
LATTICE QCD
AND

MULTI-HADRON PHYSICS 
ZOHREH DAVOUDI

TALENT COURSE ON
FROM QUARKS AND GLUONS TO NUCLEAR FORCES AND STRUCTURE

UNIVERSITY OF MARYLAND



DIRECT LATTICE QCD CALCULATIONS OF NUCLEI: 
PROGRESS AND CHALLENGES



TWO-BODY ELASTIC SCATTERING



TWO-BODY INELASTIC SCATTERING



TWO-NUCLEON OBSERVABLES



HADRONIC OBSERVABLES 
FROM BACKGROUND EM FIELDS



HADRONIC OBSERVABLES FROM 
THREE-POINT FUNCTIONS



DIRECT LATTICE QCD CALCULATIONS OF NUCLEI: 
PROGRESS AND CHALLENGES



THREE FEATURES MAKE LQCD CALCULATIONS OF NUCLEI HARD:

i) THE COMPLEXITY OF SYSTEMS GROWS RAPIDLY WITH THE NUMBER 
OF QUARKS.

ii) EXCITATION ENERGIES OF NUCLEI ARE MUCH SMALLER THAN THE 
QCD SCALE.

iii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.

Detmold and Orginos, Phys. Rev. 
D 87, 114512 (2013).

See also: Detmold and Savage, 
Phys.Rev.D82 014511 (2010).
Doi and Endres, Comput. Phys. 
Commun. 184 (2013) 117.

Paris (1984) and Lepage (1989). Wagman and Savage, Phys. Rev. D 96, 114508 (2017).
Wagman and Savage, arXiv:1704.07356 [hep-lat].

Beane at al (NPLQCD), Phys.Rev.D79 114502 (2009).
Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).
Junnakar and Walker-Loud, Phys.Rev. D87 (2013) 114510.
Briceno, Dudek and Young, Rev. Mod. Phys. 90 025001.



i) THE COMPLEXITY OF SYSTEMS GROWS RAPIDLY WITH THE NUMBER 
OF QUARKS.



⌧ = 0

N(x)

N(y)

N†(0)

N†(0)

⇥

� = t

C(P; t, tO) =
X

p1+p2=P

X

x,y,z

eip1·x+ip2·y⇥



⌧ = 0

N(x)

N(y)

N†(0)

N†(0)

⇥

� = t

C(P; t, tO) =
X

p1+p2=P

X

x,y,z

eip1·x+ip2·y⇥

COMPLEXITIES OF 
QUARK-LEVEL 

INTERPOLATING FIELDS

COMPLEXITIES 
OF QUARK 

CONTRACTIONS

Detmold and Orginos (2013).



⌧ = 0

N(x)

N(y)

N†(0)

N†(0)

⇥

� = t

C(P; t, tO) =
X

p1+p2=P

X

x,y,z

eip1·x+ip2·y⇥

COMPLEXITIES OF 
QUARK-LEVEL 

INTERPOLATING FIELDS

Detmold and Orginos (2013).



Number of terms in the interpolating operators of a nucleus?

Collective indices: color, 
spinor, flavor and lattice site

JLAB-THY-12-1591

Nuclear correlation functions in lattice QCD

William Detmold1, 2 and Kostas Orginos1, 2

1
Department of Physics, The College of William & Mary, Williamsburg, VA 23187, USA

2
Je↵erson Lab, Newport News, VA 23606, USA

We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq

h
is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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New weight factors factoring in other constraints such as 
color singletness, parity, angular momentum, strangeness. 
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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq
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is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w
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h is totally anti-symmetric, we can introduce the reduced weights w̃
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h which are the
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fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
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i1,i2,··· ,inq
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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these reduced weights, Eq. 1 can be re-written as
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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(b1,b2···bA)
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✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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We consider the problem of calculating the large number of Wick contractions necessary to com-
pute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive
approach and a determinant-based approach and show that these methods allow the required con-
tractions to be performed in computationally manageable amount of time for certain choices of
interpolating operators. Examples of correlation functions computed using these techniques are
shown for the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si.

I. INTRODUCTION

The ab initio approach to nuclear physics from the underlying theory of the strong interactions, Quantum Chro-
modynamics (QCD), is hampered by the many body nature of the nuclear problem. In principle, QCD and the
electroweak interactions give rise to all the rich and complex phenomena of nuclear physics, yet it is only recently
that the first QCD studies of multi-baryon systems have appeared [1–8]. The reason for this is twofold. Firstly, the
Monte-Carlo evaluation of correlation functions of multi-baryon systems converges slowly, requiring a large number
of measurements before the necessary precision is reached (this issue will not be addressed here). Secondly, systems
with the quantum numbers of many nucleons and hyperons are complex many-body systems with complicated spectra
and there are a multitude of physically relevant states that can be studied in QCD. Even for a given set of quantum
numbers, additional complexity appears at the quark level; the number of Wick contractions required to construct
systems for large atomic number grows factorially, scaling as nu!nd!ns! where nu,d,s are the numbers of up, down,
and strange quarks required to construct the quantum numbers of the state in question. In many situations, this is
a naive counting as there are many cancellations and contributions that are identical. However, the a priori identi-
fication of these simplifications is a non-trivial task. In addition to the problem of Wick contractions, the number
of terms in the interpolating fields of multi-nucleon systems also typically grows exponentially with the size of the
system. This potentially more serious problem is similar in nature to the problem of the exponential growth of nuclear
wave-functions faced in nuclear structure calculations where phenomenological potential models describing the low
energy nucleon-nucleon interactions are used.

In this paper, we present a systematic method for the construction of nuclear interpolating fields for multi-baryon
systems in lattice QCD (LQCD) (see Ref. [9] for related work). We demonstrate that the Grassmannian nature of the
quark fields can be used to our advantage, in some cases resulting in particularly simple nuclear interpolating fields.
In addition, we present two approaches that ameliorate the cost of contractions, the most e�cient of which scales
only polynomially in the number of quarks involved in the contraction. Using these methods we compute LQCD
correlation functions with the quantum numbers of the light nuclei, 4He, 8Be, 12C, 16O and 28Si, demonstrating that
correlation functions relevant to the study of nuclei in QCD can be constructed.

II. NUCLEAR INTERPOLATING FIELDS

In order to calculate nuclear correlation functions, we first need to construct quark level nuclear interpolating fields.
This is, in principle, straightforward and, in practice, it resembles the construction of quark model wave-functions for
baryons [10]. A general quark-level nuclear interpolating field with atomic number A containing nq = 3A quarks has
the form

N̄ h =
X

a

w

a1,a2···anq

h q̄(a1)q̄(a2) · · · q̄(anq ) , (1)

where the q̄ai are the quark fields, the ai are generic indices which combine the colour, spinor, flavour, and spatial
indices of the quark and a is a compound index representing the nq-plet a1, a2 · · · anq . Given that calculations are
performed on a discrete lattice, the spatial degrees of freedom are finite and countable, and as a result we can use
an integer index to describe them. Here the quark fields are all at the same time t. The index h on the nuclear
interpolating field is a set of quantum numbers that identify the nuclear state, including its momentum, angular
momentum, isospin and strangeness. The Grassmannian nature of the quark field dictates that the tensor w

a1,a2···anq

h
is totally antisymmetric under the exchange of any two indices. If the indices ai can have a total of N possible values,

ar
X

iv
:1

20
7.

14
52

v2
  [

he
p-

la
t] 

 2
1 

Ju
l 2

01
2

As many quark interpolators as needed to represent 
a given system, e.g., 6 quarks for NN(3S1).

2

then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
NwX

k=1

w̃

(a1,a2···anq ),k

h

X

i

✏

i1,i2,··· ,inq
q̄(ai1)q̄(ai2) · · · q̄(ainq

) , (4)

where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is

N !

(N � nq)!
. (2)

However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is

N !

nq!(N � nq)!
. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w

a1,a2···anq

h decomposes into. With
these reduced weights, Eq. 1 can be re-written as

N̄ h =
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✏
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is

N̄ h =
MwX

k=1

W̃

(b1,b2···bA)
h

X

i

✏

i1,i2,··· ,iA
B̄(bi1)B̄(bi2) · · · B̄(biA) , (5)

where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with
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The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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. (3)

For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w

a1,a2···anq

h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that
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h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏

i1,i2,··· ,inq is a totally
anti-symmetric tensor of rank nq with

✏

1,2,3,4,··· ,nq = 1 .

The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark

1 For simplicity, we refer to the irreducible representation of the lattice symmetry group as angular momentum.
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
terms of quark fields as

B̄(b) =
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
nuclear interpolating fields
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and replacing the baryon objects by their quark interpolating fields. A single baryon interpolating field is written in
terms of quark fields as
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where NB(b) is the number of terms in the single baryon B(b) interpolating field. For single baryon interpolating fields,
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then, ignoring the detailed flavour structure, the total number of non-vanishing terms in the above sum is
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However, many of these terms correspond to permutations of the quark fields, and the total number of unique terms
(terms that are not a permutation of any other term) is
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For a generic spatial structure of the interpolating field, N corresponds to the total number of quark degrees of freedom
on a time-slice (N = 12L3, where L is the spatial dimension of the lattice) and one may be discouraged by the feasibility
of the task of building quark level nuclear interpolating fields. However, a number of simplifying factors are omitted in
the above discussion. As we consider interpolating fields with definite transformation properties under the symmetries
of QCD, large numbers of terms in the nuclear interpolating field vanish. The first major reduction comes from the
fact that only colour singlets need to be considered. In addition, considering only interpolating fields of definite parity,
angular momentum 1, isospin and strangeness, forces several elements of the tensor w
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h to vanish. Finally, the
most drastic reduction of the non-zero tensor elements can be achieved using simple spatial wave-functions. At this
time, having recognised that only a small fraction of the terms in the sum of Eq. 1 are non-zero, as well as the fact that

the tensor w

a1,a2···anq

h is totally anti-symmetric, we can introduce the reduced weights w̃

(a1,a2···anq ),k

h which are the
minimal set of non-zero numbers required to completely describe the interpolating field. The nq-plet (a1, a2 · · · anq ),
is an ordered list of indices that represents a class of terms in Eq. 1 that are all permutations of each other. The
index k on the reduced weights enumerates the number of classes that the tensor w
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where Nw is the total number of reduced weights, i represents the nq-plet (i1, i2 · · · inq ) and ✏
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The above expression is the simplest form of the quark-level nuclear interpolating field and is completely described
by the reduced weights. As an example, using a single point spatial wave function, the numbers of terms contained
in the simplest interpolating fields for the proton, deuteron, 3He and 4He, are Nw = 9, 21, 9, and 1, respectively.

A. Hadronic Interpolating Fields

Having now written down a general nuclear interpolating field with quantum numbers h, we need to calculate the

reduced weights w̃

(a1,a2···anq ),k

h in an e�cient manner. In principle, this can be achieved directly from quark fields
by imposing the desired transformation properties. However, in certain cases, it is advantageous to proceed by first
constructing hadronic interpolating fields from which the quark interpolating fields are derived.

The hadronic interpolating fields assume a form analogous to that of the quark interpolating fields. The baryons
that make up the nucleus are also fermions, hence the general structure outlined above can be directly transcribed
here. In terms of baryons, a nuclear interpolating field of a nucleus of atomic number A is
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where Mw is the number of hadronic reduced weights W̃ (b1,b2···bA)
h , B(bi) are baryon interpolating fields and the bi are

generic indices that includes parity, angular momentum, isospin, strangeness, and spatial indices. Unlike the quark
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fields which are fundamental degrees of freedom, the baryon interpolating fields are composite objects, hence there is
a large number of such interpolating fields for a given set of quantum numbers. For simplicity, as well as e�ciency
of the resulting nuclear interpolating fields, we will use a single interpolating field per baryon, selected so that it has
good overlap with the single baryon ground state, as well as being comprised of a small number of quark level terms.
The utility of the above form of the nuclear interpolating fields is twofold. Firstly, it allows us to derive the reduced
weights we need for Eq. 4. Secondly, interpolating fields that are derived starting from Eq. 5 may have better overlap
with the nuclear ground states as it is well-known that hadronic degrees of freedom provide a successful description
of much of nuclear physics.

The calculation of the reduced weights, W̃

(b1,b2···bA)
h , in the hadronic interpolating field is straightforward. It

amounts to combining individual hadrons of given quantum numbers to build a multi-hadron state of definite parity,
angular momentum, isospin, and strangeness. This construction can be readily automated and can be performed
recursively using the known Clebsch-Gordan coe�cients of SU(2) for both the spin and isospin (or SU(3) flavour if so
desired). In principle, one can use all the octet and decuplet baryons in Eq. 5, however, for most practical purposes,
restricting to the positive parity octet baryons is su�cient. For example, for A = 2, I = J = 0, S = �2, if we restrict
the spatial wave-function to single point, there are three simple hadronic interpolating fields
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where B

" and B

# represent the spin up and down polarisations of the baryon, B, respectively. In this example, the
reduced weights can be directly read o↵ from these equations.

We have written a c++ symbolic manipulation program that generates the hadronic reduced weights using the above
approach. In Ref. [8], we have used this to produce a complete basis of orthonormal interpolating fields with spatial
wave-functions restricted to a single point for all nuclei up to A = 4 and have also constructed a selection of states for
A > 4. Generically for larger A, more complicated spatial wave-functions are required because of the Pauli exclusion
principle, resulting in an exponential growth of the number of possible interpolating fields as A increases (this reflects
the problem faced in nuclear structure calculations as A becomes large). In certain cases, the Grassmannian nature
of the quark fields is also advantageous, drastically reducing the number of non-zero reduced weights. Making use of
this feature, we have been able to find particularly simple wave-functions for systems as large as A = 28.

B. Quark Interpolating Fields

The reduced weights of the quark interpolating fields of Eq. 4 can be calculated by equating the two forms of the
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in Ref. [11] but can be trivially added). The process of deriving the reduced weights w̃

(a1,a2···anq ),k

h from Eq. 6, can
be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS

In this section, we consider how the interpolating fields constructed in the previous section can be used to generate
the correlation functions of multi-baryon systems. A general multi-hadron two point function is given by

hN h
1 (t)N̄ h

2 (0)i =
1

Z
Z

DUDqDq̄ N h
1 (t)N̄ h

2 (0) e
�SQCD

, (8)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:

Ba1,a2,a3

b (p, t;x0) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0) , (9)

where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.

4

in Ref. [11] but can be trivially added). The process of deriving the reduced weights w̃

(a1,a2···anq ),k

h from Eq. 6, can
be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS

In this section, we consider how the interpolating fields constructed in the previous section can be used to generate
the correlation functions of multi-baryon systems. A general multi-hadron two point function is given by

hN h
1 (t)N̄ h

2 (0)i =
1

Z
Z

DUDqDq̄ N h
1 (t)N̄ h

2 (0) e
�SQCD

, (8)

where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:

Ba1,a2,a3

b (p, t;x0) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0) , (9)

where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.

6

consider them further. The procedure described has been used to perform the contractions needed for the large class
of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by
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where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.
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where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
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0
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be automated and we perform it within our symbolic manipulation program. An interesting feature that arises from

the calculation of the reduced weights w̃

(a1,a2···anq ),k

h is that if we restrict ourselves to simple spatial wave-functions
making use of only few spatial points, then the expected exponential growth of the number of terms in the nuclear
interpolating field is eliminated. A careful selection of the spatial wave-functions used can eliminate this problem, in
principle for arbitrarily large nuclei. However, restriction to a small number of quark degrees of freedom also makes
it impossible to construct certain states (an example is presented in Ref. [8] where the two baryon symmetric flavour
octet was found to be inaccessible).

III. TECHNIQUES FOR MULTI-BARYON CONTRACTIONS
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where SQCD and Z are the QCD action and partition function respectively, and DU , DqDq̄ are the gluon and quark
field integration measures respectively. We have also introduced explicit dependence of the interpolating fields on the
Euclidean time separation, t, and consider a two point function with di↵erent creation and annihilation interpolating
fields with commensurate quantum numbers. For a given choice of the interpolating fields, it is straightforward to
perform the Grassmann integral over the quark fields and re-write the correlation function in terms of the quark
propagators. However, for an e�cient calculation of the two point function we need to be mindful of the structure of
the interpolating fields.

One successful class of interpolating fields for two or more hadron systems is one in which a plane wave basis at the
level of the hadronic interpolating fields is used. This amounts to projecting the individual hadrons comprising the
multi-body system to definite momentum states, while preserving the spatial transformation properties of the overall
multi-hadron system [1, 12–18]. In this case, the complexity of the spatial wave-function is such that the number of
terms contributing to Eq. 4 is rather large and hadronic interpolating fields have to be used in order to build the
desired two point function. Constructing these types of interpolating fields both at the source and the sink becomes
computationally expensive because a large number of quark propagators that are required. Nevertheless, this method
has been employed for meson-meson and multi-meson spectroscopy [18–21]. For the case of multi-meson systems,
special contraction methods were required [19, 20, 22]. For multi-baryon systems, the problem is more complex and
will be the subject of further investigations. A further approach is to consider correlation functions in which the quark
creation interpolating fields (source) have simple spatial wave-functions with few degrees of freedom (for example,
restricted to a few spatial locations), while using a plane wave basis for the hadronic interpolating fields at the sink.
Finally, as we shall discuss below, su�ciently simple nuclear interpolating fields exist, where the number of terms
contributing in Eq. 4 is small and factorization into hadrons is not computationally necessary.

A. Hadronic blocks

The quark propagator from a single source point, x0 = (x0, 0), can be used to construct baryon building blocks
with quantum numbers b and momentum p, as:
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where S(c,x, t; a, x0, 0) is the quark propagator from x0 to x = (x, t) and ci, ai are the remaining combined spin-
colour-flavour indices. In this notation, the sink indices are kept to the left of the source indices and the spatial
indices are displayed explicitly as they play an essential role in the construction of the block. This baryon block
corresponds to the propagation of an arbitrary three-quark state from the source to the sink where it is annihilated
by the prescribed baryon interpolating field. As discussed above, we have chosen to momentum project these blocks
at the sink to a given momentum p to allow control of the total momentum of multi-hadron systems, although this
is not necessary and other forms of blocks can be envisaged.
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of interpolating fields considered in the study of the spectrum of hyper-nuclei up to A = 5 in Ref. [8, 23].

For large numbers of baryons (A > 8 for protons and neutrons alone), it is necessary to use multiple source locations
because of the Pauli exclusion principle. In this case, the generalised blocks in Eq. 10 can be used with the algorithm
presented above.

C. Scaling

From the above description, it is clear that this algorithm will in general scale as

Mw ·Nw · (3A)!

(3!)A
, (11)

where A is the atomic number and Mw and Nw are the number of terms in the sink and source interpolating fields
respectively. In addition, the fact that the hadron blocks are completely anti-symmetric under all quark exchanges
has been taken into account. If we also take into account that the strong interactions are flavour-blind and consider
only octet baryon building blocks, this reduces to

Mw ·Nw
nu!nd!ns!

2A�n⌃0�n⇤
, (12)

where n⌃0 and n⇤ are the number of ⌃0 and ⇤ baryons in the hadronic interpolating field and the factor in the
denominator arises because all octet baryons have two quarks of the same flavour except from the ⌃0 and ⇤. This
algorithm can be e�ciently implemented and is computationally feasible for small systems, A . 10. As an example
of this method, a 4He two point correlation function can be computed in ⇠ 0.8 seconds per time slice on a single core
of a Dual Core AMD Opteron 285 processor.

IV. MULTI-BARYON CONTRACTIONS WITH DETERMINANTS

For larger atomic number, A & 10, alternative methods are required to perform the contractions in a computationally
feasible manner. It is straightforward to see how this can be done by examining the two point functions above and
making use of Wick’s theorem [24]. The numerator of Eq. 8 before the integration over the gauge fields is performed
is given by

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

=

Z
DqDq̄ e

�SQCD[U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
q(a0jnq

) · · · q(a0j2)q(a0j1)⇥ q̄(ai1)q̄(ai2) · · · q̄(ainq
) , (13)

where the primed and unprimed indices are associated with the sink and source interpolating fields, respectively and
are composite colour, spinor, flavour and spatial indices and [. . .]U indicates the value of the enclosed expression on
a fixed gauge field. The Grassmann integral over quark fields can now be performed, resulting in the replacement of
the qq pairs by elements of the quark propagator.

⇥N h
1 (t)N̄ h

2 (0)
⇤
U

= e

�Seff [U ]

N 0
wX

k0=1

NwX

k=1

w̃

0(a0
1,a

0
2···a

0
nq

),k0

h w̃

(a1,a2···anq ),k

h ⇥
X

j

X

i

✏

j1,j2,··· ,jnq
✏

i1,i2,··· ,inq
S(a0j1 ; ai1)S(a

0
j2 ; ai2) · · ·S(a0jnq

; ainq
) , (14)

where Seff [U ] denotes the pure gauge part of the QCD action together with the logarithm of the determinant of the
Dirac matrix. The above expression of Wick’s theorem, can be written in terms of the determinant of a matrix G

whose matrix elements are given by

G(a0;a)j,i =

⇢
S(a0j ; ai) for a

0
j 2 a

0 and ai 2 a

�a0
j ,ai

otherwise , (15)

Can also start propagators at different locations.

The new scaling is:

Number of terms 
in the source

Number of terms 
in the sink

An example of a more efficient algorithm:



Nf = 3, m⇡ = 0.806 GeV, a = 0.145(2) fm

Beane, et al. (NPLQCD), Phys.Rev. D87 (2013) , Phys.Rev. C88 (2013)
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de

+
⌫e fusion process and tritium �-decay. The

pp ! de

+
⌫ process is centrally important in astrophysics

as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de

+
⌫ cross section at the ener-

gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne

+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�

d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H ! 3He e

�
⌫̄ is theoretically clean and is the simplest

semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding

NUCLEI OBTAINED FROM SUCH AN APPROACH (AT A HEAVIER 
QUARK MASSES)



According to the naive counting, how many contractions are required for a nucleus at the 
source and sink with atomic numbers A = 4, 8, 12, 16? How many contractions are there 
with the use of the efficient algorithm described? There are even more optimal algorithms 
that lead to a polynomial scaling with the number of the quarks.

EXERCISE 2



ii) EXCITATION ENERGIES OF NUCLEI ARE MUCH SMALLER THAN THE 
QCD SCALE.



Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



Getting radium directly from QCD will remain challenging for a long time! One should 
first compute A = 2, 3, 4 systems well. This is till not that easy: B_d = 2 MeV!

Nuclear excitations of two pear-shaped 
nuclei (radium and radon)

Gaffney et al., Nature 497, 199–204 (013).

Kulikov, Dmitry A. et al., Central Eur.J.Phys. 11 (2013) .

Nucleon excitations



With a given amount of computational resources, you have achieved a 1% statistical 
uncertainty on the extracted mass of the nucleon from your lattice QCD calculation. By 
what factor should you increase your computing resources (your statistics) to also achieve 
a 1% statistical uncertainty on the binding energy of the deuteron?

EXERCISE 3



SO WHAT TO DO?

• With the most naive operators with similar overlaps to all states, unreasonably 
large times are needed to resolve nuclear energy gaps.

• The key to success of this program is in the use of good interpolating operators 
for nuclei. Since nucleons retain their identity in nuclei, forming baryon blocks 
at the sink turns out to be very advantageous.

• Ideally need to use a large set of operators for a variational analysis, but this has 
remained too costly in nuclear calculations.

• Methods such as matrix Prony that eliminate the excited states in linear 
combinations of interpolators or correlations functions have shown to be useful.

Applications in mesonic sector: Briceno, 
Dudek and Young, Rev. Mod. Phys. 90 025001.

A good review: Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011).

See the previous section.

See exercise 4!



Consider a simple two-state model in the spectral decomposition of an Euclidean two-point 
function. Demonstrate that the time scale to reach the ground state of the model with a 
finite statistical precision can depend highly on the corresponding overlap factor for the 
state. It is sufficient to show this numerically and for a set of chosen energies and overlap 
factors.

EXERCISE 4



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

Michael (1985)
Luescher and Wolf (1990)



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

An example

Single-meson operators
Two-meson operators

Two-meson operators

Meson spectroscopy in 
the P-wave                       
channel:

⇡⇡ �KK

Wilson et al (HadSpec), Phys. 
Rev. D 92, 094502 (2015).
Briceno, Dudek and Young, Rev. 
Mod. Phys. 90 025001.



Solve the eigenvalue equation for a reasonably chosen initial time:

VARIATIONAL METHOD

Ci,j(t) = h0|Oi(t)Oj(0)|0i
Form a matrix of correlation functions with a number of interpolators:

lim
t�t0!1

�k = e�EktC(t)vk = �kC(t0)vk

An example

Meson spectroscopy in 
the P-wave                       
channel:

⇡⇡ �KK

Wilson et al (HadSpec), Phys. 
Rev. D 92, 094502 (2015).
Briceno, Dudek and Young, Rev. 
Mod. Phys. 90 025001.
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FIG. 2: Pion mass e↵ective mass plots on the b ⇡ 0.09 fm ensembles.

Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)
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FIG. 2: Pion mass e↵ective mass plots on the b ⇡ 0.09 fm ensembles.

Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)
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In order to guarantee the inverse can be found, enough times must be summed over to ensure
the corresponding matrices are of full rank. One then solves the eigenvalue equation for the
principal correlators,

T̂ (⌧)qn = (�n)
⌧qn , with �n = e�En . (17)

A point that di↵erentiates the Matrix-Prony method from other variational methods is
the sum over time slices in Eq. (15). Most variational methods pick a reference time at which
to perform the diagonalization of the correlation functions, whereas with Matrix-Prony, one
must sum over a number of time slices greater than or equal to the number of correlation
functions. Moreover, one can increase confidence in the subsequent analysis by maximizing
�t in Eq. (15). The original ansatz (12) is satisfied if over the range of time, t

0

to t
0

+ �t,
the resulting principal correlation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the choices of t
0

and �t are varied over
a wide range, with �t & 0.5 fm. For each choice, the ground state principal correlation
function is fit with a single exponential, Eq. (9), over ranges of time ti � tf , chosen indepen-
dently of t

0

and �t. The initial and final times in the fit are also varied over a wide range
under the constraint tf � ti & 0.5 fm. For each fit, the Q value is recorded along with the
statistical uncertainty of the fit. The various fits are then averaged with the weight similar
to that of the pions, but also suppressed by the statistical uncertainty of the fit;

m̄ =

P
i miwiP
j wj

with wi =
Qi

�i
. (18)

In this way, the plateaus at later times, with larger uncertainties, and hence larger Q values,
do not dominate the determination of the fitting systematic. The resulting fits are displayed
along with e↵ective mass plots of representative Matrix-Prony determinations of the ground
state principal correlation function in Figs. 3 and 4. In these figures, the colored e↵ective
mass points correspond to the time window over which the Matrix-Prony method is applied
in the representative choice of times t

0

and �t, while the gray e↵ective mass points lie
outside this region. As is evident, the resulting systematic mass-probability distribution
tends not to be Gaussian. For simplicity, we still take the 16% and 84% quantiles to define
the systematic uncertainty. The inner colored bands represent the statistical uncertainty,
and the outer gray bands represent the statistical and systematic uncertainties added in
quadrature.

C. Scale setting

To convert from lattice units to physical units we use the scale setting procedure described
in Ref. [99]. The dimensionless lattice results are converted into r

1

units with r1
b (bml, bms, �)

determined by the MILC Collaboration on each ensemble. But importantly, it is not the
value computed on a given ensemble that is used; it is rather the values that have been
extrapolated to the physical light- and strange-quark mass point, r1

b (bmphy

l , bmphy

s , �), which
have also been determined by the MILC Collaboration [46, 103], listed here in Table II. While
depending upon reference quark mass values, this amounts to a quark-mass independent scale
setting procedure, such that all remaining light- and strange-quark mass dependence of the
computed observables is that of interest. The MILC Collaboration has also determined the
physical value of r

1

,
rphy
1

= 0.31174(20) fm , (19)

8

The method is useful when the correlation function matrix is not square or positive-definite 
matrix necessarily. It finds suitable linear combination of the correlates that are dominated 
by single exponentials.

MATRIX PRONY
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX
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y(t + ⌧)yT (t)

!�1

, V =
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Consider:

Which can be 
satisfied by:

Finally:
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
CSS(t)

◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
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In order to guarantee the inverse can be found, enough times must be summed over to ensure
the corresponding matrices are of full rank. One then solves the eigenvalue equation for the
principal correlators,

T̂ (⌧)qn = (�n)
⌧qn , with �n = e�En . (17)

A point that di↵erentiates the Matrix-Prony method from other variational methods is
the sum over time slices in Eq. (15). Most variational methods pick a reference time at which
to perform the diagonalization of the correlation functions, whereas with Matrix-Prony, one
must sum over a number of time slices greater than or equal to the number of correlation
functions. Moreover, one can increase confidence in the subsequent analysis by maximizing
�t in Eq. (15). The original ansatz (12) is satisfied if over the range of time, t

0

to t
0

+ �t,
the resulting principal correlation functions are well described by a single exponential.

In this work, to determine the fitting systematic, the choices of t
0

and �t are varied over
a wide range, with �t & 0.5 fm. For each choice, the ground state principal correlation
function is fit with a single exponential, Eq. (9), over ranges of time ti � tf , chosen indepen-
dently of t

0

and �t. The initial and final times in the fit are also varied over a wide range
under the constraint tf � ti & 0.5 fm. For each fit, the Q value is recorded along with the
statistical uncertainty of the fit. The various fits are then averaged with the weight similar
to that of the pions, but also suppressed by the statistical uncertainty of the fit;

m̄ =

P
i miwiP
j wj

with wi =
Qi

�i
. (18)

In this way, the plateaus at later times, with larger uncertainties, and hence larger Q values,
do not dominate the determination of the fitting systematic. The resulting fits are displayed
along with e↵ective mass plots of representative Matrix-Prony determinations of the ground
state principal correlation function in Figs. 3 and 4. In these figures, the colored e↵ective
mass points correspond to the time window over which the Matrix-Prony method is applied
in the representative choice of times t

0

and �t, while the gray e↵ective mass points lie
outside this region. As is evident, the resulting systematic mass-probability distribution
tends not to be Gaussian. For simplicity, we still take the 16% and 84% quantiles to define
the systematic uncertainty. The inner colored bands represent the statistical uncertainty,
and the outer gray bands represent the statistical and systematic uncertainties added in
quadrature.

C. Scale setting

To convert from lattice units to physical units we use the scale setting procedure described
in Ref. [99]. The dimensionless lattice results are converted into r

1

units with r1
b (bml, bms, �)

determined by the MILC Collaboration on each ensemble. But importantly, it is not the
value computed on a given ensemble that is used; it is rather the values that have been
extrapolated to the physical light- and strange-quark mass point, r1

b (bmphy

l , bmphy

s , �), which
have also been determined by the MILC Collaboration [46, 103], listed here in Table II. While
depending upon reference quark mass values, this amounts to a quark-mass independent scale
setting procedure, such that all remaining light- and strange-quark mass dependence of the
computed observables is that of interest. The MILC Collaboration has also determined the
physical value of r

1

,
rphy
1

= 0.31174(20) fm , (19)

8

The method is useful when the correlation function matrix is not square or positive-definite 
matrix necessarily. It finds suitable linear combination of the correlates that are dominated 
by single exponentials.

MATRIX PRONY
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Matrix-Prony method [106] (similar to the variational method which has gained popularity
lately), as described in Refs. [105, 107]. The general idea is to find linear combinations of
correlation functions which isolate various eigenstates and allow for a determination of the
masses starting from earlier Euclidean times.

The Matrix-Prony method is well suited to matrices of correlation functions that are
neither square nor positive-definite, as is often the case in lattice QCD calculations. One
begins with the ansatz that the (vector) of correlation functions can be described with a
transfer matrix,

y(t + ⌧) = T̂ (⌧)y(t) , (12)

where in our case y(t) is composed of just two correlation functions,

y(t) =

✓
CPS(t)
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◆
. (13)

It is useful to factorize the transfer operator T̂ (⌧) = M�1(⌧)V and multiply on the right by
the transpose vector to form the matrix equation,

M(⌧)y(t + ⌧)yT (t) = V y(t)yT (t) . (14)

To be useful, Eq. (12) must be satisfied over a range of time,
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A solution to Eq. (15) is given by
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masses starting from earlier Euclidean times.
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To be useful, Eq. (12) must be satisfied over a range of time,

M(⌧)
t0+�tX

t=t0

y(t + ⌧)yT (t) = V

t0+�tX

t=t0

y(t)yT (t) . (15)

A solution to Eq. (15) is given by

M(⌧) =

 
t0+�tX

t=t0

y(t + ⌧)yT (t)

!�1

, V =

 
t0+�tX

t=t0

y(t)yT (t)

!�1

. (16)
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Linear combos. at the level of correlation functions

An example

Beane et al (NPLQCD), Phys.Rev.D79:114502 (2009).



Linear combos. at the level of sink construction

Berkowitz et al (CalLatt), arXiv:1710.05642(2017).
Linear combos. at the level of correlation functions

Beane et al (NPLQCD), Phys.Rev.D79:114502 (2009).
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Figure 1: (Left) The e↵ective mass plot of the original SS and PS nucleon correlation functions as well as the optimized
ground state correlation functions. (Right) The e↵ective mass of the two linear combinations of SS and PS correlation functions
constructed from the MP analysis.

• This method is substantially less expensive than the full variational method as it relies upon a
smaller number of quark propagators, and many fewer contractions. This method also o↵ers a
numerical savings over the more traditional method of computing two and more nucleon correla-
tion functions: the standard approach requires the contractions to be computed for all the di↵erent
choices of sink operators. For values of the pion mass used in present day calculations, the con-
traction cost is a substantial fraction of the total cost of the calculation, often exceeding the cost of
obtaining propagators. Our new method requires the contractions to be computed only once with
the optimized linear combination of sink operators.

We note that the NPLQCD collaboration has previously investigated the application of MP to two-
nucleon correlation functions [6, 27] by constructing sinks with all possible di↵erent combinations of
single-nucleon operator smearings [31], gaining benefits from the reduction of single-nucleon excited
states, but possibly leading to the di�culties which can occur when trying to tune more than two
operators. Only by imposing the selection of the single-nucleon MP combination that eliminates the
first excited state explicitly before constructing two-nucleon operators do we gain the full advantage
of our method. As we will show below, combining this method with spatially displaced two-nucleon
operators [9] to help reduce overlap onto the first elastic two-nucleon excited states reveals the full
power of this method.

2.3 Results

As a first test of this new method, we apply it to the same set of gauge ensembles used in our previous
calculation, Ref. [9], where we introduced the use of displaced nucleon operators at the source which
were found to significantly improve the coupling to the ground states of interest 2 . This allows us
to provide a direct comparison with known results. Specifically, for this comparison, we performed
calculations on the smallest volume with L/a = 24, using a reduced set with one quarter the statistics.

In Fig. 1, we show the e↵ective mass of the nucleon generated from a point sink, a gaussian sink
and optimized linear combination produced with MP, with a subset of 829 configurations. As can
be seen, the optimized ground state MP correlation function plateaus 5-6 time slices earlier than the
original SS and PS correlation functions.

2 These configurations were generated by the WM/JLab group using an isotropic clover action, at the SU(3) flavor symmetric
point with m⇡ ⇠ 800 MeV and a ⇠ 0.145 fm. For more details, see Ref. [8].
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iii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.
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ū
ū
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The origin of noise
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The ground-state of the variance correlator 
is three pions and not two nucleons:

Parisi (1984) and Lepage (1989).

The origin of noise
h|C|2i = h0|N†(t)N(t)N†(0)N(0)|0iiii) THERE IS A SEVERE SIGNAL-TO-NOISE DEGRADATION.

THE GROUND-SATATE OF THE 
VARIANCE CORRELATOR IS 3 
PIONS AND NOT TWO NUCLEONS:

Parisi (1984) and Lepage (1989).

Beane et al, NPLQCD 
collaboration (2009).
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Magnitude - Phase Decomposition

mR(t) = ln

 ⌦
eRi(t)

↵
⌦
eRi(t+1)

↵
!

m✓(t) = ln
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ei✓i(t)

↵
⌦
ei✓i(t+1)

↵
!

⇠ 3

2
m⇡ ⇠ mN � 3

2
m⇡

Magnitude and phase of generic hadron correlation functions are 
empirically observed to be approximately decorrelated

MW and Savage, arXiv:1611.07643
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Wagman and Savage (2016,2017).
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Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

Let’s consider the magnitude and the phase of 
the correlation functions:

4

The Sign(al-to-Noise) Problem
Statistical estimation of an exponentially decaying average 

phase always has exponential StN degradation
⌦
ei✓i(t)

↵
q⌦

|ei✓i(t)|2
↵ ⇠ e�m✓t

Average correlation functions are real. Individual correlation 
functions in generic gauge fields are complex 

Is the LQCD signal-to-noise problem in all or part a sign problem?

G(t) = hCi(t)i =
Z

DU e�S(U)+R(t,Ui)+i✓(t,Ui) =
1

N

NX

i=1

eRi(t)+i✓i(t)

Ci(t) = eRi(t)+i✓i(t)

Standard LQCD methods equivalent to reweighting a complex action

Can we understand better the noise in nuclear 
correlation function and control it?



12

Phase Reweighting

Exponent of StN problem set by number of 
steps in random walk of the phase 
included in measurement

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

G✓(t, t) = hCi(t)i = G(t)

StN ⇠ e�(mN� 3
2m⇡)�t

“Phase-reweighted correlation function” 
measures fixed-length phase differences

Reduces to standard correlation function in limit           �t ! t

MW and Savage, arXiv:1704.07356

A phase reweighting method seems to work:

14

Phase Reweighting Extrapolation
Known results for simple systems correctly recovered after        

extrapolation �t ! t

Phase-reweighted effective mass exactly reproduces standard EM if 
correlation functions at      and        are decorrelated. Exploits same 
physics of approximate factorization as

�tt

Cè, Giusti, and Schaefer, Phys.Rev. D93 (2016)

G✓(t,�t) = he�i✓(t��t)C(t)i
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Phase Reweighted Effective Mass

Calculable by re-analyzing existing 
correlation functions

m✓(t) = ln

✓
G✓(t,�t)

G✓(t+ 1,�t+ 1)

◆

G✓(t,�t) =
D
Ci(t)e

�i✓i(t��t)
E

MW and Savage, arXiv:1704.07356

Data from Orginos et al, Phys.Rev. D92 (2015)
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DESPITE CHALLENGES, PROGRESS HAS BEEN MADE. LQCD COMBINED 
WITH EFTS IS ON RIGHT TRACK TO DELIVER RESULTS ON IMPORTANT 

NUCLEAR PHYSICS QUANTITIES.

IN THE NEXT TWO LECTURES, WE WILL GO THROUGH A FEW 
EXAMPLES THAT DEMONSTRATE SUCH A PROGRESS.

QUESTIONS?


