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From Quarks and Gluons to
Nuclear Forces and Structure
Lecture 6: Intro to Hybrid Monte Carlo II

July 23, 2019 Thomas Luu, IAS-4



Goal of today’s lecture

Apply HMC to more sophisticated problems:

1-site Hubbard Model

2-D Ising model vI

2-D Ising model vII

Alternative to least-squares fitting

You choose which one to implement!

Pitfalls of HMC

1-D anHarmonic Oscillator
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Recap of HMC
Given action S, make an artificial Hamiltonian:

H[p, φ] =
1
2

∑
i

p2
i + S[φ]

For each degree of freedom φi there is a “conjugate momentum” pi , which one samples from a
normal distribution

Now calculate EoMs:

φ̇i =
∂H
∂pi

= pi

ṗi = −∂H
∂φi

= − ∂S
∂φi

Integrate EoMs for some trajectory length using leapfrog integration

Accept/Reject
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Let’s do this for our Hubbard example

Recall the partition function:

Z =

∫ ∞
−∞

[Nt−1∏
t=0

dφt√
2πŨ

e−
1

2Ũ
φ2

t

]
det (M[φ]M[−φ]) =

∫
D[φ]e−

1
2Ũ

∑
t φ

2
t +log det(M[φ]M−φ])

where M[φ]t′,t = δt′t − Bt′e−φt δt′,t+1 and

Bt =

{
+1 (0 ≤ t < Nt )
−1 (t = Nt )

So the artificial Hamiltonian is

H[p, φ] =
1
2

∑
t

p2
t +

1
2Ũ

∑
t

φ2
t − log det (M[φ]M − φ])
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Equations of motions with matrices

H[p, φ] =
1
2

∑
t

p2
t +

1
2Ũ

∑
t

φ2
t − log det (M[φ]M − φ])

Equations of motion:

φ̇j =
∂H
∂pj

= pj (easy)

ṗj = −∂H
∂φj

= −φj

Ũ
+

1
2

(
1

det (M[φ]M[−φ])

∂

∂φj
det (M[φ]M[−φ])

)
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Derivatives of determinants

Assume Q is some square matrix and invertible. Then we have Jacobi’s formula1

∂

∂φj
det Q[φ] = det Q[φ] tr

(
Q[φ]−1 ∂

∂φj
Q[φ]

)
Setting Q[φ] = M[φ]M[−φ], and using the chain rule and cyclic properties of the trace, one gets

ṗj = −φj

Ũ
+

1
2

tr
(

(M[φ]M[−φ])−1 ∂

∂φj
(M[φ]M[−φ])

)
= −φj

Ũ
+

1
2

tr
(

M[φ]−1 ∂

∂φj
M[φ] + M[−φ]−1 ∂

∂φj
M[−φ]

)
where

∂

∂φj
M[φ]t′,t = δj,tBt′e

−φt δt′,t+1

1https://en.wikipedia.org/wiki/Jacobi%27s_formula
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The trace simplifies greatly in this case. . .

Artificial Hamiltonian:

H[p, φ] =
1
2

∑
t

p2
t +

1
2Ũ

∑
t

φ2
t − log det (M[φ]M − φ])

Equations of motion:

φ̇j = pj

ṗj = −φj

Ũ
+ Bj+1

(
e−φj M−1[φ]j+1,j − eφj M−1[−φ]j,j+1

)
Note that the “force equation” for the conjugate momenta requires matrix inversion. This can be
very expensive for large systems!
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HMC Integration of the Hubbard model (1 site)

Use HMC to generate an ensemble {φ} of
size Ncfg

Estimate correlator via (compare to what was
done in lecture 4!)

C↑↑(τ) ≈ 1
Ncfg

∑
~φ∈{φ}

M−1
τ,0 [φ]

0.0 0.5 1.0 1.5 2.0

0.35

0.40

0.45

0.50

τ

C
↑
↑
(τ
)

β = 2,U = 2,Nmd = 4, MD trajectory length=1,
Nt = 48,Ncfg = 2000
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Now let’s look at the normal Ising model

Here’s the Hamiltonian again:

H(s, h) = −J
∑
〈i,j〉

sisj − h
∑

i

si ,

Here 〈i , j〉 denotes nearest neighbor interactions.
Let’s rewrite this as

H = −J
2

∑
ij

siKijsj − h
∑

i

si

Here Kij is a connectivity matrix and the sum over i , j is unrestricted.
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The connectivity matrix Kij

Examples of connectivity matrix (with periodic boundary conditions):

2× 2 lattice

K =


0 2 2 0
2 0 0 2
2 0 0 2
0 2 2 0

 ,

has eigenvalues -4, 4, 0, 0

3× 3 lattice:

K =



0 1 1 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1
1 0 0 0 1 1 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 1 1
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 1 1 0


,

with eigenvalues 4, -2, -2, -2, -2, 1, 1, 1, 1
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4× 4 lattice:

K =



0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0



,

and has eigenvalues -4, 4, -2, -2, -2, -2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0
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Can we just apply the HS transformation?

Formally yes, but numerically NO!

Recall the form of the HS transformation:

e
1
2
∑

ij si Uij sj =

∫ ∞
−∞

1√
det U

[∏
i

dφi√
2π

]
e−

1
2
∑

ij φi U
−1
ij φj +

∑
i φi si ,

For this equation to be numerically stable, all eigenvalues of U must be positive!

This is NOT the case for our connectivity matrix K !
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But the eigenvalues of K are bounded!
The eigenvalues λ of K satisfiy |λ| ≤ 4.
We use this fact to make a stable HS transformation
To do this, we add 0 to the Hamiltonian (add and subtract a constant)

Watch!

H =− J
2

∑
ij

siKijsj − h
∑

i

si

=− J
2

∑
ij

si (Kij + Cδij ) sj +
CJ
2

∑
i

s2
i − h

∑
i

si

=− J
2

∑
ij

si (Kij + Cδij ) sj +
CJN

2
− h

∑
i

si

=− J
2

∑
ij

si K̃ijsj +
CJN

2
− h

∑
i

si ,

where K̃ij ≡ Kij + Cδij .
July 23, 2019 Thomas Luu, IAS-4 Page 13



Now apply HS transformation
The eigenvalues of K̃ are all greater than 4 as long as C > 4.
This shift of the eigenvalues is compensated by the term CJ

∑
i s2

i = CJN, which is just an
overall constant to the Hamiltonian.
In principle, we don’t care about overall shifts in the energy, but we keep track of it since we
will need it when we (you) derive the form of the operators for the internal energy, specific
heat, etc. . .

Here we go! :

Z =
∑
{si}=+1

e
βJ
2

∑
ij si Kij sj +βh

∑
i si

=
∑
{si}=+1

e
βJ
2

∑
ij si K̃ij sj +βh

∑
i si−CβJΛ/2

=
∑
{si}=+1

∫ ∞
−∞

1√
det K̃

[∏
i

dφi√
2πβJ

]
e−

1
2βJ

∑
ij φi K̃

−1
ij φj +

∑
i si (βh+φi )−

CβJΛ
2 .
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You know how to do the rest!
In particular, since the argument is “linear” in the spins, we can integrate out the spins (just like in
the long-distance Ising model)

Z =

∫ ∞
−∞

1√
det K̃

[∏
i

dφi√
2πβJ

] ∑
{si}=+1

e−
1

2βJ
∑

ij φi K̃
−1
ij φj +

∑
i si (βh+φi )−CβJΛ/2

=

∫ ∞
−∞

1√
det K̃

[∏
i

dφi√
2πβJ

]
e−

1
2βJ

∑
ij φi K̃

−1
ij φj−

CβJΛ
2 ×

[∏
i

2 cosh(βh + φi )

]

=
e−
CβJΛ

2√
det K̃

∫ ∞
−∞

[∏
i

dφi√
2πβJ

]
e−

1
2βJ

∑
ij φi K̃

−1
ij φj +

∑
i log(2 cosh(βh+φi ))

.

One last thing. We change variables to simplify some expressions: φ̃i ≡ φi√
βJ

. This gives:

Z =
e−
CβJΛ

2√
det K̃

∫ ∞
−∞

[∏
i

d φ̃i√
2π

]
e−

1
2
∑

ij φ̃i K̃
−1
ij φ̃j +

∑
i log(2 cosh(βh+

√
βJφ̃i ))

.
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The artificial Hamiltonian and EoMs
Here is the artificial Hamiltonian:

H(p, φ̃) =
p2

2
+ S[φ̃]

=
p2

2
+
φ̃ · K̃−1 · φ̃

2
−
∑

i

log(2 cosh(βh +
√
βJφ̃i )) ,

and the corresponding EoMs:

˙̃φi =
∂

∂pi
H = pi

ṗi = − ∂

∂φ̃i
H = − ∂

∂φ̃i
S = −K̃−1

ij φ̃j +
√
βJ tanh(βh +

√
βJφ̃i )

In this case, the force equations also involve an inverse of a matrix, K̃−1, but this only has to be
solved once and stored for future use (as opposed to M−1[φ] in the Hubbard example).

July 23, 2019 Thomas Luu, IAS-4 Page 16



Operators in this basis

Here I just give you the expressions for some operators. You should derive them yourself2 to
confirm that I didn’t make any mistakes!

〈m〉 =
1

Nβ
∂

∂h
log(Z) =⇒ O[φ̃] =

1
N

∑
i

tanh(βh +
√
βJφ̃i )

〈βε〉 = − β
N

∂

∂β
log(Z) =⇒ O[φ̃] =

CβJ
2
− 1

N

∑
i

(
βh +

√
βJ

φ̃i

2

)
tanh(βh +

√
βJφ̃i )

〈sisj〉 =
1
Z

1
β2 ∂hi∂hjZ =⇒ O[φ̃] = tanh(βhi +

√
βJφ̃i ) tanh(βhj +

√
βJφ̃j )

2And you should derive other expressions that I did not give, e.g. specific heat, susceptibility.
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An alternative discretization of the Ising model. . .
Let’s do a change of variables. We define the field ψ via

φ̃i = K̃ijψj −
βhi√
βJ

.

A little bit of algebra shows that

S[φ̃]→ 1
2
ψi K̃ijψj −

1√
βJ

βhiψi −
∑

i

log
(

2 cosh(
√
βJK̃ijψj )

)
+

1
2βJ

βhi K̃−1
ij βhj

≡ S[ψ] +
1

2βJ
βhi K̃−1

ij βhj .

And the metric becomes

D[φ̃] ≡ e−
CβJΛ

2√
det K̃

[∏
i

d φ̃i√
2π

]
→ e−

CβJΛ
2

√
det K̃

[∏
i

dψi√
2π

]
.

Do we have fermions???
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The artificial Hamiltonian and EoMs in this version. . .
Here is the artificial Hamiltonian:

H(p, ψ) =
p2

2
+ S[ψ]

=
p2

2
+

1
2
ψi K̃ijψj −

1√
βJ

βhiψi −
∑

i

log
(

2 cosh(
√
βJK̃ijψj )

)
.

The equations of motion are again simple to derive (repeated indices are summed),

ψ̇i =
∂

∂pi
H = pi

ṗi = − ∂

∂ψi
H = − ∂

∂ψi
S = −K̃ijψj +

βh√
βJ

+
√
βJK̃ij tanh(

√
βJK̃jlψl ) .

Note that there are NO matrix inversions in the force equations, just matrix multiplication (of a
sparse matrix).
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Some operators in this basis (version II)

Here I just give you the expressions for some operators (again check that I didn’t make any
mistakes!). First define

1
N

∑
ij

K̃−1
ij ≡ K

〈m〉 =
1

Nβ
∂

∂h
log(Z) =⇒ O[φ̃] =

1√
βJ

1
N

∑
i

ψi −
h
J
K

〈βε〉 = − β
N

∂

∂β
log(Z)

=⇒ O[φ̃] =
CβJ

2
+

(βh)2K
2βJ

− βh
2N
√
βJ

∑
i

ψi −
√
βJ

2N

∑
i

K̃iαψα tanh
(√

βJK̃iβψβ
)
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The code
I provide you with C++ code to do both versions
Can run in any dimensions D
Unfortunately, it is not well documented
But it runs faster than my python scripts!

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4

〈ε
/J
〉

(βJ)−1

2d Ising, βh = 0, L = 32

hmc
exact

〈C
/J

2
〉

(βJ)−1

2d Ising, βh = 0, L = 32

hmc
exact
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Sampling fit parameters with HMC

Let’s say you have some data

t x err
V1 1 −0.133250 0.1037669
V2 2 1.995190 0.0900265
V3 3 3.983042 0.1004825

And now you want to fit a line to the data

F (t) = a t + b

Also assume you have some prior knowledge
of b: b = −1.983(12).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

3

4

t

x
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Standard way of doing things. . .

Maximum-likelihood method equates to maximizing the probability

f (x |a, b)f (a)f (b) ∝ exp

(
−
∑

i

(xi − F (ti ))2

2∆x2
i

)
exp

(
−(b − b)2

2 ·∆b
2

)

∝ exp

(
−1

2

[∑
i

(xi − F (ti ))2

∆x2
i

+
(b − b)2

∆b
2

])

which is equivalent to minimizing the argument of the exponential, i.e. least-squares minimization.

July 23, 2019 Thomas Luu, IAS-4 Page 23



But I want HMC to take over the world!!!
We define an artificial Hamiltonian!

H (pa, pb, a, b) =
p2

a

2
+

p2
b

2
− log[f (x |a, b)f (a)f (b)]

=
p2

a

2
+

p2
b

2
+

1
2

[∑
i

(xi − F (ti ))2

∆x2
i

+
(b − b)2

∆b
2

]
with corresponding EoMs:

ȧ = pa, ṗa = − ∂H
∂a

ḃ = pb, ṗb = − ∂H
∂b

You can even include correlations (if you know them)! This is a general expression:

H (pa, pb, a, b) =
p2

a

2
+

p2
b

2
+

1
2

∑
r,r ′

(w(r)− fa,b(r)) C
−1 (

r , r ′
) (

w
(
r ′
)
− fa,b

(
r ′
))

=
p2

a

2
+

p2
b

2
+

1
2
χ2(a, b)
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And the rest is old news!

a

0 500 1000 1500
1.90

1.95

2.00

2.05

traj.

a = 1.98241± 0.0285312

b

0 500 1000 1500

-2.02

-2.00

-1.98

-1.96

traj.

b=− 1.98727± 0.0239101
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Error analysis in this case

You’ll still need to perform an autocorrelation
analysis and perform binning to reduce
autocorrelations (if needed)

However, the fluctuations of the variables are
dictated by ∆xi .

This means that the standard deviation of
these fluctuations are the true error (NOT the
bootstrap standard deviations)

In other words, don’t do bootstrap in this case
0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

3

4

t

x

Try this on Prof. Shindler’s exercise related to fitting the effective mass!
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Some pitfalls
Though some problems may not have a formal ergodic problem they have a practical ergodic
problem

This is the 1-site Hubbard model!
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Calculation of det M and M−1

The calculation of det M is time consuming

For large systems, must make use of “stochastic (noisy) estimates” of det M (e.g.
pseudo-fermions)

One never actually solves for the entire M−1, but instead solves M.x = b for select “source”
vectors b

Use iterative Krylov solvers (and its many flavors) to do such solves
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But the biggest pitfall of all. . .

Remember the 1-D anHarmonic problem?

I could here also apply the HS transformation to reduce the x4 term to x2:∫
D[x ]e−Sω [x ]−λωx4

→
∫
D[φ]D[x ]e−

φ2
4ωλ e−Sω [x ]−iφx2

=

∫
D[φ]e−

φ2
4ωλ−

1
2 log det M[φ]

Looking good so far, right? Now I just introduce conjugate momenta for each φi , determine
EoMs, and apply HMC

What could be so hard???
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The sign problem!

The issue is with log det M[φ], which can be complex in this case

We don’t know how to interpret probabilities with complex terms!

This is known colloquially as the sign problem

There are some limiting cases where “solutions”, or better “work-arounds” exist that can deal
with this problem (e.g. re-weighting, expansion around real part, etc. . .)

And as you might imagine, most of the interesting physics occurs in regimes where the sign
problem is severe

Finite baryon density QCD
Doped condensed matter systems

But if you want the Fields Medal, solve the sign problem!
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Guys, it’s been an honor! So let’s end with a challenge problem!

Come back to the Ising model.

Up till now, you’ve (hopefully) calculated the spin-spin correlator in position space

g(r) =
1
N

∑
i

〈sisi+r 〉 =
1

NN2
t

∑
i,t,τ

〈si,τsi+r,τ+t〉

Calculate the (symmetric) spin-spin correlator in time!

g(t) =
1

N2Nt

∑
i,r,τ

〈si,τsi+r,τ+t〉

This requires some manipulation of the codes I gave you, but believe it or not, you have all the
tools to do this!

If you do do this, email me your results!
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