Structure and Reactions of

 Light Nuclei within χ EFTMaria Piarulli-Washington University, St. Louis June 17, 2019

Neutrinoless Double Beta Decay

In the hypothesis that the 0ν DBD is mediated by the exchange of a light neutrino:

Lepton space-phase integral

* Depends on the Q-value of the decay and the charge of the final state of the nucleus
\& Can be calculated precisely: for most of the emitters of interest

$$
10^{-15}-10^{-16} \mathrm{yr}^{-1}
$$

Nuclear matrix element (NME)

\& Open issues for theorists
\% Spread of about a factor 2-3 in the predicted values for NME for a given isotope
\% Theoretical predictions for these models compared with single beta decays: g_A quenching

The basic model of nuclear theory

The basic model of nuclear theory: description of the static and dynamic properties of nuclear systems.

Nucleon-nucleon (NN) scattering data: "thousands" of experimental data available The spectra, properties, and transition of nuclei: BE, radii, magnetic moments, beta decays rates, weak/radiative captures, electroweak form factors, etc.
The nucleonic matter equation of state: for ex. EOS neutron matter

Inputs for the basic model:
Many-body interactions between the constituents

Electroweak current operators:

$$
\begin{aligned}
& H=\sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j=1}^{A} \overbrace{v_{i j}}^{\text {th+exp }}+\sum_{i<j<k=1}^{A} \overbrace{V_{i j k}}^{\text {th+exp }}+\ldots . \\
& \text { One-body Two-body (NN) Three-body (3N) } \\
& \left.\right|_{N} ^{N}+\left.\left.\left.\right|_{N} ^{N}\right|_{N} ^{N}\right|_{N} ^{N}+\ldots \\
& j^{\mathrm{EW}}=\sum_{\substack{i=1 \\
\text { One-body }}}^{A} j_{i}+\sum_{\substack{i<j=1 \\
\text { Two-body }}}^{A} j_{i j}+\sum_{\substack{i<j<k=1 \\
\text { Many-body }}}^{A} j_{i j k}+\ldots
\end{aligned}
$$

Chiral EFT: from QCD to nuclear systems

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)

Symmetries in particular the approximate chiral symmetry between hadronic d.o.f (π, N, Δ)

Approximate chiral symmetry requires the pion to couple to other pions and to baryons by powers of its momentum

$$
\mathcal{L}_{e f f}=\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots
$$

Given a power counting scheme
Calculate amplitudes+prescription to obtain potentials + regularization

$$
\mathcal{L}^{(n)} \sim\left(\frac{Q}{\Lambda_{\chi}}\right)^{n} \sim 100 \mathrm{MeV} \text { soft scale }
$$ (of high momentum components)

$\mathcal{L}^{(n)} \sim\left(\frac{Q}{\Lambda_{\chi}}\right)^{n} \sim 100 \mathrm{MeV}$ soft scale
Nuclear forces and currents

Few- and many-body methods: QMC, NCSM,

CC, etc

Nuclear Hamiltonian: Chiral EFT formulation of the basic model

Δ-less Chiral 2N
$\Delta=m_{\Delta}-m_{N} \sim 300 \mathrm{MeV} \sim 2 m_{A}$

Krebs at al. '12-'13;
Girlanda et.al '11

Note: Many of the available versions of chiral potentials are formulated in momentumspace and are strongly nonlocal:

Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014; Lynn et al. PRL 113, 1925012014
Piarulli et al. PRC 91, 024003 2015; PRC 94, 0540072016

Local chiral NN potential with Δ 's

Piarulli et al. PRC 91, 024003 2015; PRC 94, 0540072016

$$
v_{12}=v_{12}^{\mathrm{EM}}+v_{12}^{\mathrm{L}}+v_{12}^{\mathrm{S}}
$$

v_{12}^{EM} : EM component including corrections up to α^{2}

$$
\mathrm{LO}: Q^{0} \mathbf{p}^{\mathbf{p}^{\prime}}|-|_{-\mathbf{k}}^{-\mathbf{p}^{\prime}}
$$

v_{12}^{L} : chiral OPE and TPE component with Δ 's

- dependence only on the momentum transfer $\mathbf{k}=\mathbf{p}^{\prime}-\mathbf{p}$

v_{12}^{S} : short-range contact component up to order N3LO $\left(\mathrm{Q}^{4}\right)$ parametrized by $(2+7+11) \mathrm{Cl}$ and (2+4) IB LECs
- the functional form taken as $C_{R_{S}}(r) \propto e^{-\left(r / R_{S}\right)^{2}}$ with $R_{S}=0.8(0.7) \mathrm{fm}$ a (b) models

In coordinate-space it reads as:

$$
v_{12}=\sum_{l=1}^{16} v^{l}(r) O_{12}^{l}
$$

$$
\begin{aligned}
& O_{12}^{l=1, \ldots, 6}=\left[\mathbf{1}, \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}, S_{12}\right] \otimes\left[\mathbf{1}, \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right] \\
& O_{12}^{l=7, \ldots, 11}=\mathbf{L} \cdot \mathbf{S}, \mathbf{L} \cdot \mathbf{S} \boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2},(\mathbf{L} \cdot \mathbf{S})^{2}, \mathbf{L}^{2}, \mathbf{L}^{2} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} \\
& O_{12}^{l=12, \ldots, 16}=T_{12},\left(\tau_{1}^{z}+\tau_{2}^{z}\right), \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2} T_{12}, S_{12} T_{12}, \mathbf{L} \cdot \mathbf{S} T_{12}
\end{aligned}
$$

Fitting procedure: NN PWA and database

The 26 LECs are fixed by fitting the pp and np Granada database up to two ranges of $E_{\text {lab }}=125 \mathrm{MeV}$ and 200 MeV , the deuteron BE and the nn scattering length

To minimizing the χ^{2} we have used the Practical Optimization Using No Derivatives (for Squares), POUNDers (M. Kortelainen, PRC 82, 024313 2010)

model	order	$E_{\text {Lab }}(\mathrm{MeV})$	$N_{p p+n p}$	$\chi^{2} /$ datum
Ia	N3LO	$0-125$	2668	1.05
Ib	N3LO	$0-125$	2665	1.07
IIa	N3LO	$0-200$	3698	1.37
IIb	N3LO	$0-200$	3695	1.37

Models a (b) cutoff~500 MeV (600 MeV) in momentum-space

Local chiral 3N potential with Δ 's

Inclusion of 3 N forces at N2LO:

1) Fit to:

- $E_{0}\left({ }^{3} \mathrm{H}\right)=-8.482 \mathrm{MeV}$
${ }^{2} a_{n d}=(0.645 \pm 0.010) \mathrm{fm}$

Model	c_{D}	c_{E}
Ia	3.666	-1.638
Ib	-2.061	-0.982
IIa	1.278	-1.029
IIb	-4.480	-0.412

(CD
\&
(CE) $\sim \tau_{i} \cdot \tau_{j}$
2) Fit to:

- $E_{0}\left({ }^{3} \mathrm{H}\right)=-8.482 \mathrm{MeV}$
- GT m.e. in ${ }^{3} \mathrm{H} \beta$-decay

Model	c_{D}	c_{E}
Ia^{*}	$-0.635(255)$	$-0.09(8)$
Ib^{*}	$-4.705(285)$	$0.550(150)$
IIa^{*}	$-0.610(280)$	$-0.350(100)$
IIb^{*}	$-5.250(310)$	$0.05(180)$

Ab initio Methods: HH and QMC

Hyperspherical Harmonics (HH) expansion for $\mathrm{A}=3$ and 4 bound and continuum states

$$
|\Psi\rangle=\sum_{\mu} c_{\mu} \underbrace{\left|\Phi_{\mu}\right\rangle}_{\text {HH basis }} c_{\mu} \quad \text { from } \quad E=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

Quantum Monte Carlo (QMC) methods encompass a large family of computational methods whose common aim is the study of complex quantum systems

QMC: Variational Monte Carlo (VMC)

R.B. Wiringa, PRC 43, 1585 (1991)

Minimize the expectation value of H :

$$
E_{T}=\frac{\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle} \geq E_{0}
$$

Trial wave function (involves variational parameters):

$$
\left|\Psi_{T}\right\rangle=\left[1+\sum_{i<j<k} U_{i j k}\right]\left[S \prod_{i<j}\left(1+U_{i j}\right)\right]\left|\Psi_{J}\right\rangle
$$

$\left|\Psi_{J}\right\rangle=\left[\prod_{i<j} f_{c}\left(r_{i j}\right)\right]\left|\Phi\left(J M T T_{z}\right)\right\rangle$ (s-shell nuclei): Jastrow wave function, fully antisymmetric
$S \prod_{i<j}$: represents a symmetrized product
$U_{i j}=\sum_{p=2,6} u_{p}\left(r_{i j}\right) O_{i j}^{p}:$ pair correlation operators
$U_{i j k}=\sum_{x} \epsilon_{x} V_{i j k}^{x}$: three-body correlation operators
$\left|\Psi_{T}\right\rangle$ are spin-isospin vectors in 3A dimension with $2^{A}\binom{A}{Z}$

The search in the parameter space is made using COBYLA (Constrained Optimization BY Linear Approximations) algorithm available in NLopt library

QMC: Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the limitations of VMC by using a projection technique to determine the true ground-state

The method relies on the observation that Ψ_{T} can be expanded in the complete set of eigenstates of the Hamiltonian according to

$$
\begin{aligned}
& \left|\Psi_{T}\right\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle \quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
& \lim _{\tau \rightarrow \infty}|\Psi(\tau)\rangle=\lim _{\tau \rightarrow \infty} e^{-\left(H-E_{0}\right) \tau}\left|\Psi_{T}\right\rangle=c_{0}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

$$
|\Psi(\tau=0)\rangle=\left|\Psi_{T}\right\rangle
$$

where τ is the imaginary time
The evaluation of $\Psi(\tau)$ is done stochastically in small time steps $\Delta \tau(\tau=\mathrm{n} \Delta \tau)$ using a Green's function formulation

Spectra of Light Nuclei: Phenomenology vs x EFT

The rms from experiment is 0.72 MeV for NV2+3-la compared to 0.80 MeV for AV18+IL7 $c_{E}<(>) 0$: repulsion (attraction) in light-nuclei (the opposite effect in PNM) $c_{D}<(>) 0:$ repulsion (attraction) in light-nuclei (same effect in PNM but very small)

Energies of Light Nuclei: Model-dependence

Model-dependence for NV2+3 up to 7-8\% of the total binding energy
$c_{E}<(>) 0$: repulsion (attraction) in light-nuclei (the opposite effect in PNM)
$c_{D}<(>) 0$: repulsion (attraction) in light-nuclei (same effect in PNM but very small)

Polarization observables in pd elastic scattering at 3 MeV : HH calculations with the NV2+3 models la-lb (lla-llb), are shown by the green (blue) band. The black dashed line are results obtained with only the two-body interaction NV2-la

Girlanda, Kievsky, Marcucci, Viviani

More sophisticated 3N force??? Different way to fix the 3N??? subleading contact terms in 3N interaction???

Equation of State of Pure Neutron Matter in χ EFT

The EoS of pure neutron matter (PNM): neutrons stars

- Compact objects: R $\sim 10 \mathrm{~km}, M_{\text {max }}^{\text {obs }} \sim 2 M_{\odot}$
- Composed predominantly of neutrons between the inner crust and the outer core
- NS from gravitational collapse of a massive star after a supernova explosion

Logoteta, Piarulli, Bombaci, Lovato, Wiringa in preparation
Cutoff sensitivity: modest in NV2 models; very large in NV2+3 models

Beyond Energy Calculations

* Electroweak structure and reactions:

Electroweak form factors
Magnetic moments and radii
Electroweak Response functions
Radiative/weak captures
G.T. matrix elements involved in beta decays

Inputs besides nuclear interactions:

> Electroweak current operators:

$$
j^{\mathrm{EW}}=\sum_{i=1}^{A} j_{i}+\sum_{i<j=1}^{A} j_{i j}+\sum_{i<j<k=1}^{A} j_{i j k}+\ldots
$$

Current operators constructed in correspondence to the phenomenological interactions based on meson-exchange approach Marcucci et al. PRC 72, 014001 (2005)

Current operators derived in χ EFT: Pastore et al. PRC 78, 064002 (2008), PRC 80, 034004 (2009); Piarulli et al. PRC 87, 014006 (2013), Baroni et al. PRC 93, 015501 (2016); Kölling et al. PRC 86, 047001 (2012), Krebs et al., Ann. Phys. 378, 317 (2017)

Nuclear axial currents and beta-decays in light-nuclei

$(Z, N) \rightarrow(Z+1, N-1)+e+\bar{v}_{e}$

Schiavilla et al. PRC 99, 034005 (2019) Baroni et al. PRC 93, 015501 (2016) Pastore et al. PRC 78, 064002 (2008)

Matrix Element $<\Psi_{f}|\mathrm{GT}| \Psi_{i}>\sim g_{A}$ and decay rate $\sim g_{A}^{2}$
Understanding "quenching" of $\sim g_{A}$
Relevant for neutrinoless double beta decay since rate $\sim g_{A}^{4}$
Nuclear astrophysics (Sun chain reaction)

NVI - database fitted up to $125 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and $n d$-scattering length (VMC calculations) NVII - database fitted up to $200 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and $n d$-scattering length (VMC calculations) NVI* - database fitted up to $125 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and GT triton (VMC calculations) NVII* - database fitted up to $200 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and GT triton (VMC calculations)

Pastore, Piarulli, Schiavilla, Wiringa, Baroni, Carlson, Gandolfi, in preparation

PRELIMINARY

AV18+IL7 - database fitted up to $350 \mathrm{MeV}-c_{D}$ fitted to GT triton (GFMC calculations) Pastore et al. PRC 97022501 (2018)

$\boldsymbol{\mu}^{-}$Capture on ${ }^{2} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ in $\chi \mathrm{EFT}$

Same theoretical inputs of:

$$
\begin{aligned}
& p+p \rightarrow d+e^{+}+\nu_{e} \\
& p+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+e^{+}+\nu_{e}(h e p)
\end{aligned}
$$

$$
\begin{gathered}
\mu^{-}+d \rightarrow n+n+\nu_{\mu} \\
\Gamma\left({ }^{2} \mathrm{H}\right)=399 \pm 3 \mathrm{sec}^{-1}
\end{gathered}
$$

$$
\begin{aligned}
& \mu^{-}+{ }^{3} \mathrm{He} \rightarrow{ }^{3} \mathrm{H}+\nu_{\mu}(70 \%) \\
& \Gamma\left({ }^{3} \mathrm{He}\right)=(1494 \pm 21) \mathrm{sec}^{-1} \\
& \Gamma^{\mathrm{EXP}}\left({ }^{3} \mathrm{He}\right)=(1496 \pm 4) \mathrm{sec}^{-1}
\end{aligned}
$$

\%Good agreement with available experimental data although the muon-capture on the deuteron have large errors
\%Upcoming measurement of $\Gamma\left({ }^{2} \mathrm{H}\right)$ by the MuSun collaboration at PSI with a 1% error
\%Two-body currents important to achieve this agreement
Marcucci \& Piarulli FBS 49, 35-39 (2011) Marcucci et al. PRC 83, 014002 (2011)
Marcucci et al. PRL 108, 052502 (2012)

Conclusions

We are testing our models of NN+3N interactions with Δ-isobar based on chiral EFT framework in both light-nuclei and infinite nuclear matter

We mainly focused our attention on studying properties of nuclei up to $\mathrm{A}=12$ and EoS of infinite neutron matter

For the time being, we are interested in studying the model-dependence of the nuclear observables by exploring different cutoffs and range of energies used to fit the NN interactions as well as analyzing different strategies fo fit the TNI

It looks like that the formulation of the TNI with only c_{D} and c_{E} terms is too simplistic if we want to have a good descriptions of spectra, properties of light-nuclei, infinite nuclear matter, three-body observables with a certain degree of accuracy

We are investigating the effect of subleading 3 N contact interactions in light-nuclei (we will do so also for infinite nuclear matter)

ค \dagger ATNT

Theory Alliance

Alessandro Baroni, University of South Carolina, USA Joe Carlson, Los Alamos National Lab, USA Stefano Gandolfi, Los Alamos National Lab, USA Luca Girlanda, University of Salento, Italy Alejandro Kievsky, INFN-Pisa, Italy Alessandro Lovato, INFN-Trento, Italy Laura E. Marcucci, INFN-Pisa, University of Pisa, Italy Saori Pastore,Washington University in St. Louis, USA
 Steven Pieper**, Argonne National Lab, USA (**deceased) Rocco Schiavilla, Old Dominion University/Jefferson Lab, USA Michele Viviani, INFN-Pisa, Italy Robert Wiringa, Argonne National Lab, USA

