP) or
are smeared with the same smearing profile as that of the source operators (smeared-smeared
combination, SS). The plateau regions of the effective mass plots (EMPs) formed out of the SP and
SS correlation functions are found consistent in every case. Propagators are contracted at the sink
in blocks of three quarks to assemble a baryon field with given quantum numbers at the sink. In
particular, the baryon blocks are projected to a fixed three-momentum, enabling the two-baryon
interpolators at the sink to have either zero or non-zero CM momentum, with various possibilities for
the momentum of each baryon. As the next step, a fully-antisymmetrized quark-level wavefunction
with overall quantum numbers of the two-baryon system of interest is formed at the location of
the source. The contraction step is defined by the selection of the appropriate indices from the
baryon blocks at the source, in a way that is dictated by the quark-level wavefunction. More details
regarding the contraction algorithm for a general A-nucleon system are presented in Ref. [86] (with
a similar approach proposed in Refs. [87, 88]). The final products of the contraction step are two-
baryon correlation functions as a function of Euclidean time. These correspond to a definite total
momentum resulting from several (nearly orthogonal) choices of baryon momentum at the sink.

B. Analysis of correlation functions

To maximize confidence in the energy determinations and their uncertainties, five different anal-
ysis procedures were used, and the results obtained from each method were found to be consistent.
The statistical and fitting systematic uncertainties on the final results are taken from one analysis,
with an additional systematic uncertainty added to account for the small variations between the
five analyses.

The correlation function of a single or two-baryon system, projected to the total momentum
2⇡d/L, can be written as

CÔ,Ô0(⌧ ;d) =

X

x

e

2⇡id·x/Lh0| ˆO0
(x, ⌧)

ˆO†
(0, 0)|0i = Z 0

0Z†
0e

�E(0)⌧
+ Z 0

1Z†
1e

�E(1)⌧
+ . . . , (15)

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Step I: Obtain the lowest-lying spectra
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FIG. 6: The shifts in the energy of the two-baryon systems in the 27, 10, 10 and 8A irreps from that of two
non-interacting baryons at rest in the three lattice volumes, i.e., �E = EBB � 2MB. Energies are expressed
in lattice units (l.u.). Different columns correspond to different volumes and boosts, as indicated.

Figs. 3–5. The energy shifts and their uncertainties are denoted as horizontal bands in the R plots,
and are compiled for all two-baryon channels studied in this work in Fig. 6. The corresponding
values are tabulated in Tables X-XIII of Appendix C for reference.

Recently, there have been comments by Iritani, et al. [95–97] questioning the extraction of en-
ergy eigenvalues from the late-time behavior of correlation functions, and methods for identification
of energies such as those used here. These authors present an example of two-nucleon correlation
functions that exhibit a considerable mismatch in the location of the naive plateaus in the EMPs
when different source and sink operators are used (namely locally-smeared and wall sources). How-
ever, as is shown by the PACS-CS collaboration [98], such a mismatch disappears once both the
single-nucleon and the two-nucleon systems are required to be in their ground states. The failure of
wall sources to overlap well onto the ground state at early times is a well-known problem, and has
no bearing on the results reported by other groups using more optimal sources, such as those used

Step I: Obtain the lowest-lying spectra

[NN(1S0)]
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FIG. 6: The shifts in the energy of the two-baryon systems in the 27, 10, 10 and 8A irreps from that of two
non-interacting baryons at rest in the three lattice volumes, i.e., �E = EBB � 2MB. Energies are expressed
in lattice units (l.u.). Different columns correspond to different volumes and boosts, as indicated.

Figs. 3–5. The energy shifts and their uncertainties are denoted as horizontal bands in the R plots,
and are compiled for all two-baryon channels studied in this work in Fig. 6. The corresponding
values are tabulated in Tables X-XIII of Appendix C for reference.

Recently, there have been comments by Iritani, et al. [95–97] questioning the extraction of en-
ergy eigenvalues from the late-time behavior of correlation functions, and methods for identification
of energies such as those used here. These authors present an example of two-nucleon correlation
functions that exhibit a considerable mismatch in the location of the naive plateaus in the EMPs
when different source and sink operators are used (namely locally-smeared and wall sources). How-
ever, as is shown by the PACS-CS collaboration [98], such a mismatch disappears once both the
single-nucleon and the two-nucleon systems are required to be in their ground states. The failure of
wall sources to overlap well onto the ground state at early times is a well-known problem, and has
no bearing on the results reported by other groups using more optimal sources, such as those used

Step I: Obtain the lowest-lying spectra

[NN(1S0)] [NN(3S1)]

[N⌃(3S1)] [N⌅(3S1)]



k⇤2 [l.u.]

k
⇤
c
o
t
�(

2
7
)
[
l
.
u
.
]

○○

◻◻
○○
◻◻

○○

◻◻
○○
◻◻

○○◻◻ ○○◻◻○○◻◻
○○◻◻ ○○◻◻○○◻◻

-���� -���� ���� ���� ���� ����
-���

-���

-���

���

���

���
d = (0, 0, 0)

d = (0, 0, 2)

243 ⇥ 48 : stat.+syst. 68% C.I.

323 ⇥ 48 : stat.+syst. 68% C.I.

483 ⇥ 64 : stat.+syst. 68% C.I.
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Two-parameter ERE: stat.+syst.

Three-parameter ERE: stat.+syst.
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27 irrep

�
p
�k⇤2

Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

25

determined in three volumes, a controlled extrapolation to infinite volume is possible in the present
work. Fitting to the truncated form of the FV QC for negative k

⇤2 values, Eq. (8), the infinite-
volume binding momenta, 

(1), can be obtained in each channel. These results are presented in
Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
the two determinations. The bootstrap samples of extracted 

(1) values from each case can be
combined to obtain a conservative estimate of the binding momenta and their uncertainties, given
in the last row of Table III. The omitted terms in the truncated form in Eq. (8) are negligible as
e

�p
3(1)L is at most ⇠ 10

�3 for the channels belonging to the 27, 10 and 8A irreps. The stability
of the extracted binding momenta has been verified by excluding lower-order terms and by adding
higher-order terms to the fits.

Table III also includes the 

(1) values for the channels belonging to the 10 irrep. As is seen from
Fig. 11, the ground-state energy in the largest volume is close to threshold. Nonetheless, assuming
that there is a bound state in this channel, a determination of 

(1) based on the fit to Eq. (8) is
fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10

irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
the 10 irrep.

In physical units, the binding energies of these states are:

27 irrep: B = 20.6

(+1.8)
(�2.4)

(+2.8)
(�1.6) MeV, (25)

10 irrep: B = 27.9

(+3.1)
(�2.3)

(+2.2)
(�1.4) MeV, (26)

10 irrep: B = 6.7

(+3.3)
(�1.9)

(+1.8)
(�6.2) MeV, (27)

8A irrep: B = 40.7

(+2.1)
(�3.2)

(+2.4)
(�1.4) MeV, (28)

where B = �2

q
�

(1)2
+ M

2
B + 2MB. Again, the first uncertainty is statistical and the second

uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering

Step II: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.
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d = (0, 0, 0)

d = (0, 0, 2)

243 ⇥ 48 : stat.+syst. 68% C.I.

323 ⇥ 48 : stat.+syst. 68% C.I.

483 ⇥ 64 : stat.+syst. 68% C.I.

Two-parameter ERE: stat.

Two-parameter ERE: stat.+syst.

Three-parameter ERE: stat.+syst.

Three-parameter ERE: stat.

243 ⇥ 48 : stat. 68% C.I.

323 ⇥ 48 : stat. 68% C.I.

483 ⇥ 64 : stat. 68% C.I.
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determined in three volumes, a controlled extrapolation to infinite volume is possible in the present
work. Fitting to the truncated form of the FV QC for negative k

⇤2 values, Eq. (8), the infinite-
volume binding momenta, 

(1), can be obtained in each channel. These results are presented in
Table III for measurements with d = (0, 0, 0) and (0, 0, 2), with complete agreement seen between
the two determinations. The bootstrap samples of extracted 

(1) values from each case can be
combined to obtain a conservative estimate of the binding momenta and their uncertainties, given
in the last row of Table III. The omitted terms in the truncated form in Eq. (8) are negligible as
e

�p
3(1)L is at most ⇠ 10

�3 for the channels belonging to the 27, 10 and 8A irreps. The stability
of the extracted binding momenta has been verified by excluding lower-order terms and by adding
higher-order terms to the fits.

Table III also includes the 

(1) values for the channels belonging to the 10 irrep. As is seen from
Fig. 11, the ground-state energy in the largest volume is close to threshold. Nonetheless, assuming
that there is a bound state in this channel, a determination of 

(1) based on the fit to Eq. (8) is
fully consistent with the ground-state energies at the largest volume, as well as with the location of
the pole in the scattering amplitude. From these results, the existence of a bound state in the 10

irrep cannot be confirmed or excluded with statistical significance. Future calculations with higher
statistics are needed in order to draw robust conclusions about the nature of the ground state in
the 10 irrep.

In physical units, the binding energies of these states are:

27 irrep: B = 20.6

(+1.8)
(�2.4)

(+2.8)
(�1.6) MeV, (25)

10 irrep: B = 27.9

(+3.1)
(�2.3)

(+2.2)
(�1.4) MeV, (26)

10 irrep: B = 6.7

(+3.3)
(�1.9)

(+1.8)
(�6.2) MeV, (27)

8A irrep: B = 40.7

(+2.1)
(�3.2)

(+2.4)
(�1.4) MeV, (28)

where B = �2

q
�

(1)2
+ M

2
B + 2MB. Again, the first uncertainty is statistical and the second

uncertainty encompasses both a fitting uncertainty and an uncertainty encoding variation among
multiple analyses. The uncertainty in the lattice spacing is small compared with other uncertainties.
These binding energies are consistent with our previous determination in Ref. [20, 21], and with
the binding energies obtained on the same ensembles of gauge-field configurations in Ref. [99] for
the ground states of the two-nucleon channels in the 27 and 10 irreps.

4. S-wave baryon-baryon interactions and naturalness

Interactions are considered unnatural if they give rise to some characteristic length scale of the
system that is much larger than their range. There are at least two measures to assess naturalness
in a two-particle system. For scattering states at low energies, scattering length defines a charac-
teristic length scale, and the range of interactions can be approximated by the effective range. As
an example, S-wave interactions in the spin-singlet and spin-triplet two-nucleon channels in nature
produce effective range to scattering length ratios, r/a, that are ⇡ �0.14 and ⇡ 0.32, respectively.
This indicates that both channels are unnatural, particularly the spin-singlet channel. When inter-
actions support a bound state, another characteristic length scale of the two-particle system is the
inverse of the binding momentum, which defines an intrinsic size for the bound state. Considering

Step II: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.
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This is a curious observation. Why are the scattering 
parameters so close to each other in different channels?

Step II: Feed the energies to the Luescher’s equation 
and obtain the S-wave scattering phase shifts.

k⇤ cot �(k⇤) = �1

a
+

1

2

rk⇤2 + . . .



ii) Now if you solve for scattering lengths in different irreducible representations, you 
will find that:

i) There are only six independent interactions at leading order in chiral EFT:
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example, to obtain the energy eigenvalues beyond the ground state in the 1 irrep, a matrix of
correlation functions in flavor space must be formed from interpolating operators corresponding to
spin-singlet ⇤⇤, 1p

2
(⌅

0
n + ⌅

�
p) and 1p

3
(⌃

+
⌃

�
+ ⌃

0
⌃

0
+ ⌃

�
⌃

+
) states, see Fig. 18. Since such a

complete basis of operators was not used to form the correlation functions [20], direct constraints
on scattering amplitudes in these two irreps could not be obtained.3 On the other hand, the 27,
10, 10 and 8A irreps each contain at least one flavor channel that does not suffer from mixing into
other flavor channels. For example, NN (

1
S0), NN (

3
S1), ⌃

+
p (

3
S1) and 1p

2
(⌅

0
n + ⌅

�
p) (

3
S1)

can be used as the interpolating operators to constrain the lowest-lying spectra of the 27, 10, 10

and 8A irreps, respectively, as is evident from Figs. 17-18.
At low energies, the leading S-wave interactions of two octet baryons can be described by a

Lagrange density[53] in a pionless EFT [72] of the form,

L(0)
BB = �c1Tr(B†

i BiB
†
jBj) � c2Tr(B†

i BjB
†
jBi) � c3Tr(B†

i B
†
jBiBj)

�c4Tr(B†
i B

†
jBjBi) � c5Tr(B†

i Bi)Tr(B†
jBj) � c6Tr(B†

i Bj)Tr(B†
jBi). (11)

Here, B is the octet baryon matrix,

B =

2

664

⌃0p
2

+

⇤p
6

⌃

+
p

⌃

� �⌃0p
2

+

⇤p
6

n

⌅

�
⌅

0 �
q

2
3⇤

3

775 , (12)

where Roman indices on the B fields denote spin components. The Savage-Wise (SW) coefficients
c1, . . . , c6 can be matched to scattering amplitudes at LO in a momentum expansion. For natural
interactions, i.e., when the scattering length is comparable to the range of interactions, the relation-
ships between the scattering lengths and the SW coefficients are presented in Ref. [53] for various
baryon-baryon channels. However, as is known in nature, and was deduced previously for the heavy
quark masses of this work [21], the S-wave interactions in both two-nucleon channels appear to be
unnatural. The present investigation reconfirms the unnatural nature of interactions in the two-
nucleon channels (belonging to the 27 and 10 irreps) and further points to the similar feature in
channels belonging to the 10 and 8A irreps. For unnatural S-wave interactions, the required power
counting of the amplitude is produced in the Kaplan, Savage and Wise (KSW) scheme [73, 74].
The relations of Ref. [53] for unnatural scattering lengths in terms of SU(3) coefficients c1, . . . , c6

3 The channel with the quantum numbers of ⇤⇤ (

1S0) in S-wave exhibits a somewhat deep bound state [20]. As a
result, there is a sufficiently large gap to the second-lowest energy level that even a single interpolating operator
should obtain the ground-state energy correctly. This becomes more challenging for closely-spaced excited states
that can only be constrained with multiple interpolating operators. A very deeply bound H-dibaryon in nature is
conjectured to have significant cosmological consequences [71].

Under chiral SU(3)L × SU(3)R symmetry

ξ → LξU † = UξR† , (4)

where in general U is a complicated function of L,R and the meson fields Π. For transfor-
mations V = L = R in the unbroken SU(3)V subgroup U = V .

The baryon fields are introduced as a 3× 3 octet matrix

B =

⎡

⎢

⎣

Σ0/
√
2 + Λ/

√
6 Σ+ p

Σ− −Σ0/
√
2 + Λ/

√
6 n

Ξ− Ξ0 −
√

2
3Λ

⎤

⎥

⎦
, (5)

that transforms under chiral SU(3)L × SU(3)R as

B → UBU † . (6)

We construct a chiral Lagrangian by treating the baryons as heavy static 2-component
fields. The chiral Lagrangian is written as

L = L(1) + L(2) + . . . , (7)

where L(j) contains 2j baryon fields.
L(1) is the familiar heavy baryon chiral Lagrangian that gives the interactions of the

baryon octet with the pseudo-Goldstone bosons. At leading order in chiral perturbation
theory

L(1) = TrB†
j i∂0Bj + iT rB†

j [V0, Bj ]

−DTrB†
j σ⃗jk{A⃗, Bk}− FTrB†

j σ⃗jk[A⃗, Bk] , (8)

with the repeated spin indices j and k summed over 1,2 and the vector and axial-vector
chiral fields are

Vµ =
1

2
(ξ†∂µξ + ξ∂µξ

†) , (9)

Aµ =
i

2
(ξ†∂µξ − ξ∂µξ

†) . (10)

Nuclear β decay and semileptonic hyperon decay give F ≃ 0.44 and D ≃ 0.81 at tree-level.
At higher order in chiral perturbation theory there are corrections to Eq. (8) coming from
terms with more derivatives and terms with insertions of the light quark mass matrix.

Interactions between baryons mediated by pseudo-Goldstone boson exchange give rise to
hyperon mass shifts. At the same order in chiral perturbation theory (i.e., order p3F ) terms
in L with four baryon fields (and no derivatives) also play a role. They are given by

L(2) = −
c1
f 2

Tr(B†
iBiB

†
jBj)−

c2
f 2

Tr(B†
iBjB

†
jBi)

−
c3
f 2

Tr(B†
iB

†
jBiBj)−

c4
f 2

Tr(B†
iB

†
jBjBi)

−
c5
f 2

Tr(B†
iBi)Tr(B

†
jBj)−

c6
f 2

Tr(B†
iBj)Tr(B

†
jBi) . (11)

3

Spin indices
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coefficients c1, . . . , c6 become
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where MB denotes the baryon mass, and the ci coefficients on the right-hand side are evaluated at
the renormalization scale µ. For natural interactions, the renormalization scale µ is set equal to zero
in the left-hand side of these equations, corresponding to a tree-level expansion of the scattering
amplitude in these couplings.

The large-Nc limit has interesting consequences and gives rise to further simplification of the
interactions of two baryons [54]. As argued in Ref. [54], in the limit of SU(2) flavor symmetry, the
interactions among two nucleons are invariant under a spin-flavor SU(4) symmetry up to corrections
that scale as 1/N

2
c . Including the strange quarks and in the limit of SU(3) flavor symmetry,

interactions are invariant under an SU(6) symmetry up to corrections that scale as 1/Nc. Focussing
on the latter case (which contains the former case as a subgroup), it can be shown that there are only
two independent dimension-six SU(6)-symmetric interactions of two octet baryons, with coefficients
a and b.4 These are expressed in terms of a baryon field that transforms as a three-index symmetric
tensor under SU(6) [54]. The corresponding coefficients a and b can, once again, be matched to the
scattering amplitudes at LO in a momentum expansion. For unnaturally large scattering lengths,
the SU(3) relations in Eqs. (13) become

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Nc
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where the coefficients on the right-hand side are evaluated at the renormalization scale µ. For
natural interactions, µ is set equal to zero in the left-hand side of these equations, corresponding
to a tree-level expansion of the amplitudes in these couplings. Note that the scattering lengths
in channels belonging to the 27 and 10 are the same up to 1/N

2
c corrections. Recalling that the

4 The SU(6) coefficient “a” should not be confused with the scattering length. In the following sections, the scattering
length carries a superscript denoting the irrep it corresponds to, while the SU(6) coefficient a is left as is. In a
few cases where the subscripts on scattering lengths are omitted, these two letters can be distinguished from the
context. Similarly, the SU(6) coefficient “b” should not be confused with the lattice spacing.
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where MB denotes the baryon mass, and the ci coefficients on the right-hand side are evaluated at
the renormalization scale µ. For natural interactions, the renormalization scale µ is set equal to zero
in the left-hand side of these equations, corresponding to a tree-level expansion of the scattering
amplitude in these couplings.

The large-Nc limit has interesting consequences and gives rise to further simplification of the
interactions of two baryons [54]. As argued in Ref. [54], in the limit of SU(2) flavor symmetry, the
interactions among two nucleons are invariant under a spin-flavor SU(4) symmetry up to corrections
that scale as 1/N
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c . Including the strange quarks and in the limit of SU(3) flavor symmetry,

interactions are invariant under an SU(6) symmetry up to corrections that scale as 1/Nc. Focussing
on the latter case (which contains the former case as a subgroup), it can be shown that there are only
two independent dimension-six SU(6)-symmetric interactions of two octet baryons, with coefficients
a and b.4 These are expressed in terms of a baryon field that transforms as a three-index symmetric
tensor under SU(6) [54]. The corresponding coefficients a and b can, once again, be matched to the
scattering amplitudes at LO in a momentum expansion. For unnaturally large scattering lengths,
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where the coefficients on the right-hand side are evaluated at the renormalization scale µ. For
natural interactions, µ is set equal to zero in the left-hand side of these equations, corresponding
to a tree-level expansion of the amplitudes in these couplings. Note that the scattering lengths
in channels belonging to the 27 and 10 are the same up to 1/N

2
c corrections. Recalling that the

4 The SU(6) coefficient “a” should not be confused with the scattering length. In the following sections, the scattering
length carries a superscript denoting the irrep it corresponds to, while the SU(6) coefficient a is left as is. In a
few cases where the subscripts on scattering lengths are omitted, these two letters can be distinguished from the
context. Similarly, the SU(6) coefficient “b” should not be confused with the lattice spacing.

Renormalization scale for unnatural interactions

(Step III): To impact studies of larger systems of 
baryons, match to a proper EFT:

Savage and Wise (1996).



EXERCISE 5

Starting from the leading-order SU(3) flavor-symmetric Lagrangian for interactions of two 
octet baryons, derive the relation between the scattering length and Savage-Wise 
coefficients in the 27 irreducible representation. You can express the scattering amplitude 
in terms of a leading-order effective range expansion and set     equal to zero (assuming 
natural interactions).

μ

BONUS EXERCISE 3

Repeat the same exercise for all other irreducible representations of SU(3). If you have 
already automated this procedure using Mathematica or other programs in the above 
exercise, all relations can be obtained at the same time. 
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example, to obtain the energy eigenvalues beyond the ground state in the 1 irrep, a matrix of
correlation functions in flavor space must be formed from interpolating operators corresponding to
spin-singlet ⇤⇤, 1p

2
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�
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+
) states, see Fig. 18. Since such a

complete basis of operators was not used to form the correlation functions [20], direct constraints
on scattering amplitudes in these two irreps could not be obtained.3 On the other hand, the 27,
10, 10 and 8A irreps each contain at least one flavor channel that does not suffer from mixing into
other flavor channels. For example, NN (

1
S0), NN (

3
S1), ⌃

+
p (

3
S1) and 1p

2
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0
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�
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3
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can be used as the interpolating operators to constrain the lowest-lying spectra of the 27, 10, 10

and 8A irreps, respectively, as is evident from Figs. 17-18.
At low energies, the leading S-wave interactions of two octet baryons can be described by a

Lagrange density[53] in a pionless EFT [72] of the form,

L(0)
BB = �c1Tr(B†

i BiB
†
jBj) � c2Tr(B†

i BjB
†
jBi) � c3Tr(B†

i B
†
jBiBj)

�c4Tr(B†
i B

†
jBjBi) � c5Tr(B†

i Bi)Tr(B†
jBj) � c6Tr(B†

i Bj)Tr(B†
jBi). (11)

Here, B is the octet baryon matrix,

B =
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where Roman indices on the B fields denote spin components. The Savage-Wise (SW) coefficients
c1, . . . , c6 can be matched to scattering amplitudes at LO in a momentum expansion. For natural
interactions, i.e., when the scattering length is comparable to the range of interactions, the relation-
ships between the scattering lengths and the SW coefficients are presented in Ref. [53] for various
baryon-baryon channels. However, as is known in nature, and was deduced previously for the heavy
quark masses of this work [21], the S-wave interactions in both two-nucleon channels appear to be
unnatural. The present investigation reconfirms the unnatural nature of interactions in the two-
nucleon channels (belonging to the 27 and 10 irreps) and further points to the similar feature in
channels belonging to the 10 and 8A irreps. For unnatural S-wave interactions, the required power
counting of the amplitude is produced in the Kaplan, Savage and Wise (KSW) scheme [73, 74].
The relations of Ref. [53] for unnatural scattering lengths in terms of SU(3) coefficients c1, . . . , c6

3 The channel with the quantum numbers of ⇤⇤ (

1S0) in S-wave exhibits a somewhat deep bound state [20]. As a
result, there is a sufficiently large gap to the second-lowest energy level that even a single interpolating operator
should obtain the ground-state energy correctly. This becomes more challenging for closely-spaced excited states
that can only be constrained with multiple interpolating operators. A very deeply bound H-dibaryon in nature is
conjectured to have significant cosmological consequences [71].

(Step III): To impact studies of larger systems of 
baryons, match to a proper EFT:

SU(Nf = 3) SU(2Nf = 6) SU(16)Kaplan and 
Savage (1998).

This is in fact a prediction of QCD with a large number of colors for nuclear and hyper nuclear interactions.



TWO-BODY INELASTIC SCATTERING
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Coupled-channel generalization of Luescher’s formula is straightforward. Requires 
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For a general proof of the reality of quantization condition with any number of coupled channels

see Refs. [37, 38].

For N=1, one reproduces the result first obtained by Rummukainen and Gottlieb [21] and later

confirmed by Kim et al. [22] and Christ et al. [23] for the case of single-channel moving frame

two-particle systems as follows. First note that it is convenient to evaluate the determinant using

the spherical harmonic basis of ⇤GV , Eq. (12), and the on-shell scattering amplitude Mi [22]

(Mi)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

e2i�
(l)
i (q⇥i ) � 1

2i
. (18)

If the two equal-mass meson interpolating operator is in the A+

1

irreducible representation of the

cubic group, the energy eigenstates of the system have overlap with the l = 0, 4, 6, . . . angular
momentum states at zero total momentum, making the truncation at lmax = 0 a rather reasonable

approximation in the low-energy limit. When P ⌦= 0, the symmetry group is reduced, and at

low energies the l = 0 will mix with the l = 2 partial wave as well as with higher partial waves

[21]. For two mesons with di⌥erent masses, the symmetry group is even further reduced in the

boosted frame, making the mixing to occur between l = 0 and l = 1 states as well as with higher

angular momentum states [49]. An easy way to see the latter is to note that in contrast with the

case of degenerate masses, the kinematic function cPlm as defined in Eq. (13) is non-vanishing for

odd l when the masses are di⌥erent. As a result even and odd angular momenta can mix in the

quantization condition. This however does not indicate that the spectrum of the system is not

invariant under parity. As long as all interactions between the particles are parity conserving, the

spectrum of the system and its parity transformed counterpart are the same. One should note

that the determinant condition, Eq. (17), guarantees this invariance: any mechanism, for example,

which takes an S-wave scattering state to an intermediate P-wave two-body state, would take it

back to the final S-wave scattering state, and the system ends up in the same parity state.6

Nevertheless, let us assume that the contributions from higher partial waves to the scatterings

are negligible, so that one can truncate the determinant over the angular momentum at lmax = 0.

Then the familiar quantization condition for the S-wave scattering,

q⇥i cot(⇤
0

i ) = 4⌥cP
00

(q⇥2i ), (19)

is recovered. It is convenient to introduce a pseudo-phase defined by

q⇥i cot(↵
P
i ) ⇤ �4⌥cP

00

(q⇥2i ) (20)

to rewrite the quantization condition as

cot(⇤i) = � cot(↵P
i ) ⌥ ⇤i + ↵P

i = m⌥, (21)

where m is an integer. In this form, the quantization condition is manifestly real.

For the N=2 case, the expression for the scattering amplitude in Eq. (18) is modified, as it

now depends on the mixing angle ⌅̄, and the scattering matrix is no longer diagonal, while still

symmetric. By labeling the o⌥-diagonal terms as MI,II , and using the definition of the S-matrix

for the coupled-channel system, Eq. (1), the scattering matrix elements can be written as

(Mi,i)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

cos(2⌅̄)e2i�
(l1)
i (q⇥i ) � 1

2i
, (22)

(MI,II)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
p
nInIIq⇥Iq

⇥
II

sin(2⌅̄)
ei(�

(l1)
I (q⇥I )+�

(l1)
II (q⇥II))

2
, (23)

6 Note that under parity Zd
lm ⇥ (�1)l Zd

lm. Note also that under the interchange of particles Zd
lm ⇥ (�1)l Zd

lm, so
that for degenerate masses the cPlm functions vanish for odd l. This is expected since the parity transformation in
the CM frame is equivalent to the interchange of particles. However, as is explained above for the case of parity
transformation, despite the fact that ⇤GV is not symmetric with respect to the particle masses, the quantization
condition is invariant under the interchange of the particles.

Mixing angle between two channels

Channel index I or II

Coupled-channel generalization of Luescher’s formula is straightforward. Requires 
upgrading amplitudes and finite-volume functions to matrices in the channel space:
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Derive the manifestly real form of a coupled two-channel scattering in the S-wave limit:
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where the usual relativistic normalization of the states is used in evaluating the S-matrix elements.

From Eq. (17) one obtains

det

✓
1 + ⇤GV

I MI,I ⇤GV
I MI,II

⇤GV
IIMI,II 1 + ⇤GV

IIMII,II

◆
= 0, (24)

where the determinant is not only over the number of channels but also over angular momentum

which is left implicit. In deriving this result we have made no assumption about the relative size

of the scattering matrix elements, but when lmax = 0, we recover the LO result in Eq. (8). For

lmax = 0 one can use the pseudo-phase definition in Eq. (20) to rewrite the quantization condition

in a manifestly real form,

cos 2⌅̄ cos
�
↵P
1

+ ⇤
1

� ↵P
2

� ⇤
2

�
= cos

�
↵P
1

+ ⇤
1

+ ↵P
2

+ ⇤
2

�
, (25)

which is equivalent to the result given in Refs. [24, 25] in the CM frame.7 It is easy to see that

in the ⌅̄ ⌃ 0 limit, one recovers the decoupled quantization conditions for both channels I and II,
Eq. (21).

The extension to a larger number of coupled channels is straightforward. As an example, we

consider the N=3 case. Unitarity as well as time-reversal invariance allow us to parametrize the

S-matrix using three phases shifts {⇤I , ⇤II , ⇤II} and three mixing angles {⌅̄
1

, ⌅̄
2

, ⌅̄
3

}

S
3

=
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@
ei2�I c

1

iei(�I+�II)s
1

c
3
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1

s
3

iei(�I+�II)s
1

c
2

ei2�II (c
1

c
2

c
3

� s
2

s
3

) iei(�I+�III) (c
1

c
2

s
3

+ s
2

c
3

)

iei(�I+�III)s
1

s
2

iei(�II+�III) (c
1

s
2

c
3

+ c
2

s
3

) iei2�III (c
1

s
2

s
3

� c
2

c
3

)

1

A , (26)

where ci = cos(2⌅̄i), si = sin(2⌅̄i). Note that in the limit ⌅
2

= ⌅
3

= 0 the third channel decouples,

and one obtains a block diagonal matrix composed of S
2

corresponding to the I � II coupled

channel, as well as a single element corresponding to the scattering in the uncoupled channel III.
The spectrum of three-coupled channel is obtained from

det

0

@
1 + ⇤GV

I MI,I ⇤GV
I MI,II ⇤GV

I MI,III

⇤GV
IIMII,I 1 + ⇤GV

IIMII,II ⇤GV
IIMII,III

⇤GV
IIIMIII,I ⇤GV

IIIMIII,II 1 + ⇤GV
IIIMIII,III

1

A = 0, (27)

where the scattering matrix elements can be determined from Eq. (26) using the relationship

between the scattering amplitudes and the S-matrix elements,

(Mi,j)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
q

ninjq⇥i q
⇥
j

(S(l1)
3

)i,j � ⇤i,j
2i

. (28)

III. TWO-BODY ELECTROWEAK MATRIX ELEMENTS IN A FINITE VOLUME

As discussed in the introduction, electroweak processes in the two-hadron sector of QCD en-

compass a variety of interesting processes, so it is desirable to calculate the electroweak matrix

elements directly from LQCD. One of the very first attempts to develop a formalism for such

processes from a FV Euclidean calculation is due to Lellouch and Lüscher. In their seminal work

[39], they restricted the analysis to K ⌃ ⌥⌥ decay in the kaon’s rest frame, and showed that the

7 The agreement between Eq. (25) and Eq. (37) of Ref. [24] can be achieved by noting that the pseudo-phase ⌥P
i

as defined in Eq. (20) is equivalent to the negative �i as defined in Eq. (36) of Ref. [24]. On the other hand, the
mixing parameter ⌅ as defined in Eq. (1) is related to the mixing parameter ⇧0 defined in Eq. (14) of Ref. [24]
through ⇧0 = cos 2⌅̄.

Here 1 and 2 indices refer to the two channels and superscript (0) is removed from the S-
wave phase shifts for brevity. The finite-volume phase function       is defined as: 

for i=1,2. This is a generic result: Luescher’s “quantization condition” is a real condition.
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For a general proof of the reality of quantization condition with any number of coupled channels

see Refs. [37, 38].

For N=1, one reproduces the result first obtained by Rummukainen and Gottlieb [21] and later

confirmed by Kim et al. [22] and Christ et al. [23] for the case of single-channel moving frame

two-particle systems as follows. First note that it is convenient to evaluate the determinant using

the spherical harmonic basis of ⇤GV , Eq. (12), and the on-shell scattering amplitude Mi [22]

(Mi)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

e2i�
(l)
i (q⇥i ) � 1

2i
. (18)

If the two equal-mass meson interpolating operator is in the A+

1

irreducible representation of the

cubic group, the energy eigenstates of the system have overlap with the l = 0, 4, 6, . . . angular
momentum states at zero total momentum, making the truncation at lmax = 0 a rather reasonable

approximation in the low-energy limit. When P ⌦= 0, the symmetry group is reduced, and at

low energies the l = 0 will mix with the l = 2 partial wave as well as with higher partial waves

[21]. For two mesons with di⌥erent masses, the symmetry group is even further reduced in the

boosted frame, making the mixing to occur between l = 0 and l = 1 states as well as with higher

angular momentum states [49]. An easy way to see the latter is to note that in contrast with the

case of degenerate masses, the kinematic function cPlm as defined in Eq. (13) is non-vanishing for

odd l when the masses are di⌥erent. As a result even and odd angular momenta can mix in the

quantization condition. This however does not indicate that the spectrum of the system is not

invariant under parity. As long as all interactions between the particles are parity conserving, the

spectrum of the system and its parity transformed counterpart are the same. One should note

that the determinant condition, Eq. (17), guarantees this invariance: any mechanism, for example,

which takes an S-wave scattering state to an intermediate P-wave two-body state, would take it

back to the final S-wave scattering state, and the system ends up in the same parity state.6

Nevertheless, let us assume that the contributions from higher partial waves to the scatterings

are negligible, so that one can truncate the determinant over the angular momentum at lmax = 0.

Then the familiar quantization condition for the S-wave scattering,

q⇥i cot(⇤
0

i ) = 4⌥cP
00

(q⇥2i ), (19)

is recovered. It is convenient to introduce a pseudo-phase defined by

q⇥i cot(↵
P
i ) ⇤ �4⌥cP

00

(q⇥2i ) (20)

to rewrite the quantization condition as

cot(⇤i) = � cot(↵P
i ) ⌥ ⇤i + ↵P

i = m⌥, (21)

where m is an integer. In this form, the quantization condition is manifestly real.

For the N=2 case, the expression for the scattering amplitude in Eq. (18) is modified, as it

now depends on the mixing angle ⌅̄, and the scattering matrix is no longer diagonal, while still

symmetric. By labeling the o⌥-diagonal terms as MI,II , and using the definition of the S-matrix

for the coupled-channel system, Eq. (1), the scattering matrix elements can be written as

(Mi,i)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥

niq⇥i

cos(2⌅̄)e2i�
(l1)
i (q⇥i ) � 1

2i
, (22)

(MI,II)l1,m1;l2,m2 = ⇤l1,l2⇤m1,m2

8⌥E⇥
p
nInIIq⇥Iq

⇥
II

sin(2⌅̄)
ei(�

(l1)
I (q⇥I )+�

(l1)
II (q⇥II))

2
, (23)

6 Note that under parity Zd
lm ⇥ (�1)l Zd

lm. Note also that under the interchange of particles Zd
lm ⇥ (�1)l Zd

lm, so
that for degenerate masses the cPlm functions vanish for odd l. This is expected since the parity transformation in
the CM frame is equivalent to the interchange of particles. However, as is explained above for the case of parity
transformation, despite the fact that ⇤GV is not symmetric with respect to the particle masses, the quantization
condition is invariant under the interchange of the particles.

�P
i
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FIG. 6. The spectra obtained from various choices of operator basis in the T�

1

lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.

vant in this energy region, and later show that indeed the
⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �

1

(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
onance.

In elastic scattering, the Breit-Wigner parameteriza-
tion is commonly used to describe isolated resonances –
in our case, with s = E2

cm, this takes the form

t(s) =
1

⇢(s)

p
s�(s)

m2

R

� s� i
p
s�(s)

, (2)

with the energy dependent width, �(s) = g

2
R

6⇡

k

3

s

, includ-
ing a coupling constant, g

R

, and the threshold behavior
required in P -wave scattering. Attempting to describe
22 levels below 4⇡ threshold, we find the following pa-
rameters,

m
R

= 0.13171 (36) (6) · a�1

t


1 0.04

1

�

g
R

= 5.691 (70) (25)

�2/N
dof

= 24.92

22�2

= 1.25 , (3)

where the first set of errors describes the statistical un-
certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
matrix illustrates the statistical correlation between pa-
rameters, which in this case is seen to be very small. The
corresponding �

1

(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k3 barrier behavior at higher energies can be con-
sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �2 values and values of m

R

and g
R

that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < a

t

Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m

R

, g
R

values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
ity in the single-channel and coupled-channel cases. Our
implementation is presented in [16] and reads, for `-wave
scattering,

t�1

ij

(s) =
1

(2k
i

)`
K�1

ij

(s)
1

(2k
j

)`
+ I

ij

(s) , (4)

where K
ij

(s) is a real function, and I
ij

(s) is the
Chew-Mandelstam function whose imaginary part above

Example: T1 irrep
energies

Now let’s see an application of the coupled-channel formalism: Hunting resonances using 
lattice QCD in the  P-wave coupled                   channel Wilson et al.(HadSpec), 

Phys.Rev. D92 (2015), 094502
⇡⇡ �KK

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3
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FIG. 7. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift extracted from energy levels plotted in Figures 3 and 4, assuming
F -wave and higher partial-wave amplitudes are negligible in this energy region. Two points whose phase-shift values have
rather large error bars are not shown. Grey dashed vertical line shows the ⇡⇡⇡⇡ threshold.

FIG. 8. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curve shows the Breit-Wigner descrip-
tion whose parameters are given in Eq. 3.

thresholds, Im I
ij

(s) = ��
ij

⇢
i

(s), ensures unitarity, and
whose real part is defined by a dispersive integral that
ensures that t(s) has no pseudothreshold branch point
(at s = 0).

In single-channel ⇡⇡ scattering with ` = 1, the K-
matrix is just a single function, and a convenient form
is

K(s) =
g2

m2 � s
+

NX

n=0

�
n

✓
s

s
0

◆
n

, (5)

with s
0

= 4m2

⇡

. Along with a suitable subtraction in the
dispersive integral for I(s) so that Re I(s = m2) = 0, this
gives a t(s) behavior that is similar to a Breit-Wigner, but
with the polynomial allowing more freedom in the en-
ergy dependence. The 22 energy levels below 4⇡ thresh-

FIG. 9. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curves show the Breit-Wigner fit to
the whole elastic region (grey), a Breit-Wigner with Hippel-
Quigg [41] barrier corrections (orange), and a Breit-Wigner
description of a narrower energy region around the resonance
peak (red).

old have been described by this form for three choices,
N = 0, 1, 2, and without any polynomial term at all –
the results are presented in Table III. There is negli-
gible improvement in the �2/N

dof

adding terms linear
or quadratic in s, and the corresponding parameters are
found to possess an increasingly large degree of correla-
tion. The phase-shifts corresponding to the fits in Ta-
ble III are plotted in Figure 10.
The assumption that ⇡⇡ F -wave scattering plays a

negligible role in determining the spectrum in the elas-
tic region, as was assumed in the previous analysis, can
be tested using the energy levels we have determined.
The irreps [100] B

1

and B
2

have JP = 3� as their

P-wave        phase shift as a function of energy⇡⇡Example: T1 irrep
energies

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502
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all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.

vant in this energy region, and later show that indeed the
⇡⇡ F -wave amplitude and higher play no significant role.
When partial waves above ` = 1 are negligible, then us-
ing Eq. 1 one can obtain an estimate of �
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(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
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cm, this takes the form
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certainty and the second comes from varying the pion
mass and anisotropy, ⇠, within their uncertainties. The
matrix illustrates the statistical correlation between pa-
rameters, which in this case is seen to be very small. The
corresponding �

1

(Ecm) is plotted in Figure 8.
Modifications to the Breit-Wigner form which tame

the k3 barrier behavior at higher energies can be con-
sidered [22, 41] – fits to 22 levels with these forms yield
barely improved �2 values and values of m
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and g
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that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
Wigner of Eq. 2 to 0.117 < a
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Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m
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, g
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values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
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implementation is presented in [16] and reads, for `-wave
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Fit to a Breit-Wigner form
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FIG. 7. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift extracted from energy levels plotted in Figures 3 and 4, assuming
F -wave and higher partial-wave amplitudes are negligible in this energy region. Two points whose phase-shift values have
rather large error bars are not shown. Grey dashed vertical line shows the ⇡⇡⇡⇡ threshold.
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FIG. 8. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curve shows the Breit-Wigner descrip-
tion whose parameters are given in Eq. 3.
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+
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FIG. 9. P -wave ⇡⇡ isospin-1 elastic scattering phase-shift.
Points as in Figure 7. Curves show the Breit-Wigner fit to
the whole elastic region (grey), a Breit-Wigner with Hippel-
Quigg [41] barrier corrections (orange), and a Breit-Wigner
description of a narrower energy region around the resonance
peak (red).
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more details.
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that
are statistically compatible with those given above. Re-
stricting the energy region being described by the Breit-
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the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m
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values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
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implementation is presented in [16] and reads, for `-wave
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These phase-shift values are plotted in Figure 7, where
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ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
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FIG. 4. As Fig. 3 for the E- and B-type little-group irreps which have JP = 1� as the lowest subduced partial wave.
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FIG. 5. As Fig. 3 for the B-type little group irreps with
~P = [100] which have JP = 3� as the lowest subduced partial
wave.

by the equation,
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h
�
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�
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(Ecm) t
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ij
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⇣
�
``

0�
nn

0 + iM~

P,⇤

`n;`

0
n

0(q2
i

)
⌘ i

= 0.

(1)

where the determinant is over the channel indices
i and the partial-waves, `, subduced into irrep ⇤.
⇢
i

(Ecm) = 2k
i

/Ecm is the phase space for channel i,

and the finite-volume dependent matrix M~

P,⇤

`n;`

0
n

0 , with
q
i

= k
i

L/2⇡ where k
i

is the cm momentum in channel i,
is described in Eq. 7 of Ref. [16] and Eq. 89 of Ref. [7].
This expression was derived in Refs. [11–14], and in the
case of a single open channel, reduces to the conditions
presented earlier in [6] and [7, 8]. In the elastic case,

t(`) = 1

⇢

ei�` sin �
`

, and scattering can be described by a

single real function, the scattering phase-shift, �
`

(Ecm).
For a given t-matrix, the solutions of Eq. 1 provide

the finite volume spectrum, {En}, in each lattice ir-
rep ⇤ with some overall momentum ~P . In the elastic
case, if higher partial-waves have negligibly small am-
plitudes, as one expects at low energies, the equation
can be solved for �

1

(En) for each calculated En. In a
two-channel scattering problem there are three unknown
functions of energy to determine for each partial-wave4

so for a given level En this equation is underconstrained.
If higher partial waves are not negligible, there will be
still further unknowns. Fortunately, we are able to ex-
tract multiple energy levels in many irreps and these can
be simultaneously used to constrain the scattering am-
plitude as a function of energy. By parameterizing the
energy-dependence of the t-matrix, we can minimise a
�2 function describing the di↵erence between the calcu-
lated spectrum and the spectrum given by solutions of
Eq. 1 for the t-matrix parameterization5. This method
was first applied to a coupled-channel situation using lat-
tice QCD energy levels in Ref. [15] and further details of
this method and our implementation may be found in
Ref. [16].

A. Elastic ⇡⇡ scattering

We first study the elastic region, by considering only
those levels extracted below the 4⇡ threshold, which lies
slightly below the KK threshold. We will initially pro-
ceed assuming that only ⇡⇡ scattering in P -wave is rele-

4

three independent parameters are required to describe a unitary,

time-reversal invariant, two-channel t-matrix

5

The explicit form of the �2

is provided in Eq. 9 of ref. [22]

M(s)
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FIG. 6. The spectra obtained from various choices of operator basis in the T�

1

lattice irrep. The leftmost column contains
all of the operators we considered, including “single-meson-like” operators subduced from J = 1(orange), J = 3(blue) and
J = 4(grey). The remaining columns use fewer operators as indicated. The histograms show the suitably normalized magnitudes
of the contributions of each operator to each energy level, hn|O†|0i, obtained from the variational solutions. See [28, 29] for
more details.
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When partial waves above ` = 1 are negligible, then us-
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(Ecm) at each
calculated value of Ecm, as plotted in Figures 3 and 4.
These phase-shift values are plotted in Figure 7, where
we see a clear resonant behavior above ⇡⇡ threshold.

In order to describe the resonant content of the scatter-
ing amplitude we may explore energy-dependent param-
eterizations. We will consider various choices of energy-
dependent parameterization in the �2 minimization de-
scribed above and will later discuss their pole content,
finding that all choices capable of describing the finite
volume spectrum have a pole at the same location in
the complex-energy plane, corresponding to a single res-
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tion is commonly used to describe isolated resonances –
in our case, with s = E2

cm, this takes the form

t(s) =
1

⇢(s)

p
s�(s)

m2

R

� s� i
p
s�(s)

, (2)

with the energy dependent width, �(s) = g

2
R

6⇡

k

3

s

, includ-
ing a coupling constant, g

R

, and the threshold behavior
required in P -wave scattering. Attempting to describe
22 levels below 4⇡ threshold, we find the following pa-
rameters,

m
R

= 0.13171 (36) (6) · a�1

t


1 0.04

1

�

g
R

= 5.691 (70) (25)

�2/N
dof

= 24.92

22�2

= 1.25 , (3)

where the first set of errors describes the statistical un-
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Ecm < 0.146, i.e. excluding
the tails of the resonance, leaves 14 energy levels – fitting
these also leads to m
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values compatible with those
given above. The corresponding phase-shifts for these
modified fits are plotted in Figure 9.
A more flexible parameterization scheme is provided

by the K-matrix, which automatically satisfies unitar-
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Example: T1 irrep
energies

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502



Using a range of parametrizations:
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Type Explicit form N
pars

�2/N
dof

K�matrix

Kij =
gigj
m2

�s
+ �(0)

ij ; gK¯K = 0 5 1.75

Kij =
gigj
m2

�s
+ �(0)

ij ; �⇡⇡,K¯K = 0 5 1.48

Kij =
gigj
m2

�s
+ �(0)

ij ; �K¯K,K¯K = 0 5 1.37

Kij =
gigj
m2

�s
+ �(0)

ij 6 1.37

Kij =
gigj
m2

�s
+ �(1)

ij s 6 1.41

Kij =
gigj
m2

�s
+ �(0)

ij + �(1)

ij s; gK¯K = 0 8 1.52

Kij =
gigj
m2

�s
+ �(0)

ij + �(1)

ij s 9 1.39

K�matrix
with g(s)

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
6 1.34

gi(s) = g(0)i + g(1)i s; �K¯K,K¯K = 0, �⇡⇡,K¯K = 0

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
6 1.33

gi(s) = g(0)i + g(1)i s; �⇡⇡,⇡⇡ = 0, �⇡⇡,K¯K = 0

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
7 1.38

g⇡⇡(s) = g(0)⇡⇡ + g(1)⇡⇡ s, gK¯K(s) = g(0)
K¯K

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
7 1.35

g⇡⇡(s) = g(0)⇡⇡ , gKK(s) = g(0)
K¯K

+ g(1)
K¯K

s

Kij =
gi(s)gj(s)

m2
�s

+ �(0)

ij ;
8 1.37

gi(s) = g(0)i + g(1)i s

K�matrix
with

Ii(s) = �i⇢i(s)

Kij =
gigj
m2

�s
+ �(0)

ij ; gKK = 0 5 1.57

Kij =
gigj
m2

�s
+ �(0)

ij ; �⇡⇡,K¯K = 0 5 1.40

Kij =
gigj
m2

�s
+ �(0)

ij ; �K¯K,K¯K = 0 5 1.58

Kij =
gigj
m2

�s
+ �(0)

ij 6 1.45

TABLE IV. Coupled-channel K-matrix parameterizations.
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errorbars showing the spectrum corresponding to the param-
eterization in Eq. 7.
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III. RESONANCE INTERPRETATION

Although we constrain partial-wave t-matrices only for
real values of energy, either from experimental scatter-
ing, or in this case from finite-volume spectra, the am-
plitudes may be considered to be functions of a complex
value of s = E2

cm. That the singularity structure of t(s)
might be important is already apparent if we consider the
elastic unitarity condition, Im t(s) = ⇢(s) |t(s)|2, where
⇢(s) = 2kcm(s)/

p
s has a square root branch cut begin-

ning at the kinematic threshold. It follows that t(s) also
has this branch cut and remains single-valued only if we
consider two Riemann sheets, one where Im kcm is posi-
tive, the “physical” sheet, named because physical scat-
tering corresponds to energies s + i✏ on this sheet, and
one where Im kcm is negative, the “unphysical” sheet. As
more two-body channels open, a greater multiplicity of
sheets arises, corresponding to the increased number of
channel momenta.

The rapid phase and amplitude variation that we as-
sociate with a narrow resonance can be caused by a pole

at complex values of s = s
0

=
�
m� i 1

2

�
�
2

on unphysical
sheets6. We may consider our parameterized t-matrices,
looking for poles at complex values of s, of the form
t
ij

(s) ⇠ cicj

s0�s

where we factorize the residue of the pole
into couplings to each channel, i.

We find that in every case we considered capable of
describing the finite-volume spectrum, both in single-
channel and coupled-channels, there is a statistically
well-determined pole near a

t

p
s
0

=
�
0.1306� i

2

0.015
�
.

Parameterizations that do not contain the freedom for a
resonance pole to occur were not capable of successfully
describing the finite volume spectra. Figure 14 illustrates
the position of the found pole, with the lower portion of
the diagram showing a zoomed region in which the de-
termined pole is shown for a range of di↵erent parame-
terizations. A best estimate for the pole position, whose
uncertainties allow for the spread over parameterizations
is

a
t

p
s
0

=

✓
0.13055(36)� i

2
0.0150(14)

◆
.

The corresponding coupling to the ⇡⇡ channel also shows
very little variation under parameterizations with a good
estimate being a

t

c
⇡⇡

= 0.049(3) e�i⇡ 0.06(1). The cou-
pling to KK, which only arises in coupled-channel anal-
ysis is not well determined, having a large statistical un-
certainty. Along with the observation that the elastic
data can be very well described without invoking any
KK amplitude, we conclude that we have not reliably
constrained c

KK

. This is to be expected as the e↵ect
of the KK amplitude on the spectrum in finite-volume

6

a conjugate pole must also be present at s⇤
0

, but this pole is

usually much further from the region of physical scattering.

decays exponentially as we go lower in energy below the
KK threshold.
If we follow the procedure used in previous calcula-

tions, making use of the ⌦ baryon mass determined on
these lattice configurations, to set a physical scale we find
a
t

= atm⌦

m

phys
⌦

, where a
t

m
⌦

is determined using lattice QCD

computation and mphys

⌦

= 1672.5MeV is the experimen-
tal mass. Using 16 distillation vectors on this lattice we
have determined a

t

m
⌦

= 0.2789(16), which leads to an
approximate pion mass of m

⇡

= 236 MeV.
With this scale setting, the resonance pole is located

at
p
s
0

=
⇥
783(2)� i

2

90(8)
⇤
MeV. The scale-set Breit-

Wigner mass and width of Eq. 3 are m
BW

= 790(2)MeV,
�
BW

= 87(2)MeV, and a plot of the corresponding
phase-shift with the scale-set energy is presented in Fig-
ure 15.
An earlier calculation by the Hadron Spectrum Col-

laboration considered elastic ⇡⇡ scattering using lattice
configurations with the same quark and gluon action, but
with a larger value of the u, d quark mass, such that
the pion had a mass of 391MeV [22]. We compare the
Breit-Wigner parameters in this study with those deter-
mined for m

⇡

= 391MeV in Table III7. The correspond-

-0.04

-0.03

-0.02

-0.01

0.08 0.10 0.12 0.14 0.16

-0.018

-0.017

-0.016

-0.015

-0.014

-0.013

-0.012

0.128 0.129 0.130 0.131 0.132 0.133

FIG. 14. Resonance pole position on first unphysical sheet.
Zoomed region shows the pole found for a variety of pa-
rameterizations: various descriptions of the elastic amplitude
(red), various K-matrix descriptions of the coupled-channel
t-matrix, using the Chew-Mandelstam phase-space (orange),
and using the simple phase-space (blue).

7

The results presented in [22] su↵er from a small error in the

computation of the o↵-diagonal data covariance, which we fix

here, leading to a very small shift (at the level of 1�) in the

quoted Breit-Wigner parameters with respect to that reference.

Pole position: All three scattering parameters:

Nf = 2 + 1,m⇡ = 236 MeV, V ⇡ (4 fm)3

Wilson et al.(HadSpec), 
Phys.Rev. D92 (2015), 094502
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EXERCISE 7

Total angular momentum and parity can be used to classify two-nucleon states (     ). Using 
the laws of addition of angular momentum as well as Pauli’s exclusion principle, prove 
(justify) the following table. Each pair of numbers refers to (L,S) where S is the total spin 
and L is the total orbital angular momentum of the state.

states. In general, a positive parity two-nucleon state with total angular momentum J is a linear
combination of states with6

✓
L = J ⌥ 1

2

(1 � (�1)

J

), S =

1

2

(1 � (�1)

J

)

◆
, (14)

while in the negative parity sector, the states that are being mixed have7
✓

L = J ⌥ 1

2

(1 + (�1)

J

), S =

1

2

(1 + (�1)

J

)

◆
. (15)

Table (I) shows the allowed spin and angular momentum of NN states in both isosinglet and
isotriplet channels with J  4.

JP
0

+
0

�
1

+
1

�
2

+
2

�
3

+
3

�
4

+
4

�

I=0 — — {(0,1),(2,1)} (1,0) (2,1) — {(2,1),(4,1)} (3,0) (4,1) —
I=1 (0,0) (1,1) — (1,1) (2,0) {(1,1),(3,1)} — (3,1) (4,0) {(3,1),(5,1)}

TABLE I. The allowed spin and angular momentum states, (L, S), for NN-states with J  4. Note that
depending on the parity of the states, the partial-wave mixing can occur in either the isosinglet or isotriplet
channels.

In order to write the most general Lagrangian describing nucleon-nucleon scattering in all spin,
isospin and angular momentum channels, let us introduce an operator that creates an NN-state
with total four-momentum P and the relative momentum k⇤

= k � P
2

in an arbitrary partial-wave
(L, M

L

) in the following way

|NN ; P, k⇤i
LM

L

,SM

S

,IM

I

= N
L

ˆ
d⌦k⇤ Y ⇤

LM

L

(

ˆk
⇤
)k⇤L

h
NT

P�k

ˆP
(SM

S

,IM

I

)

N
k

i†
|0i, (16)

where k⇤
= |k⇤|. ˆP

(SM

S

,IM

I

)

is an operator which projects onto a two-nucleon state with spin
(S, M

S

) and isospin (I, M
I

), and N
L

is a normalization factor. By requiring such state to have
a non-zero norm, and given the anti-commutating nature of nucleon fields, one can infer that for
positive parity states the operator ˆP

(SM

S

,IM

I

)

must be necessarily antisymmetric, while for negative
parity states it must be symmetric. Since this operator is a direct product of two projection
operators in the space of spin and isospin, these requirements can be fulfilled by constructing the
corresponding operators using the appropriate combinations of Pauli matrices, �

j

(⌧
j

), that act on
the spin (isospin) components of the nucleon field. To proceed with such construction, let us define
the following operators

↵I

j

= ⌧
y

⌧
j

, ↵S

j

= �
y

�
j

, �I

= ⌧
y

, �S

= �
y

. (17)

Note that the matrices that are named as ↵ are symmetric while those that are named as � are
antisymmetric. Superscript I (S) implies that the operator is acting on the spin (isospin) space,
and index j = 1, 2, 3 stands for the Cartesian components of the operators. Alternatively one can
form linear combinations of ↵S

j

(↵I

j

) that transform as a rank one spherical tensor.8 Using these

6 The L that is introduced here and elsewhere as the partial-wave label of quantities should not be confused with
the spatial extent of the lattice L that appears in the definition of the cP

lm

functions.
7 Note, however, that for a J-even state in the first case and a J-odd state in the second case, there is only one

angular momentum state allowed and no mixing occurs.
8 A Cartesian vector r can be brought into a spherical vector according to

r(0) ⌘ r
z

, r(±1) ⌘ ⌥ (r
x

± ir
y

)p
2

.
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Which entry corresponds to the deuteron channel?



Image by JLab

Bd = 2.224644(24) [MeV]

⌘ = � tan ✏1|Bd ⇡ 0.02713(6)

Deuteron is a shallow bound 
state of proton and neutron.

Its wavefunction has a tiny 
D-wave admixture.

Small quantities are prevalent in the deuteron and in nuclear physics. Can we ever 
get to the precision to constrain them?



while in channels where there is a mixing between the partial-waves, it can be characterized by two
phase-shifts and one mixing angle, ⇥̄J , [63],

M(J±1,J±1;S)
JMJ ;IMI

=
4⇤

Mk⇥
cos 2⇥̄Je2i�

LS
JI � 1

2i
�L,J±1, (30)

M(J±1,J⇤1;S)
JMJ ;IMI

=
4⇤

Mk⇥
sin 2⇥̄J

ei(�
LS
JI +�L

�S
JI )

2
�L,J±1�L�,J⇤1. (31)

These relations are independent of MJ and MI as the scatterings are azimuthally symmetric. We
emphasize again that Kronecker deltas used to specify the L quantum numbers should not be
confused with the phase shifts. Note that for each J sector, there is only one mixing parameter
and as result no further labeling other than the J label is necessary for ⇥̄J .

The FV kernels are equal to the infinite-volume kernels (up to exponentially suppressed terms in
volume below the pion production threshold 11), and in particular the J th-sub-block of such kernel
is given by Eq. (24). As in the scalar case, the only di�erence between the finite volume and infinite
volume shows up in the s-channel bubble diagrams, where the two particles running in the loops
can go on-shell and give rise to power-law volume corrections. It is straightforward to show that
the two-nucleon propagator in the finite volume, GV , can be written as

GV = G⇧ + �GV , (32)

where �GV is a matrix in the (JMJ , IMI , LS) basis whose matrix elements are given by

�
�GV

⇥
JMJ ,IMI ,LS;J �M �

J ,I
�M �

I ,L
�S� =

iMk⇥

4⇤
�II��MIM �

I
�SS�

⇤

⇧�JJ ��MJM �
J
�LL� + i

⌥

l,m

(4⇤)3/2

k⇥l+1
cPlm(k⇥2)

⇥
⌥

ML,M �
L,MS

⌅JMJ |LML, SMS⇧⌅L⌅M ⌅
L, SMS |J ⌅M ⌅

J⇧
ˆ

d� Y ⇥
L,ML

Y ⇥
l,mYL�,M �

L

⌅

⌃ ,

(33)

and, as is evident, is neither diagonal in the J-basis nor in the L-basis. The kinematic function
cPlm(k⇥2) is defined in Eq. (9) and is evaluated at the on-shell relative momentum of two nucleons
in the CM frame. The full FV two-nucleon scattering amplitude can be evaluated by summing up
all 2 ⇤ 2 FV diagrams,12

MV = �K 1

1� GV K =
1

(M⇧)�1 + �GV
, (34)

where in the second equality the kernel is eliminated in favor of M⇧ and G⇧ using Eq. (32). The
energy eigenvalues of the two-nucleon system arise from the poles of MV which satisfy the following
determinant condition

det
�
(M⇧)�1 + �GV

⇥
= 0. (35)

This quantization condition clearly reduces to Eq. (11) for two-boson systems when setting S = 0
13, and is in agreement with the result of Ref. [17] for meson-baryon scattering after setting S = 1/2.
This result also extends the result of Ref. [19] for two-nucleon systems to moving frames.

11 These corrections have been previously calculated for �+�+ [64] and NN [65] S-wave scattering.
12 We note that the notion of a FV scattering amplitude is merely a mathematical concept as there is no asymptotic

state by which one could define the scattering amplitude in a finite volume. In principle one should look at the pole
locations of the two-body correlation function to gain access to physically relevant states. However, it can be easily
shown that both correlation function and the so-called FV scattering amplitude have the same pole structure, so
we use the latter to make the presentation simpler.

13 The symmetry factor in both scattering amplitude and the FV function will cancel out in the determinant condition,
leaving the FV QC, Eq. 11, insensitive to the distinguishability of the particles.
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P = 0 P =
2�

L
(0, 0, 1) P =

2�

L
(1, 1, 0) P =

2�

L
(1, 1, 1)

respectively. The matrix elements of �GV in the positive-parity isoscalar channel in this basis are,

�
�GV

⇥
JMJ ,LS;J �M �

J ,L
�S� =

iMk⇥

4⇥
�S1�S�1

⌥

 �JJ ��MJM �
J
�LL� + i

✏

l,m

(4⇥)3/2

k⇥l+1
cdlm(k⇥2; L)

⇥
✏

ML,M �
L,MS

⇤JMJ |LML1MS⌅⇤L⇤M ⇤
L1MS |J ⇤M ⇤

J⌅
ˆ

d� Y ⇥
LML

Y ⇥
lmYL�M �

L

�

⌦ , (2)

and are evaluated at the on-shell momentum of each nucleon in the CM frame, k⇥ =
⇣
ME⇥ � |P|2/4.

⇤JMJ |LML1MS⌅ and ⇤L⇤M ⇤
L1MS |J ⇤M ⇤

J⌅ are Clebsch-Gordan coe⇥cients, and cdlm(k⇥2; L) is a kine-
matic function related to the three-dimensional zeta function, Zd

lm, [20, 21, 41–43],

cdlm(k⇥2; L) =

⇧
4⇥

L3

⇤
2⇥

L

⌅l�2

Zd
lm[1; (k⇥L/2⇥)2] ,

Zd
lm[s;x2] =

✏

n

|r|lYl,m(r)

(r2 � x2)s
, (3)

where r = n� d/2 with n an integer triplet.
The finite-volume matrix �GV is neither diagonal in the J basis nor in the LS basis, as is clear

from the form of Eq. (2). As a result of the scattering amplitudes in higher partial waves being
suppressed at low-energies, the infinite-dimensional matrices present in the determinant condition
can be truncated to a finite number of partial waves. For the following analysis of positive-parity
isoscalar channel, the scattering in all but the S- and D-waves are neglected. With this truncation,
the scattering amplitude matrix M can be written as

M =

⇧

��↵

M1,S M1,SD 0 0
M1,SD M1,D 0 0

0 0 M2,D 0
0 0 0 M3,D

⌃

��� , (4)

where the first subscript of the diagonal elements, MJ,L, denotes the total angular momentum of
the channel and the second subscript denotes the orbital angular momentum. The o�-diagonal
elements in J = 1 sub-block are due to the S-D mixing. In the J = 3 channel, there is a mixing
between L = 2 and L = 4 partial waves, but as scattering in the L = 4 partial wave is being
neglected, the scattering amplitude in this channel remains diagonal. Each element of this matrix
is a diagonal matrix of dimension (2J + 1)⇥ (2J + 1) dictated by the MJ quantum number.

d point group classification Nelements irreps (dimension)
(0, 0, 0) O cubic 24 A1(1),A2(1),E(2),T1(3),T2(3)
(0, 0, 1) D4 tetragonal 8 A1(1),A2(1),E(2),B1(1),B2(1)
(1, 1, 0) D2 orthorhombic 4 A(1),B1(1),B2(1),B3(1)
(1, 1, 1) D3 trigonal 6 A1(1),A2(1),E(2)

TABLE I. Classification of the point groups corresponding to the symmetry of the FV calculations with
boost vectors, d. The forth column shows the number of elements of each group, and the last column gives
the irreducible representations of each point group along with their dimensions.
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phase-shifts and one mixing angle, ⇥̄J , [63],
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These relations are independent of MJ and MI as the scatterings are azimuthally symmetric. We
emphasize again that Kronecker deltas used to specify the L quantum numbers should not be
confused with the phase shifts. Note that for each J sector, there is only one mixing parameter
and as result no further labeling other than the J label is necessary for ⇥̄J .

The FV kernels are equal to the infinite-volume kernels (up to exponentially suppressed terms in
volume below the pion production threshold 11), and in particular the J th-sub-block of such kernel
is given by Eq. (24). As in the scalar case, the only di�erence between the finite volume and infinite
volume shows up in the s-channel bubble diagrams, where the two particles running in the loops
can go on-shell and give rise to power-law volume corrections. It is straightforward to show that
the two-nucleon propagator in the finite volume, GV , can be written as

GV = G⇧ + �GV , (32)

where �GV is a matrix in the (JMJ , IMI , LS) basis whose matrix elements are given by

�
�GV
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(33)

and, as is evident, is neither diagonal in the J-basis nor in the L-basis. The kinematic function
cPlm(k⇥2) is defined in Eq. (9) and is evaluated at the on-shell relative momentum of two nucleons
in the CM frame. The full FV two-nucleon scattering amplitude can be evaluated by summing up
all 2 ⇤ 2 FV diagrams,12

MV = �K 1

1� GV K =
1

(M⇧)�1 + �GV
, (34)

where in the second equality the kernel is eliminated in favor of M⇧ and G⇧ using Eq. (32). The
energy eigenvalues of the two-nucleon system arise from the poles of MV which satisfy the following
determinant condition

det
�
(M⇧)�1 + �GV

⇥
= 0. (35)

This quantization condition clearly reduces to Eq. (11) for two-boson systems when setting S = 0
13, and is in agreement with the result of Ref. [17] for meson-baryon scattering after setting S = 1/2.
This result also extends the result of Ref. [19] for two-nucleon systems to moving frames.

11 These corrections have been previously calculated for �+�+ [64] and NN [65] S-wave scattering.
12 We note that the notion of a FV scattering amplitude is merely a mathematical concept as there is no asymptotic

state by which one could define the scattering amplitude in a finite volume. In principle one should look at the pole
locations of the two-body correlation function to gain access to physically relevant states. However, it can be easily
shown that both correlation function and the so-called FV scattering amplitude have the same pole structure, so
we use the latter to make the presentation simpler.

13 The symmetry factor in both scattering amplitude and the FV function will cancel out in the determinant condition,
leaving the FV QC, Eq. 11, insensitive to the distinguishability of the particles.
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Two nucleon systems are coupled channels in nature
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Now let’s do a reverse exercise. Let’s take the experimental values of scattering parameters 
and figure out how the spectrum in a finite volume should look like! In particular, let’s see 
how sensitive it is to the S-D mixing.
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CRAP EQUATIONS

d = (0, 0, 0) (41)
T1 (42)
L = ⇥ (43)

d = (0, 0, 1) (44)
A2 (45)
A2, �(

3D1) = �(
3D2) = �(

3D3) = 0 (46)
A2, ⇥1 = 0 (47)
E (48)
E, �(

3D1) = �(
3D2) = �(

3D3) = 0 (49)
E, ⇥1 = 0 (50)
�(

3D1) = �(
3D2) = �(

3D3) = 0, ⇥1 = 0 (51)
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Discovering sensitivity to S-D mixing in a finite 
volume in boosted systems:
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FIG. 8. The values of {�B1
d , ✏1(i1

d )} obtained by fitting the six independent bound-state energies with
|d|  p

3 (depicted in Figs. 3, 4, 5), generated from synthetic LQCD calculations, using the approximate
QCs in Eqs. (7-12). ✏1 is in degrees and B1

d (1
d ) denotes the infinite-volume deuteron binding energy

(momentum). The black lines denote the experimental value of these quantities determined by fitting
the scattering parameters obtained from Ref. [40]. The dark (light) inner (outer) band is the 1� band
corresponding to the energies being determined with 1% (10%) precision.

related “synthetic LQCD calculations”. To generate fully correlated “synthetic LQCD calculations”,
the same fluctuation (appropriately scaled) is chosen for each energy. 4 These synthetic data are
then taken to be the results of a possible future LQCD calculation and analyzed accordingly to
extract the scattering parameters 5. The values of {a(3S1), r(3S1), �B1

d

, ✏1(i1
d

)} extracted from an
analysis of the synthetic data are shown in Figs. 7, 8 for both correlated and uncorrelated energies.
Since for L . 10 fm the contribution of the D-wave phase shifts to the bound-state spectrum is
not negligible, the mean values of the scattering parameters extracted using the approximated QCs
deviate from their experimental values. This is most noticeable when the binding energies are de-
termined at the 1% level of precision, where the S-matrix parameters and predicted B1

d

can deviate
by ⇠ 3� from the experimental values for this range of volumes. For 10 fm< L <14 fm, one can see
4 Partially-correlated “synthetic LQCD calculations” can be generated by forming a weighted average of the uncor-

related and fully-correlated calculations.
5 A similar analysis has been carried out in Ref. [54] where the S-wave scattering length, effective range and the

deuteron binding energy are extracted from “synthetic LQCD calculations”, but using a purely S-wave quantization
condition.
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The required precision on energies at the physical 
point for an extraction of the mixing angle then is:
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One can use the finite-volume formalism to deduce deuteron’s 
asymptotic wavefunction in a finite volume (E irrep shown): P =

2�

L
(0, 0, 1)



Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

And here’s an application of the NN quantization conditions in a lattice QCD 
study of scattering in higher partial waves:

Berkowitz et al (CalLatt), Phys.Let.B,765(2017).



What about bound states? It turned out that they are described by the same Luescher’s 
QC if the CM momentum is analytically continued to an imaginary momentum. It can 
then be shown that for low-energy S-wave bound state:
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2 , and
the expressions in eq. (1) and eq. (2) reduce to the known result for boosted systems of equal
mass [12, 15, 16]. Further developments are required in order to recover the results obtained for
nonrelativistic systems by Bour et al from eq. (1), eq. (2) and eq. (3).

Assuming the scattering amplitude admits a single bound state in infinite volume, the location

of the lowest energy-eigenvalue in a finite cubic volume is dictated by the behavior of Z(d)
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where the ellipses denotes terms that scale as ⇠ e�
p
50L/L and higher. In the large volume limit

where the F (d) will give rise to (d) that are close to 0, the (d) can be determined in a perturbative

solution to eq. (6). Introducing the dimensionless parameter �, writing (d) = 0+�(d)1 +�2(d)2 +...
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where Z2
 

is the residue of the bound-state pole in the S-matrix, and the higher (d)
i

can be

determined in a similar way. For a given boost-vector, (d)1 scales as (d)1 ⇠ e�0L/L and (d)2

scales as (d)2 ⇠ e�20L/L. Consequently, the contributions to (d) that scale as ⇠ e�0L/L,

⇠ e�
p
20L/L and ⇠ e�

p
30L/L originate in (d)1 and are of the forms given in eq. (8).

It is clear from the explicit expressions for F (d)(L) given in eq. (8) that linear combinations
that provide universal cancellations of finite volume e↵ects in binding energies do not exist in
general. This is due to the appearances of both �-factors and ↵-factors that explicitly depend
upon d. However, the nonrelativistic (NR) limit where � = �(NR) = 1 and neglecting the binding

5

Z

5

The mixing parameter, ✏, adds an extra unknown to the QC in the spin-triplet channels. Con-
straining this parameter, as discussed in Ref. [65], requires knowledge of the spectra of two-baryon
systems with the total spin aligned both parallel and perpendicular to the boost vector, and with
boost momenta that have at least one component equal to unity modulo 2 (in units of 2⇡/L). As
not all distinct orientations of total spin with respect to the boost momenta are constructed in
forming the correlation functions of spin-triplet systems in this work, the ✏ parameter cannot be
constrained here for the spin-triplet channels. This also implies that for boost vector d = (0, 0, 1),
the corrections to the QC from the s-d mixing might be significant at the order of low-energy EFT
considered, and constraints on the ↵-wave phase shift arising from a simple ↵-wave QC may be
contaminated. On the other hand, for boost vectors of the form d = (2n1, 2n2, 2n3), with each ni

being an integer, in particular for the (0, 0, 0) and (0, 0, 2) boost vectors that are considered in this
work, the ↵-wave QC,

k

⇤
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d

00(k
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; L), (5)

is exact up to corrections from �-wave interactions.2 These corrections are subleading at the order
in the EFT considered below and will therefore be neglected. Given that this QC is identical to
the S-wave QC in the spin-singlet channels, the s and ↵ subscripts on the phase shifts will be
suppressed in the rest of this paper, as their assignment should be clear from the channels under
consideration.

Once the phase shifts are determined at several CM energies, a low-energy parametrization of
the scattering amplitude as a function of energy, with only a few unknown parameters, can be
constrained over a given range of energies. In the baryon-baryon channels well below the t-channel
cut, the most common parametrization is the effective range expansion (ERE). For S-wave (↵-wave)
interactions, the ERE is an expansion of the k

⇤
cot � function in k
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where a, r and P are the scattering length, effective range and the leading shape parameter,
respectively. The ellipsis denotes terms that are higher order in the momentum expansion. Lüscher’s
QC condition provides (up to exponentially small volume corrections and discretization effects) an
exact constraint on the amplitude at corresponding energies regardless of the complexities present
in the analytic structure of the amplitude below the inelastic thresholds. It is the output of the QC
that allows the efficacy of given parametrizations of the amplitude to be assessed. For example,
although the ERE is guaranteed to have a nonzero radius of convergence around k

⇤2
= 0, the

convergence rate is not known a priori, and fits with higher order terms in the ERE may be needed.
With numerical calculations for a range of momenta, the appropriateness of a given truncation of
the ERE must be carefully tested.

Lüscher’s QC contains information about possible bound states in the system through an analytic
continuation of the condition to negative energies. In particular, it is straightforward to show that
for k

⇤2
< 0, and for boost vectors of the type d = (2n1, 2n2, 2n3),

|k⇤| = 

(1)
+

Z

2

L


6e

�(1)L
+

12p
2

e

�p
2(1)L

+

8p
3

e

�p
3(1)L

�
+ O

 
e

�2(1)L

L

!
, (8)

2 In the Blatt-Biedenharn parametrization, the spin-triplet coupled-channel scattering amplitude is

M↵�� =

4⇡
MBk⇤

✓
cot �↵ cos

2 ✏+ cot �� sin

2 ✏� i sin ✏ cos ✏ (cot �↵ � cot ��)
sin ✏ cos ✏ (cot �↵ � cot ��) cot �� cos

2 ✏+ cot �↵ sin

2 ✏� i

◆�1

. (6)



Which for a bound states comprised of two equal-mass hadrons at rest, becomes:

ZD and Savage, Phys. Rev. D84, 114502 (2011).

Bour, Konig, Lee, Hammer and Meissner, Phys. 
Rev. D84, 091503 (2011).

(1)

(2)

k⇤ cot �(k⇤)|k⇤=i



EXERCISE 8

Starting from relation (1), prove relation (2) for the finite-volume dependence of the 
binding momentum of a S-wave bound state of two hadrons with equal masses.

Starting from the Luescher’s S-wave quantization condition for boosted systems with 
equal masses, prove relation (1) for a bound state.

BONUS EXERCISE 8
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FIG. 3: The ground state energy in the deuteron channel. The blue, purple, brown and gray solid curves
are the exact energy for each system with total momentum defined by |d| determined from eq. (6). The
solid red lines is the infinite volume ground state energy. The dotted curves result from using the analytic
forms for the volume modifications at O �

e�0L/L
�
, given in eq. (11), while the dashed curves are from the

analytic forms up to and including O
⇣
e�

p
30L/L

⌘
.

are significant cancellations between all of the exponential contributions to leave the function very
close to its asymptotic value over most of the range of . Figure 3 shows the ground state energy
in the deuteron channel (negative of the binding energy) as a function of the spatial extent of the
volume through numerical solution of eq. (6). Also shown in this figure are the contributions from

the O
⇣
e�0L/L

⌘
volume modifications, and from the volume modifications up to and including

O
⇣
e�

p
30L/L

⌘
.

Forming the linear combinations of the (d) given in eq. (11), the i, from the exact numerical
solutions to eq. (6), gives rise to the improved estimates of the deuteron binding energy that are
shown in fig. 4. Surprisingly, there is little di↵erence between the volume modifications improved

to O
⇣
e�20L/L

⌘
and those improved to O

⇣
e�

p
30L/L

⌘
for volumes with 10 fm<⇠ L<⇠ 20 fm. For

L>⇠ 12 fm the i, except for E , provide estimates of the deuteron binding energy that are signif-
icantly closer to its actual binding energy than the ground state of any given d spectrum. The
D combination is closer to the infinite volume binding energy that one would expect. While it is

improved to O
⇣
e�

p
20L/L

⌘
it appears to be better than any of the others that are improved to

higher orders. However, this is true only at these “intermediate” volumes, in the very large volumes
the predicted hierarchy is, in fact, found. In this combination there is a subtle cancellation between
di↵erent volume dependences in the range of volumes that are shown in fig. 4.

IV. VOLUME-IMPROVED FITTING

While it is important to form the exponentially volume-improved combinations of binding mo-
menta, it may not be the method that is actually implemented in the analysis of the results of
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FIG. 4: The exponentially-improved estimates of the ground state energy in the deuteron channel from the
i relations given in eq. (11). The gray dashed lines denote the ground state energies in the systems with a
given d-vector that are shown as the solid curves in fig. 3.

LQCD calculations. The existence of the relations shows that the volume modifications in a pre-
diction of the deuteron binding energy from one ensemble of gauge-field configurations can be
exponentially reduced (in the NR-limit) with minimal additional computational resources. How-
ever, this reduction can also be accomplished simply by fitting the appropriate volume dependences
to the results of the LQCD calculations for a range of d. From eq. (9), the binding momentum for
any given d is

(d) = 0 +
Z2
 

L
F (d)(0L) + O

⇣
e�20L/L

⌘
, (12)

with the coe�cients and kinematic factors in F (d)(0L) determined by the lattice calculation.

Therefore, up to O
⇣
e�20L/L

⌘
, the two free-parameters that remain to be determined are 0 and

Z
 

which can be accomplished with a �2-minimization. In the case of having (d) for only two d’s,
0 and Z

 

can be solved for within the uncertainties of the LQCD calculations 3.

V. CONCLUSIONS

As recently stressed by Bour et al, the binding energy of a bound state depends upon its total
momentum when subject to periodic boundary conditions in the spatial directions. Through the
momentum modes excluded by the boundary conditions, these volume modifications of the binding
energy depend upon the ratio of the spatial extent of the volume to the Lorentz-contracted size
of the bound state, and also upon the masses of the constituents. In this work, we have extended
the work of Bour et al from nonrelativistic quantum mechanics to quantum field theory and have

3 The volume extrapolation performed in Ref.[4] to determine the H-dibaryon binding energy, used the ground state
energy obtained in two di↵erent lattice volumes and iteratively solved for 0 and Z in (0,0,0).
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Different boosts Linear combinations of different boosts

Again using physical information about the deuteron, we can predict it finite-volume 
spectrum and find tricks to improve it:

ZD and Savage, Phys. Rev. D84, 114502 (2011).



NEXT TIME WE WILL GO BEYOND TWO-BODY ELASTIC SCATTERING 
PROBLEMS AND WILL CONSIDER TRANSITION AMPLITUDES (IN ONE-

BODY AND TWO-BODY SECTOR).

QUESTIONS?


