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We will be discussing Markov chain algorithms, and so it is useful to 
review the elements and theory of Markov chains.  Consider a chain of 
configurations labeled by order of selection.  We call this integer-
valued label the computation step. 

Let us denote the probability of selecting configuration A at 
computation step n as 

Suppose we have selected configuration A at computation step n.  The 
probability that we select configuration B at computation step n + 1 
is denoted 
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Markov chains 



This transition probability is chosen to be independent of n and 
independent of the history of configurations selected prior to selecting 
A at computation step n.  This defines a Markov chain. 

We note that 
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We now define the notion of ergodicity.  Suppose we are at 
configuration A at computation step, n.  Let SA be the set of all 
positive integers m, such that the return probability to A is nonzero 



If the set SA is not empty, then we say that A is positive recurrent.  If 
the greatest common divisor of the set of integers in SA is 1, then we 
say that A is aperiodic.  If all of the configurations connected by the 
Markov chain are recurrent and aperiodic, then the Markov chain is 
said to be ergodic.  If the Markov chain is ergodic and all 
configurations are connected by the graph of nonzero transitions in the 
Markov chain, then there is a unique equilibrium distribution that is 
reached in the limit of large number of computation steps that is 
independent of the initial conditions. 
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Serfozo, ‘‘Basics of Applied Stochastic Processes”, (Berlin: Springer-Verlag) 2009 



Detailed balance 

We want the equilibrium probability distribution to be  

One way to do this is to require  

for every pair of configurations A and B.  This condition is called 
detailed balance. 
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If the Markov chain is ergodic and all configurations are connected, 
then after many computation steps we reach the unique equilibrium 
distribution, which satisfies the stationary condition 



for all configurations A. 

Comparing with the detailed balance condition, we conclude that 

6	

One popular method for generating the desired detailed balance 
condition is the Metropolis algorithm  
 
Metropolis, Teller, Rosenbluth, J. Chem. Phys. 21 (1953) 1087  

Metropolis algorithm 



Usually the transition probability can be divided in terms of a 
proposed move probability and an acceptance probability, 

And quite often the proposed move probability is symmetric 

However this does not need to be the case.  One can design useful 
algorithms where there is some guiding involved in the proposed 
moves.  It is also not necessary that you use only one type of  
update. If you maintain detailed balance for each type of update 
process, then you also recover the target probability distribution. 
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Once your Markov chain is set up properly, you can now compute  
observables such as 

by computing the average  

for large N from your Markov chain.  However you can also do some 
reweighting and sample the Markov chain according to some other 
probability distribution qtarget(A).  This may be necessary if ptarget(A) is 
not positive semi-definite and so cannot be treated as a probability 
distribution.  In that case you can for example take  
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With the reweighted Markov chain, you then compute averages using 
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Let us consider a system with one up-spin particle and one down-spin 
particle on a one-dimensional periodic lattice with L sites.  For the 
interactions we choose zero-range attractive interactions as we discussed 
previously.  We can label the two-body system with a basis 
corresponding with the positions of the particles.   

n2 n1 

The transfer matrix has the form 

Two fermions in one-dimension 
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where the free lattice Hamiltonian in its simplest possible form is 

We compute the projection amplitude 

in order to get the ground state energy in the subspace that is not 
orthogonal to our initial state 



Since the system has translational symmetry, we can set the total 
momentum to zero and label only the relative separation between the 
two particles  

n2 n1 

n 
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The matrix elements of interest are  

We need to compute the action of the transfer matrix on such states 



As an example we take the initial state to have zero relative momentum 
(in addition to the total momentum being zero). 

We can then compute products of the transfer matrix acting upon the 
initial state 

and determine the amplitude 
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Lt Energy (MeV) 

30 -17.6412 

31 -17.7085 

32 -17.7650 

33 -17.8125 

34 -17.8523 

35 -17.8856 

36 -17.9135 

37 -17.9369 

38 -17.9564 

39 -17.9728 

40 -17.9864 

41 -17.9978 

42 -18.0074 

43 -18.0153 

44 -18.0220 

45 -18.0275 

46 -18.0322 

47 -18.0360 

48 -18.0393 

49 -18.0420 

50 -18.0442 

For L = 6, C = -0.200, m = 938.92 MeV, a = at = (100 MeV)-1 
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We can calculate the same observables using auxiliary field Monte Carlo.  
The amplitude we want to calculate is 

where the auxiliary field amplitude is 

and the auxiliary field transfer matrix given by 
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For our initial state we again choose both the up and down spin particles 
to have zero momentum 

We should note that this is not an efficient starting point to reach the 
ground state, but it is a simple initial state we can use to benchmark the 
Monte Carlo code with the exact transfer matrix calculation. 

In terms of our single-particle initial state coefficient functions f1 and f2, 
we have  



We store the set of vectors for each single-particle initial state at each 
time step  

as well as the dual vectors at each time step propagating in the reverse  
temporal direction 
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These are useful in computing the update to an auxiliary field value at 
time step nt, using the following relation: 

change here 
and re-evaluate	



…
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We initialize the auxiliary field configuration s, and compute the bosonic 
part of the action 

which is needed in the calculation of 
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We compute the auxiliary-field amplitude Z(s, Lt) for the initial 
configuration of s 

We now set up our Markov chain with target probability given by 



24	

We do Metropolis updates of the auxiliary field.  Note the square of the 
single-particle amplitude since there are contributions from both the up 
spin and the down spin. 

…
 



25	

While doing the Metropolis updates, we also compute Z(s, Lt – 1).  We 
collect data which properly samples the numerator and denominator of 
the ratio 

And from this ratio we get our estimate of the energy 



…
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Consider the system of two-component fermions with zero-range  
attractive interactions.   

We consider one up spin and one down spin.  Take the size of the 
periodic box to be L = 6 and choose Lt = 50.  Do an exact (i.e., not 
Monte Carlo) calculation of the amplitude  
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Homework for July 31 



Use the ratio of amplitudes with Lt and Lt – 1 time steps to determine 
an estimate for the energy using the relation 

for the initial state with one up spin and down spin, each with zero 
momentum in the periodic box.  For the parameters take 

C = -0.200, m = 938.92 MeV, a = at = (100 MeV)-1 
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Consider exactly the same two-fermion system as in the previous problem.  
Use the same initial state where both particles are at zero momentum and 
compute everything once again using auxiliary fields, 

Again take the size of the periodic box to be L = 6 and the number of 
time steps to be Lt = 50.  Use the Metropolis algorithm to calculate the 
energy using the estimate 

Homework for August 1 



for the parameter values 

C = -0.200, m = 938.92 MeV, a = at = (100 MeV)-1 
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