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Lecture |: Introduction to the Path Integral Formalism and some numerical preliminaries

uuuuuuuuu

L

#) J0LICH

FORSCHUNGSZENTRUM UNIVERSITAT




WHAT IS THE
PATH INTEGRAL FORMALLY?

the generalisation of multi- dridzodrs - - - dx, f(x1, 22,3,

dimensional integrals. . . \/

variables function of variables

The "Path Integral” uses /

...to a multi-dimensional dxl (t1)dea(ts) - - - din(t) flzi(t),

integral over functions \/
W

functions function of functions




WHY IS THE PATH INTEGRAL IMPORTANT IN
PHYSICS!

Paths come from connecting the points

$1(t1)

Interference Pattern
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Tp—1(tn-1) Detector Position (zm)
T (tn)

Generalizes “action principle™ of classical mechanics to quantum mechanics

Indispensable tool for quantum theories involving fields
Amenable to computer simulation




BUT FIRST AN HISTORICAL PERSPECTIVE ...
DEFINING THE FUNCTIONAL

Vito Volterra Norbert Wiener
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“function” f(x) “integra\”/dx f(@)
“fSunctional”’ flx(t)] “Wiener integral” /D[$(t)] flx(t)]



APPLYING FUNCTIONALS TO PHYSICS

P A. M. Dirac Richard Feynman

"Probability Amplitude™ as a

sum over all paths
(i7" 0y —m) Y(x,t) =0 EARGELLT

[ 933 | 948

Dirac Equation



THE PATH INTEGRAL FORMALISM
IN THE "MODERN ERA”

(Gerardus 't Hooft Kenneth Wilson

L) v
Renormalization of gauge theories using Pioneered the use of computers to
path integral formalism calculate physical observables

971 |970s-1980s



PRINCIPLE OF "LEAST ACTION™

(CLASSICALLY SPEAKING. . .)
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The "true’ path Is the
path that minimises S




HOW DO YOU DETERMINE THE " TRUE"™ PATH!

Brute Force Method:
Sample millions of paths

S[x(t)]

loquent Method: sl = [ dt £ieto), é(0). 4
Use our brains |

Principle of “Stationary® Action

Newton’s 2nd Law of
Motion



AN ALTERNATIVE METRIC:  Platt)] = e SellB

Born:
Saigon
22.12.

Trento
15.07.19




e PATH VWITH TRE LARGES | VALUE T

“P[ ]” STHE “TRUE" PATH
CLASSICALLY SPEAKING)

Luu’s “true path”
through life




e FA IR INTEGRAL AT
THE QUANTUM SCALE

INTERPR

PROBAB
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Luu’s “true path”
through life




L UU'S “QUANTUM PATH(S)" THROUGH LIFE

Born:
Saigon
22.12.7

Trento
15.0/.19




PERFORM "WEIGHTED"” AVERAGE
OF MY WEIGH T

(QUANTUM MECHANICALLY SPEAKING)

We can obtain information about the system with appropriate probes
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e ROLE OF FHCHNS
PERFORMANCE COMPUTING

» Discretise space and time onto a
attice

» Reformulate theory on discretised
space

- “"Randomly’” sample paths on the
discretised lattice

Not all paths created equally — need to be
clever on how to sample paths

Stochastic — measurements have statistical
uncertainty

a0 continuum limit

« Jake | | iy
L — oo Infinite volume Iimit



QUARKS AND GLUONS

Lattice Quantum Chromodynamics (LQCD): simulating

quarks and gluons on a space-time lattice

Origin of hadron masses
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Budapest-Marseille-Wuppertal Collaboration

Nucleon electric dipole moment

. Neutfon
¢+ Proton |

Quantum fluctuations of

oluonic fields

-0.06" A. Shindler, T.L., J. d.Vries, Phys.Rev. D92 (2015) 094518

Movie courtesy of D. Leinweber (‘) 0‘5 .‘l ] ‘5 é 2‘5
http://www.physics. laide. .au/theor ff/leinweber/VisualQCD/N I ' Q2[GeV2]. '


http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/

Atom Nucleus

Nuclear Lattice Effective Field Theory (NLEFT):
nucleons (protons and neutrons) are degrees of freedom on a
discretised space/time lattice
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FLECTRONS

Simulating electrons on a hexagonal lattice

oraphene Dispersion relation

Interaction-induced Mott gap!?

\/ energy (E)

7 energy band gap

B\

e Dirac point
momentum

Conduction band

h Valence be}md " ——

T.L. 1. Lahde, arXiv: |51 1.049 18

L >1nm C;: 1.42 A Tlght—blﬂdlﬂg

@ 0oh hanostructures , , w/ Coulomb Interaction
approximation



LET'S MAKE THINGS A LITTLE MORE
FORMAL: EUCLIDEAN PATH INTEGRAL

First we Wiek rotate to Euclidean time (R
p2
Given a time-dependent, local Hamiltonian, H(T) ik 1 -V (z,7)

The solution to the evolution operator, U(t,t), is given
by Schrodinger's equation oU (', 7)

Formally, matrix elements of U(t',t) are equivalent to

i i —=de T’ Sl 9
(s, 7' |@i, T) = (@4 |U (T, 7)|:) =/ dac(7)] e~ 21! Sl (7)) :/ dT( iy V(fL’(T)aT)>

(T)=z;

h,c—1
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A FEW THINGS TO NOTE ABOUT THE

NTEGRA

-UCLID

-AN

PATH

* [he points xr and x; do not have to be distinct. In principle, lots can be

learned by setting x/~=x;

* Clearly not all paths, x(T), are created equal.
e tach path is weighted by €XP (—S[ZE(T)D

» [he “classical’” path Is defined where SR

Ox(T)




Problem # 1| (simple):

AssL

oscll

.e.

What is U(t,t)!

me V(x,t) |

ator potent

|dl.

the time-independent, one-dimensional harmonic
2
THW
Yir. L = - z°

What is the general solution for U(%’,t) in the case of time-independent
potentials!



Problem #2 (simple):

Assuming a time-independent Hamiltonian, show that the long-time
behavior (l.e.t>>t) of the evolution operator is

lim (zo|U(7,0)|z0) = |Wo(z)|” e~ FoT

(e ©©

where FEj is the system'’s ground state energy and ¥ (X) is the ground state
wavefunction




Problem #3 (simple):

Assume

me

Vix) = : z? + dImiwsz?

Use standard Rayleigh- laylor perturbation theory to determine the
oround-state energy shift to order A and A2




BOIVVEY 1S THIS USERTES

» [he Path-Integral formalism i1s amenable to numerics

* It's rather straightforward to put this formalism on a
computer

* We just need to "discretize’” the formalism

* Not limrted to “perturbative’” interactions—should be able to
do 1t all—well, In principle. ..



O ETS DISCRETIZE OURT S
O EXAMELE

* First: Let's discretize the time direction:

X R
ST

/

I

/I

Xl:t: Z:I .................. .. —”/ (_a>
oL

0 R N

» Each path Is represented by an array of position points

e FOr example, the path above can be written as



AND OF COURSE, S[X] MUST
NOW BE APPROXIMATED

[ (2 vi) ~a (;n U=, L vl + 1)+ v<xm>})




AND [HE INTEGRATION MEASURE
BECOMES LESS ABS TRACHE

/[da:] 5 (zﬂ)m /: dz[1] dz]2] dz[3]. .. dz[N — 1]

ma
We don't Integrate over
endpoints x[0] and x[V]
since they are fixed

Therefore:



RS |AKE A CLOSER LOCOIKSS
WHAT WEVE DONE

N/2 [9
<5Uf‘€_H(tf—t7;)|xi> =S ( i ) / dzx|l] dx|2| dz|3]...dx|N — 1]6_51“["3]

2Ta

» We've only discretized the time direction

» At each point In time, x[J] can take on any value from —Infinity to +Infinity

* S0 essentially we've taken the path integral (a rather abstract object) anc

reduced it to an (N-1)-dimensional integral (a numerical object that can be
simulated on a computer)




[T°S STILL NOT AN EASY PROBLEM, EVEN IN 1-D

~or accurate solutions, one ideally wants N to be large

* A layman’s attempt would be to generate an ensemble of paths, or

“configurations’, {x} at random and compute

"Monte Carlo”
iNtegration

volume of N-|
dimensional space

N/2 1 )
N Z e~ Stas 7] number of
I {x} N ensem

average valu
within ensem

dle

baths

dle



Problem #4 (simple):

Set x/~=x;=x and attempt the layman’s approach to calculating the matrix element of the
evolution operator. Iry to extract the ground-state energy at large times.

Note: Sample points within a uniform distribution between -3.5 and 3.5, for example. In this
case V=(3.5)Nt1 'where Nt is the number of time slices.

Problem #5 (moderate):

Now add an interaction term
Vi(z) = Zmw>z*

to the action. Investigate the behavior of the ground-state energy as a

function of A between 0 and |. Overlay your results from Problem 4 to
determine range of validity of your perturbative results.




LS | OOK AT PROBEEFESS

Turns out the evolution operator can be solved exactly for the |-D HO

el | azz—l—x? —4e " “Pg.x,
exp( ( )2((1i6—225) : w2ﬁ>

<'/I"f77-,‘a3i77_> 3= <wf‘Uw(T/77_)‘mi> o

VTVl — e—2wB

By

wf - Inverse temperature”




WHAT HAPPENS IF YOU HAVE TWO OR MORE
(INTERACTING) PARTICLES?

* First off, if the particles aren't interacting, then the problem
reduces to a one-body problem

Problem #6 (easy):

Show that for N non-interacting particles, the full path

integral reduces to the product of IV single-particle path
integrals

» It the particles are interacting, then for two particles have, for

example, z(t')=ay y(t) =y e
P (xryr|U(,t)|xiy;) :/(t) da(7)] /(t) dy(7)] e Sla(t),y(t)]
R e y(t)=y:
2 (T)* 2

Sla(),u(0) = | j dT( S =v<w<7>,y<7>m>)

2m 2m



EXPECTATIONVALUES OF OTHER
OPERATORS ARE EASY TO CALCULATE

* Given an operator O(x), the expectation value can be calculated as

[ [dz (1)) O(x)eSl=®)
[Tdz(@]e =0

(Eo|O(2)|Eo) =

Problem #/ (moderate):

Prove [t!

* The expectation value of O(x) is just the sum over all paths weighted by exp(-S[x]).

* We could just apply our layman’s approach to this problem. . .



BUT VWE CAN DO BETTES

ITHAN THAT!

» The problem with the layman’s attempt is that one spends lots of time

oenerating configurations that are not relevant! In other words, the phase space

being probed Is too large.

» What we want Is to generate configurations in such a way that the probability

Plx,

* [his e

proba

of obtaining a particular configuration x Is

nsures t

hility of

P la(7)] oc exp (= S[z(7)])

nat the generated ensemble of configurations have the highest

peing relevant.



SO HERE'S SOME PSEUDO-CODE THAT DOES JUST THAT

Procedure to generate X,+; given X

LOOP thFOUgh .’)Cnm def update(x, a, mu, N):

global num_of_updates, num_of_accepts

At site |, generate a random number X uniformly [™ for j in xrangeC1,N):  # we do not]
num_of_updates += 1 # change endpoints

distributed from —M to + oldx = x[3]
Replace x,[]]=2x,[]]+X and compute the change # now update x[j]
x[1] = x[1]J+uniform(-mu,mu)

in action AS
# this 1s the change 1n action
] aIWCi dS = actions.deltaS_HO(j},x,o0ld_x,a,N)

f AS < 0, accept the new value of x;,[]
continue to site J+ | # do we accept or not?

1f dS > @ and exp(-dS) < uniform(0,1): :
x[j] = old_x # don't accept change MetrOpOhS‘
if AS > 0O, sample another number p uniformi else: -
, p p >/ num_of_accepts += 1 # tally acceptance Hastlngs

distributed from O to |. If GXp<—AS) =P accept actions.actionS += dS # update action

the new value of x,[]], otherwise reject change.
Continue to site J+1




BOME POIN TS TO CONSIE S

This 1s the simplest example of the Metropolis Algorithm (they
can get much more complicated)

One has to start from some Initial configuration x;

O

d

In

 Usually these inrtial configurations don't represent ‘sood’ configurations
* Run the algorithm for the first [00-1000 ‘trajectories’, allowing the configurations to ‘thermalize'—keep configurations

afterwards

ne tunes M such that one gets approximately ~/0% acceptance

Be

oeneral configuration x,,+;7 1s correlated to some degree with x,,

—there are statistical methods to reduce these effects (e.g.
binning, blocking, . . .)




DO HERE S AN EXAMPLE CF
THERMALIZING A CONFGURATION
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20

t/a



S COME BACK T .
PROBLEM OF EXPECTATION VALUES

* Our original problem involved a sum over paths weighted by exp(-S/x/)

J ldx(t)] O(x)e>1=)
[Tz(@]e =0

(Eo|O(2)|Eo) =

* We've now generated an ensemble of paths {X} with probability distribution
P 2(7)] o exp (=S (7)])

* Our problem now turns into an unweighted sum over paths in our

Y Olzi] + O(N;?)

x; E{x}

distribution oy 1
(Eo|O(2)|Eo) =

N,



T PY TRON COLIES

* In each folder; there are various python routines

e actions.py Contains var?ous function ldeﬂnitions.—
| needs to be In the same directory with
e metropolis.py SOX.DY

® XXXX.pDY

23

Python executable

» o run any of the python executables, just type

>> python3 Xxxx.py



