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Formalism

Many-body Methods adopted for the calculations of NME 

Closure without involvement of intermediate states 

IBM, PHFB, DFT, CDFT,…… 

Non-Closure with intermediated states 

Shell Model 

QRPA: realistic forces; Skyrme force;……



Formalism

QRPA is a method used to describe the small amplitude 
vibrations for open shell nuclei 

pn-QRPA treats the states of intermediate odd-odd nuclei 
as iso-vector excitation of even-even ground states 

Only 1 phonon excitation is considered, no multi-phonon 
excitations, no phonon-phonon interactions 

QRPA is constructed on the quasi-particle grounds, 
particle number is not conserved

P. Ring et. al., Nuclear Many-Body Problem



Formalism

Solve the Schroedinger eq. with mean field potential 
(W.S. Potential) 

Solve the BCS equations to get the quasiparticle, where 
the residual interactions (G-matrix) are obtained by 
solving the Bruckner eq. (Overall renormalized 
paremeters gpair are needed) 

 Solve the QRPA equations to get the wave functions of 
the intermediate states (gph and gpp)



Formalism

Introduction of deformed QRPA 

Adiabatic approx. separate the intrinsic and rotation d.f. 

Quasi-particle constructed on intrinsic frame 

Why deformation: 

150Nd lies in the heavily deformed rare earth region 

This nucleus has the largest phase space factor
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Recent results on phase space factor

Kotila and Iachello, PRC85,034316



Formalism

Recent results on phase space factor

Kotila and Iachello, PRC85,034316



Nuclear matrix elements for 2νββ under intrinsic frame 

NME for 0νββ 

Overlaps :

Formalism
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momentum and its projection onto z axes, respectively). (See
the Appendix for the details.) Thereby, the wave function
[Eq. (5)] can be reexpressed as

|τ#τ ⟩ =
∑

η

Bτ
η |η#τ ⟩, (6)

where |η#τ⟩ =
∑

% C
j#τ

l#τ −%1
2%

|nr l& = #τ −%⟩|%⟩ is the spheri-
cal harmonic oscillator wave function in the j -coupled scheme
[η = (nr lj )], and Bτ

η =
∑

% C
j#τ

l#τ −% 1
2 %

Anr l
Nnz#τ −% bNnz% , with

C
j#τ

l#τ −% 1
2 %

being the Clebsch-Gordan coefficient.
The QRPA equations

(
A(K) B(K)

−B(K) −A(K)

)(
Xm

K

Ym
K

)

= ωK,m

(
Xm

K

Ym
K

)

, (7)

with realistic residual interaction, are solved to get the
forward Xm

iK and backward Ym
iK amplitudes and the excitation

energies ω
mi

K and ω
mf

K of the mth K+ (K = 0,±1) state in the
intermediate nucleus. The matrices A and B are defined by

Apn,p′n′(K) = δpn,p′n′ (Ep + En) + gpp(upunup′un′

+ vpvnvp′vn′ )Vpn̄p′n̄′ − gph(upvnup′vn′

+ vpunvp′un′ )Vpn′p′n (8)

Bpn,p′n′(K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

− gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n,

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the p-h and p-p matrix elements of the
residual nucleon-nucleon interaction V , respectively, and uτ

and vτ are the coefficients of the Bogoliubov transformation.
The amplitudes of β− and β+ transitions from the 0+ ground
states of initial and final nuclei to a one-phonon K+ state in
the intermediate nucleus are given in the intrinsic system by

⟨K+,m|β−
K |0+

g.s.⟩ =
∑

pn

⟨p|σK |n⟩
[
upvnX

m
pn,K + vpunY

m
pn,K

]
,

(9)
⟨K+,m|β+

K |0+
g.s.⟩ =

∑

pn

⟨p|σK |n⟩
[
upvnY

m
pn,K + vpunX

m
pn,K

]
.

The matrix element M2ν
GT of Eq. (2) is given within the

QRPA in the intrinsic system by the following expression:

M2ν
GT =

∑

K=0,±1

∑

mimf

×
⟨0+

f |β̄−
K |K+,mf ⟩⟨K+,mf |K+,mi⟩⟨K+,mi |β−

K |0+
i ⟩

ω̄K,mimf

.

(10)

Along with the usual approximation of the energy denomi-
nator in Eq. (10) as ω̄K,mimf

= (ωK,mf
+ ωK,mi

)/2 (see, e.g.,
Refs. [17,18]; we will later refer to this case as “case II”),
we also use in this work another prescription in which the
whole calculated QRPA energy spectrum is shifted in such
a way as to have the first calculated 1+ state exactly at the
corresponding experimental energy (case I). In this case the
energy denominator in Eq. (10) acquires the form ω̄K,mimf

=
(ωK,mf

− ωK,1f
+ ωK,mi

− ωK,1i
)/2 + ω̄1+

1
, with ω̄1+

1
being

the experimental excitation energy of the first 1+ state
measured from the mean g.s. energy (E0i

+ E0f
)/2. All the

calculated strength functions in this work are represented
according to case I, as well.

The two sets of intermediate nuclear states generated from
the initial and final ground states do not come out identical
within the QRPA. Therefore, the overlap factor of these states
is introduced in Eq. (10) [23,24] as follows:

⟨K+,mf |K+,mi⟩ =
∑

li lf

[
X

mf

lf KX
mi

liK
− Y

mf

lf KY
mi

liK

]

×Rlf li ⟨BCSf |BCSi⟩. (11)

The factor Rlf li , which includes the overlaps of single-particle
wave functions of the initial and final nuclei, is given by

Rll′ = ⟨pρp|p′ρp′ ⟩
(
u(i)

p u
(f )
p′ + v(i)

p v
(f )
p′

)
⟨nρn|n′ρn′ ⟩

×
(
u(i)

n u
(f )
n′ + v(i)

n v
(f )
n′

)
, (12)

and the last term ⟨BCSf |BCSi⟩ in Eq. (11) corresponds to the
overlap factor of the initial and final BCS vacua in the form
given in Ref. [17].

As a residual two-body interaction we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the Bonn-CD one-boson
exchange potential, as used also in the spherical calculations
of Ref. [6]. The G-matrix elements are originally calculated
with respect to a spherical harmonic oscillator s.p. basis. By
using the decomposition of the deformed s.p. wave function in
Eq. (6), the two-body deformed wave function can be repre-
sented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (13)

where |ηpηn, JK⟩ =
∑

J CJK
jp#pjn#n

|ηp #p⟩|ηn#n⟩, and
FJK

pηpnηn
= B

p
ηpB

n
ηn

(−1)jn−#nCJK
jp#pjn−#n

is defined for the
sake of simplicity [with the phase (−1)jn−#n arising from
the time-reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′

and particle-hole Vpn′,p′n interaction matrix elements in the
representation [Eq. (8)] for the QRPA matrices A and B
[Eq. (7)] in the deformed Woods-Saxon single-particle basis
can then be given in terms of the spherical G-matrix elements
as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′

×G(ηpηnηp′ηn′ , J ), (14)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn

×G(ηpηn′ηp′ηn, J ), (15)

where K ′
pn′ = #p + #n′ = #p′ + #n. The matrix elements of

σK in Eq. (9) can be written as ⟨p|σK |n⟩ =
∑

ηp,ηn
F 1K

pηpnηn

⟨ηp∥σ∥ηn⟩/
√

3.
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momentum and its projection onto z axes, respectively). (See
the Appendix for the details.) Thereby, the wave function
[Eq. (5)] can be reexpressed as

|τ#τ ⟩ =
∑

η

Bτ
η |η#τ ⟩, (6)

where |η#τ⟩ =
∑

% C
j#τ

l#τ −%1
2%

|nr l& = #τ −%⟩|%⟩ is the spheri-
cal harmonic oscillator wave function in the j -coupled scheme
[η = (nr lj )], and Bτ

η =
∑

% C
j#τ

l#τ −% 1
2 %

Anr l
Nnz#τ −% bNnz% , with

C
j#τ

l#τ −% 1
2 %

being the Clebsch-Gordan coefficient.
The QRPA equations

(
A(K) B(K)

−B(K) −A(K)

)(
Xm

K

Ym
K

)

= ωK,m

(
Xm

K

Ym
K

)

, (7)

with realistic residual interaction, are solved to get the
forward Xm

iK and backward Ym
iK amplitudes and the excitation

energies ω
mi

K and ω
mf

K of the mth K+ (K = 0,±1) state in the
intermediate nucleus. The matrices A and B are defined by

Apn,p′n′(K) = δpn,p′n′ (Ep + En) + gpp(upunup′un′

+ vpvnvp′vn′ )Vpn̄p′n̄′ − gph(upvnup′vn′

+ vpunvp′un′ )Vpn′p′n (8)

Bpn,p′n′(K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

− gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n,

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the p-h and p-p matrix elements of the
residual nucleon-nucleon interaction V , respectively, and uτ

and vτ are the coefficients of the Bogoliubov transformation.
The amplitudes of β− and β+ transitions from the 0+ ground
states of initial and final nuclei to a one-phonon K+ state in
the intermediate nucleus are given in the intrinsic system by

⟨K+,m|β−
K |0+

g.s.⟩ =
∑

pn

⟨p|σK |n⟩
[
upvnX

m
pn,K + vpunY

m
pn,K

]
,

(9)
⟨K+,m|β+

K |0+
g.s.⟩ =

∑

pn

⟨p|σK |n⟩
[
upvnY

m
pn,K + vpunX

m
pn,K

]
.

The matrix element M2ν
GT of Eq. (2) is given within the

QRPA in the intrinsic system by the following expression:

M2ν
GT =

∑

K=0,±1

∑

mimf

×
⟨0+

f |β̄−
K |K+,mf ⟩⟨K+,mf |K+,mi⟩⟨K+,mi |β−

K |0+
i ⟩

ω̄K,mimf

.

(10)

Along with the usual approximation of the energy denomi-
nator in Eq. (10) as ω̄K,mimf

= (ωK,mf
+ ωK,mi

)/2 (see, e.g.,
Refs. [17,18]; we will later refer to this case as “case II”),
we also use in this work another prescription in which the
whole calculated QRPA energy spectrum is shifted in such
a way as to have the first calculated 1+ state exactly at the
corresponding experimental energy (case I). In this case the
energy denominator in Eq. (10) acquires the form ω̄K,mimf

=
(ωK,mf

− ωK,1f
+ ωK,mi

− ωK,1i
)/2 + ω̄1+

1
, with ω̄1+

1
being

the experimental excitation energy of the first 1+ state
measured from the mean g.s. energy (E0i

+ E0f
)/2. All the

calculated strength functions in this work are represented
according to case I, as well.

The two sets of intermediate nuclear states generated from
the initial and final ground states do not come out identical
within the QRPA. Therefore, the overlap factor of these states
is introduced in Eq. (10) [23,24] as follows:

⟨K+,mf |K+,mi⟩ =
∑

li lf

[
X

mf

lf KX
mi

liK
− Y

mf

lf KY
mi

liK

]

×Rlf li ⟨BCSf |BCSi⟩. (11)

The factor Rlf li , which includes the overlaps of single-particle
wave functions of the initial and final nuclei, is given by

Rll′ = ⟨pρp|p′ρp′ ⟩
(
u(i)

p u
(f )
p′ + v(i)

p v
(f )
p′

)
⟨nρn|n′ρn′ ⟩

×
(
u(i)

n u
(f )
n′ + v(i)

n v
(f )
n′

)
, (12)

and the last term ⟨BCSf |BCSi⟩ in Eq. (11) corresponds to the
overlap factor of the initial and final BCS vacua in the form
given in Ref. [17].

As a residual two-body interaction we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the Bonn-CD one-boson
exchange potential, as used also in the spherical calculations
of Ref. [6]. The G-matrix elements are originally calculated
with respect to a spherical harmonic oscillator s.p. basis. By
using the decomposition of the deformed s.p. wave function in
Eq. (6), the two-body deformed wave function can be repre-
sented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (13)

where |ηpηn, JK⟩ =
∑

J CJK
jp#pjn#n

|ηp #p⟩|ηn#n⟩, and
FJK

pηpnηn
= B

p
ηpB

n
ηn

(−1)jn−#nCJK
jp#pjn−#n

is defined for the
sake of simplicity [with the phase (−1)jn−#n arising from
the time-reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′

and particle-hole Vpn′,p′n interaction matrix elements in the
representation [Eq. (8)] for the QRPA matrices A and B
[Eq. (7)] in the deformed Woods-Saxon single-particle basis
can then be given in terms of the spherical G-matrix elements
as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′

×G(ηpηnηp′ηn′ , J ), (14)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn

×G(ηpηn′ηp′ηn, J ), (15)

where K ′
pn′ = #p + #n′ = #p′ + #n. The matrix elements of

σK in Eq. (9) can be written as ⟨p|σK |n⟩ =
∑

ηp,ηn
F 1K

pηpnηn

⟨ηp∥σ∥ηn⟩/
√

3.
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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where N = n⊥ + nz (n⊥ = 2nρ + |#|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively; # = $ − % and % are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection $τ = −|$τ |,
which are degenerate in energy with $τ = |$τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [16]). The states (τ, τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz#⟩
can be further decomposed over the spherical harmonic
oscillator ones |nr l#⟩ by calculating the corresponding spatial
overlap integrals Anr l

Nnz#
= ⟨nr l#|Nnz#⟩ (nr is the radial

quantum number, l and # are the orbital angular momentum
and its projection onto z axes, respectively), see Appendix of
Ref. [16] for more details. Thereby, the wave function (5) can
be reexpressed as

|τ$τ ⟩ =
∑

η

Bτ
η |η$τ ⟩, (6)

where |η$τ ⟩ =
∑

% C
j$τ

l$τ −% 1
2 %

|nr l# = $τ − %⟩|%⟩ is the
spherical harmonic oscillator wave function in the j -
coupled scheme [η = (nr lj )], and Bτ

η =
∑

% C
j$τ

l$τ −% 1
2 %

Anr l
Nnz$τ −%bNnz%, with C

j$τ

l$τ −% 1
2 %

being the Clebsch-Gordan
coefficient.

The QRPA equations:
( A(K) B(K)

−B(K) −A(K)

) (
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction are solved to get the forward
Xm

iK , backward Ym
iK amplitudes and the excitation energies ω

mi

K

and ω
mf

K of the mth Kπ state in the intermediate nucleus. The
matrix A and B are defined by

Apn,p′n′(K)

= δpn,p′n′ (Ep+ En) + gpp(upunup′un′ + vpvnvp′vn′)Vpn̄p′n̄′

− gph(upvnup′vn′ + vpunvp′un′ )Vpn′p′n

Bpn,p′n′ (K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

−gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n, (8)

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the particle-hole (ph) and particle-
particle (pp) matrix elements of the residual nucleon-nucleon
interaction V , respectively, uτ and vτ are the coefficients of
the Bogoliubov transformation.

As a residual two-body interaction, we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the charge-depending Bonn
(Bonn-CD) one boson exchange potential, as used also in
the spherical calculations of Ref. [7]. The G matrix elements
are originally calculated with respect to a spherical harmonic
oscillator s.p. basis. By using the decomposition of the
deformed s.p. wave function in Eq. (6), the two-body deformed
wave function can be represented as

|pn̄⟩ =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK⟩, (9)

where |ηpηn, JK⟩ =
∑

mpmn
CJK

jpmpjnmn
|ηpmp⟩|ηnmn⟩, and

FJK
pηpnηn

= B
p
ηpB

n
ηn

(−1)jn−$nCJK
jp$pjn−$n

is defined for the sake
of simplicity [(−1)jn−$n is the phase arising from the time-
reversed states |n̄⟩]. The particle-particle Vpn̄,p′n̄′ and particle-
hole Vpn′,p′n interaction matrix elements in the representation
(8) for the QRPA matrices A, B [Eq. (7)] in the deformed
Woods-Saxon single-particle basis can then be given in terms
of the spherical G matrix elements as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑

ηpηn

∑

ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ G(ηpηnηp′ηn′ , J ),

(10)

Vpn′,p′n = 2
∑

J

∑

ηpηn

∑

ηp′ηn′

F
JK ′

pn′

pηpn̄′ηn′ F
JK ′

pn′

p′ηp′ n̄ηn
G(ηpηn′ηp′ηn, J ),

(11)

where K ′
pn′ = $p + $n′ = $p′ + $n.

The matrix element M0ν is given within the QRPA in
the intrinsic system by a sum of the partial amplitudes of
transitions via all the intermediate states Kπ :

M0ν =
∑

Kπ

M0ν(Kπ ), M0ν(Kπ ) =
∑

α

s(def)
α Oα(Kπ ).

(12)

Here, we use the notation of Appendix B in Ref. [21], α stands
for the set of four single-particle indices {p, p′, n, n′}, and
Oα(Kπ ) is a two-nucleon transition amplitude via the Kπ

states in the intrinsic frame:

Oα(Kπ ) =
∑

mi,mf

⟨0+
f |c†pcn|Kπmf ⟩⟨Kπmf |Kπmi⟩

× ⟨Kπmi |c†p′cn′ |0+
i ⟩. (13)

The two sets of intermediate nuclear states generated from
the initial and final g.s. (labeled by mi and mf , respectively)
do not come out identical within the QRPA. A standard way
to tackle this problem is to introduce in Eq. (13) the overlap
factor of these states ⟨Kπmf |Kπmi⟩, whose representation
is given below, Eq. (16). Two-body matrix elements s(def)

α

of the neutrino potential in Eq. (12) in a deformed Woods-
Saxon single-particle basis are decomposed over the spherical
harmonic oscillator ones according to Eqs. (9) and (11):

s
(def)
pp′nn′ =

∑

J

∑

ηpηp′
ηnηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′ s

(sph)
ηpηp′ηnηn′ (J ), (14)

s
(sph)
pp′nn′(J ) =

∑

J

(−1)jn+jp′+J+J Ĵ
{

jp jn J
jn′ jp′ J

}

×⟨p(1), p′(2);J ∥Oℓ(1, 2)∥n(1), n′(2);J ⟩,
(15)

where Ĵ ≡
√

2J + 1, and Oℓ(1, 2) is the neutrino potential
as a function of coordinates of two particles, with ℓ labeling
its Fermi (F), Gamow-Teller (GT), and tensor (T) parts.

The particle-hole transition amplitudes in Eq. (13) can be
represented in terms of the QRPA forward Xm

iK and backward
Ym

iK amplitudes along with the coefficients of the Bogoliubov
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transformation uτ and vτ [16]:

⟨0+
f |c†pcn|Kπmf ⟩ = vpunX

mf

pn,Kπ + upvnY
mf

pn,Kπ ,

⟨Kπmi |c†pcn|0+
i ⟩ = upvnX

mi

pn,Kπ + vpunY
mi

pn,Kπ .

The overlap factor in Eq. (13) can be written as

⟨Kπmf |Kπmi⟩ =
∑

li lf

[
X

mf

lf Kπ X
mi

liKπ − Y
mf

lf Kπ Y
mi

liKπ

]

×Rlf li ⟨BCSf |BCSi⟩. (16)

Representations for Rlf li and the overlap factor ⟨BCSf |BCSi⟩
between the initial and final BCS vacua are given in Ref. [14].

III. RESULTS AND ANALYSIS

We have computed the NME M0ν for the 0νββ decays
76Ge→76Se, 150Nd→150Sm, and 160Gd→160Dy. The single-
particle Schrödinger equation with the Hamiltonian of a
deformed Woods-Saxon mean field is solved on the basis of
an axially deformed harmonic oscillator. The parametrization
of the mean field is adopted from the spherical calculations of
Refs. [7,21,22]. We use here the single-particle deformed basis
corresponding in the spherical limit to full (4–6)h̄ω shells.
Decomposition of the deformed single-particle wave functions
is performed over the spherical harmonic oscillator states
within the seven major shells. Only quadrupole deformation
is taken into account in the calculation. The geometrical
quadrupole deformation parameter β2 of the deformed Woods-
Saxon mean field is obtained by fitting the experimental
deformation parameter β =

√
π
5

Qp

Zr2
c
, where rc is the charge rms

radius and Qp is the empirical intrinsic quadrupole moment.
The latter can be derived from the laboratory quadrupole
moments measured by the Coulomb excitation reorientation
technique, or from the corresponding B(E2) values [23].
We take in this work experimental values extracted from the
B(E2) values as being more accurate. The fitted values of the
parameter β2 of the deformed Woods-Saxon mean field, which
allow us to reproduce the experimental β, are listed in Table I.

TABLE I. Values of the deformation parameter of Woods-Saxon
mean field β2 for initial (final) nuclei fitted in the calculation to
reproduce the experimental quadrupole moment (labeled as “1”). The
spherical limit is labeled as “0”. Also the fitted values of the particle-
particle strength parameter gpp are listed [for both cases without (I)
and with (II) quenching of gA]. The particle-hole strength parameter
is gph = 0.90. The BCS overlap factor ⟨BCSf |BCSi⟩ (16) between
the initial and final BCS vacua is given in the last column.

Initial (final) β2 gpp (I) gpp (II) ⟨BCSi |BSCf ⟩
nucleus

76Ge (76Se) 0.10 (0.16) “1” 0.71 0.66 0.74
0.0 (0.0) “0” 0.68 0.63 0.81

150Nd (150Sm) 0.240 (0.153) “1” 1.05 1.00 0.52
0.0 (0.0) “0” 1.01 0.99 0.85

160Gd (160Dy) 0.303 (0.292) “1” 1.00a 1.00 0.74

aAs there is no experimental value of M2ν for 160Gd, we do not
renormalize the p-p interaction and use gpp = 1.

We label these sets of parameters as “1”. The spherical limit,
i.e., β2 = 0, is considered as well (labeled as “0”), to compare
with the earlier results of Ref. [7]. The procedure adopted here
of fitting β2 is more consistent than the approximate ansatz
β2 = β used in Ref. [16].

As in Refs. [7,16,18,21,22], the nuclear Brueckner G
matrix, obtained by a solution of the Bethe-Goldstone equation
with the Bonn-CD one boson exchange nucleon-nucleon
potential, is used as a residual two-body interaction. First,
the BCS equations are solved to obtain the Bogoliubov
coefficients, gap parameter, and chemical potentials. The
number NKπ of the proton-neutron quasiparticle pairs coupled
to a given Kπ determines the dimension of the corresponding
QRPA equations. It becomes the largest for Kπ = 0+ and is
N0+ = 840 for Ge and Se, and N0+ = 912 for Nd, Sm, Gd, and
Dy. To solve the QRPA equations, one has to fix the particle-
hole gph and particle-particle gpp renormalization factors of
the residual interaction, Eqs. (8). As in Refs. [16,18], we
determine a value of gph by fitting the experimental position of
the Gamow-Teller giant resonance (GTR) in the intermediate
nucleus. Since there is no experimental information on the
GTR energy for 150Nd, we use for this nucleus the same
gph = 0.90 as fitted for 76Ge (this value is slightly different
from the fitted gph = 1.15 of Ref. [16] because of a different
parametrization of the mean field used here). The parameter
gpp can be determined by fitting the experimental value of
the 2νββ-decay NME M2ν

GT = 0.07 MeV−1 [17]. To account
for the quenching of the axial-vector coupling constant gA, we
choose in the calculation, along with the bare value gA = 1.25,
also the quenched value g

qch
A = 0.75gA = 0.94, where the

quenching factor of 0.75 comes from a recent experimental
measurement of GT strength distribution in 150Nd [24]. The
two sets of the fitted values of gpp corresponding to the cases
without or with quenching of gA are listed Table I as cases (I)
and (II), respectively. Note, that the more realistic procedure
of fitting β2 adopted here also gives us more realistic gpp ≃ 1
values than those of Ref. [16].

Having solved the QRPA equations, the two-nucleon
transition amplitudes (13) are calculated, and by combining
them with the two-body matrix elements of the neutrino
potential, the total 0νββ NME M0ν (12) is formed. The
present computation is rather time consuming since numerous
programming loops are needed to calculate the decompositions
of the two-body matrix elements in the deformed basis over
the spherical ones. Therefore, to speed up the calculations
the mean energy of 7 MeV of the intermediate states is
used in the neutrino propagator. Following Refs. [7,21,22],
we have taken into account the effects of the finite nucleon
size, and higher-order weak currents are included. Recently, it
was shown [22] that a modern self-consistent treatment of the
two-nucleon short-range correlations (s.r.c.) leads to a change
in the NME M0ν only by a few percent, much less than the
traditional Jastrow-type representation of the s.r.c. does. A very
similar effect is found in the present calculation (see below).

We start our discussion of the calculated 0νββ-decay
NME by a comparison of the matrix elements of this work
obtained in the spherical limit with the previous ones of
Refs. [7,21,22], which provides an important cross-check
of the present calculation. Though formally the adiabatic
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transformation uτ and vτ [16]:

⟨0+
f |c†pcn|Kπmf ⟩ = vpunX

mf

pn,Kπ + upvnY
mf

pn,Kπ ,

⟨Kπmi |c†pcn|0+
i ⟩ = upvnX

mi

pn,Kπ + vpunY
mi

pn,Kπ .

The overlap factor in Eq. (13) can be written as

⟨Kπmf |Kπmi⟩ =
∑

li lf

[
X

mf

lf Kπ X
mi

liKπ − Y
mf

lf Kπ Y
mi

liKπ

]

×Rlf li ⟨BCSf |BCSi⟩. (16)

Representations for Rlf li and the overlap factor ⟨BCSf |BCSi⟩
between the initial and final BCS vacua are given in Ref. [14].

III. RESULTS AND ANALYSIS

We have computed the NME M0ν for the 0νββ decays
76Ge→76Se, 150Nd→150Sm, and 160Gd→160Dy. The single-
particle Schrödinger equation with the Hamiltonian of a
deformed Woods-Saxon mean field is solved on the basis of
an axially deformed harmonic oscillator. The parametrization
of the mean field is adopted from the spherical calculations of
Refs. [7,21,22]. We use here the single-particle deformed basis
corresponding in the spherical limit to full (4–6)h̄ω shells.
Decomposition of the deformed single-particle wave functions
is performed over the spherical harmonic oscillator states
within the seven major shells. Only quadrupole deformation
is taken into account in the calculation. The geometrical
quadrupole deformation parameter β2 of the deformed Woods-
Saxon mean field is obtained by fitting the experimental
deformation parameter β =

√
π
5

Qp

Zr2
c
, where rc is the charge rms

radius and Qp is the empirical intrinsic quadrupole moment.
The latter can be derived from the laboratory quadrupole
moments measured by the Coulomb excitation reorientation
technique, or from the corresponding B(E2) values [23].
We take in this work experimental values extracted from the
B(E2) values as being more accurate. The fitted values of the
parameter β2 of the deformed Woods-Saxon mean field, which
allow us to reproduce the experimental β, are listed in Table I.

TABLE I. Values of the deformation parameter of Woods-Saxon
mean field β2 for initial (final) nuclei fitted in the calculation to
reproduce the experimental quadrupole moment (labeled as “1”). The
spherical limit is labeled as “0”. Also the fitted values of the particle-
particle strength parameter gpp are listed [for both cases without (I)
and with (II) quenching of gA]. The particle-hole strength parameter
is gph = 0.90. The BCS overlap factor ⟨BCSf |BCSi⟩ (16) between
the initial and final BCS vacua is given in the last column.

Initial (final) β2 gpp (I) gpp (II) ⟨BCSi |BSCf ⟩
nucleus

76Ge (76Se) 0.10 (0.16) “1” 0.71 0.66 0.74
0.0 (0.0) “0” 0.68 0.63 0.81

150Nd (150Sm) 0.240 (0.153) “1” 1.05 1.00 0.52
0.0 (0.0) “0” 1.01 0.99 0.85

160Gd (160Dy) 0.303 (0.292) “1” 1.00a 1.00 0.74

aAs there is no experimental value of M2ν for 160Gd, we do not
renormalize the p-p interaction and use gpp = 1.

We label these sets of parameters as “1”. The spherical limit,
i.e., β2 = 0, is considered as well (labeled as “0”), to compare
with the earlier results of Ref. [7]. The procedure adopted here
of fitting β2 is more consistent than the approximate ansatz
β2 = β used in Ref. [16].

As in Refs. [7,16,18,21,22], the nuclear Brueckner G
matrix, obtained by a solution of the Bethe-Goldstone equation
with the Bonn-CD one boson exchange nucleon-nucleon
potential, is used as a residual two-body interaction. First,
the BCS equations are solved to obtain the Bogoliubov
coefficients, gap parameter, and chemical potentials. The
number NKπ of the proton-neutron quasiparticle pairs coupled
to a given Kπ determines the dimension of the corresponding
QRPA equations. It becomes the largest for Kπ = 0+ and is
N0+ = 840 for Ge and Se, and N0+ = 912 for Nd, Sm, Gd, and
Dy. To solve the QRPA equations, one has to fix the particle-
hole gph and particle-particle gpp renormalization factors of
the residual interaction, Eqs. (8). As in Refs. [16,18], we
determine a value of gph by fitting the experimental position of
the Gamow-Teller giant resonance (GTR) in the intermediate
nucleus. Since there is no experimental information on the
GTR energy for 150Nd, we use for this nucleus the same
gph = 0.90 as fitted for 76Ge (this value is slightly different
from the fitted gph = 1.15 of Ref. [16] because of a different
parametrization of the mean field used here). The parameter
gpp can be determined by fitting the experimental value of
the 2νββ-decay NME M2ν

GT = 0.07 MeV−1 [17]. To account
for the quenching of the axial-vector coupling constant gA, we
choose in the calculation, along with the bare value gA = 1.25,
also the quenched value g

qch
A = 0.75gA = 0.94, where the

quenching factor of 0.75 comes from a recent experimental
measurement of GT strength distribution in 150Nd [24]. The
two sets of the fitted values of gpp corresponding to the cases
without or with quenching of gA are listed Table I as cases (I)
and (II), respectively. Note, that the more realistic procedure
of fitting β2 adopted here also gives us more realistic gpp ≃ 1
values than those of Ref. [16].

Having solved the QRPA equations, the two-nucleon
transition amplitudes (13) are calculated, and by combining
them with the two-body matrix elements of the neutrino
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heavy. We restrict our consideration of the 0!""# decay
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constants, respectively.
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For nuclear structure calculations it is necessary to reduce
the nucleon current to the nonrelativistic form. We shall ne-
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value of the cutoff 3A is expected to increase slightly the
values of the corresponding nuclear matrix elements. It is
worth noting that with these modifications of the nuclear
current one gets a new contribution in the neutrino mass
mechanism, namely the tensor contribution.
As we have already mentioned in the Introduction,

momentum-dependent terms, in particular the weak-
magnetism term, have been considered previously in the ""
decay by Tomoda et al. [15] and Pantis et al. [6], but in
connection with the 5 term. This term is proportional to the
mixing between the vector bosons WL and WR , which medi-
ate the left- and right-handed weak interaction, respectively.
They are dominant since, due to their momentum structure,
they can proceed via the s-wave electron wave function,
while the standard terms in this case require p-wave electron
wave functions. The pseudoscalar term is not accompanied
by parity change and thus it is not important in the extraction
of 5 . To our knowledge this term has not been considered in
connection with the usual light Majorana neutrino mass term
of the 0!"" decay.
Under the PCAC hypothesis $see Eq. )12*& the two-body
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The exact results will depend on the details of the nuclear
model, since the new operators have different momentum
!radial" dependence than the traditional ones and the tensor
component is entirely new. We can get a crude idea of what
is happening by taking the above average momentum #q$
!100 MeV. Then we find that the GT matrix element is
reduced by 22%. Then assuming that T matrix element is
about half the GT one, we find that the total reduction is
28%. This will be compared below with the results of our
detailed calculations.

B. Effective transition operator in coordinate space

The nuclear matrix elements entering the half-life formula
of 0%&&-decay process now take the form

M #m%$ ,'N
I !MVV

I "MMM
I "MAA

I "MAP
I "MPP

I !16"

with I!light, heavy. The partial nuclear matrix elements
MVV

I , MMM
I , MAA

I , MPP
I , and MAP

I have their origin
from the vector, the weak-magnetism, the axial, the pseudo-
scalar coupling and the interference of the axial-vector and
pseudoscalar coupling, respectively. They can be expressed
in relative coordinates by using second quantization. We end
up with formula

M type
I !#H type#F

I !r12""H type#GT
I !r12"(12"H type#T

I !r12"S12$

!17"

with type!VV ,MM ,AA ,PP ,AP , and

r12!r1#r2 , r12!!r12!, r̂12!
r12
r12
,

S12!3!(! 1• r̂12"!(! 2• r̂12"#(12 , (12!(! 1•(! 2 . !18"

r1 and r2 are coordinates of the & decaying nucleons. The
form of the matrix element #O(1,2)$ within the pn-RQRPA
will be presented in the next section.
The light and heavy neutrino-exchange potentials

H type-K
light,heavy(r12) (K!F, GT, T) have the following forms:

H type-K
light !r12"!

2
)gA
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Here, Eg.s.
i , Eg.s.

f , and EJ
m are, respectively, the energies of

the initial, final, and intermediate nuclear states. R!r0A1/3 is
the mean nuclear radius, with r0!1.1 fm. The relevant cou-
plings are

hVV!q! 2"!#gV
2 !q! 2",

hMM#GT!q! 2"!
2
3
gM
2 !q! 2"q! 2

4mp
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3
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The tensor form factor includes a sign change going from
momentum to coordinate space.
The full matrix element is of the form:

M #m%$
light !#

MF
light

gA
2 "MGT

light"MT
light . !22"

We see that the Fermi component is unchanged, the Gamow-
Teller is modified and the tensor component appeared due to
the new terms.

IV. NUCLEAR STRUCTURE INGREDIENTS

As we have mentioned above, we would like to evaluate
the changes in the 0%&&-decay nuclear matrix elements due
to the modifications of the nuclear current introduced above,
relevant for the neutrino mass mechanism. It is clear that the
0%&& decay is a second-order process in the weak interac-
tion and, thus, the corresponding nuclear matrix elements
require the summation over a complete set of intermediate
nuclear states. Even though the construction of these states is
not needed, a closure approximation with a reasonable aver-
age energy denominator is very accurate +26–28,, the initial
and final states of the nuclear systems, which can undergo
double & decay, are not easy to construct, since these nuclei
are far removed from closed shells. Thus the introduction of
additional approximations is necessary.
Thus at this point we will reduce the computational diffi-

culty in evaluating the effects of the above-mentioned modi-
fications, by using the proton-neutron quasiparticle random
phase approximation !pn-QRPA" +30–33,, which is an ap-
proximation to solve the nuclear many-body problem. Ad-
mittedly the intermediate states must be explicitly con-
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The exact results will depend on the details of the nuclear
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in relative coordinates by using second quantization. We end
up with formula

M type
I !#H type#F

I !r12""H type#GT
I !r12"(12"H type#T

I !r12"S12$

!17"

with type!VV ,MM ,AA ,PP ,AP , and

r12!r1#r2 , r12!!r12!, r̂12!
r12
r12
,

S12!3!(! 1• r̂12"!(! 2• r̂12"#(12 , (12!(! 1•(! 2 . !18"

r1 and r2 are coordinates of the & decaying nucleons. The
form of the matrix element #O(1,2)$ within the pn-RQRPA
will be presented in the next section.
The light and heavy neutrino-exchange potentials

H type-K
light,heavy(r12) (K!F, GT, T) have the following forms:

H type-K
light !r12"!

2
)gA

2

R
r12
"
0

* sin!qr12"
q"EJ

m#!Eg.s.
i "Eg.s.

f "/2

$h type#K!q2"dq , !19"

H type-K
heavy !r12"!

1
mpme

2
)gA

2

R
r12
"
0

*

sin!qr12"h type-K!q2"qdq .

!20"

Here, Eg.s.
i , Eg.s.

f , and EJ
m are, respectively, the energies of

the initial, final, and intermediate nuclear states. R!r0A1/3 is
the mean nuclear radius, with r0!1.1 fm. The relevant cou-
plings are

hVV!q! 2"!#gV
2 !q! 2",

hMM#GT!q! 2"!
2
3
gM
2 !q! 2"q! 2

4mp
2 ,

hMM#T!q! 2"!
1
3
gM
2 !q! 2"q! 2

4mp
2 ,

hAA#GT!q! 2"!gA
2 !q! 2",

hPP#GT!q! 2"!
1
3
gP
2 !q! 2"q! 4

4mp
2 ,

hPP#T!q2"!#
1
3
gP
2 !q! 2"q! 4

4mp
2 ,

hAP#GT!q! 2"!#
2
3
gA!q! 2"gP!q! 2"q! 2

2mp
,

hAP#T!q! 2"!
2
3
gA!q! 2"gP!q! 2"q! 2

2mp
. !21"

The tensor form factor includes a sign change going from
momentum to coordinate space.
The full matrix element is of the form:

M #m%$
light !#

MF
light

gA
2 "MGT

light"MT
light . !22"

We see that the Fermi component is unchanged, the Gamow-
Teller is modified and the tensor component appeared due to
the new terms.

IV. NUCLEAR STRUCTURE INGREDIENTS

As we have mentioned above, we would like to evaluate
the changes in the 0%&&-decay nuclear matrix elements due
to the modifications of the nuclear current introduced above,
relevant for the neutrino mass mechanism. It is clear that the
0%&& decay is a second-order process in the weak interac-
tion and, thus, the corresponding nuclear matrix elements
require the summation over a complete set of intermediate
nuclear states. Even though the construction of these states is
not needed, a closure approximation with a reasonable aver-
age energy denominator is very accurate +26–28,, the initial
and final states of the nuclear systems, which can undergo
double & decay, are not easy to construct, since these nuclei
are far removed from closed shells. Thus the introduction of
additional approximations is necessary.
Thus at this point we will reduce the computational diffi-

culty in evaluating the effects of the above-mentioned modi-
fications, by using the proton-neutron quasiparticle random
phase approximation !pn-QRPA" +30–33,, which is an ap-
proximation to solve the nuclear many-body problem. Ad-
mittedly the intermediate states must be explicitly con-
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heavy. We restrict our consideration of the 0!""# decay
only to light neutrinos $mi , j!q%pF%O(100 MeV)& . Then
the inverse half-life of the 0!""# decay can be written:

$T1/2
#0!&"1#!'g(!2!M 'm!(

light !2GB . )7*

Here 'g( is the effective Majoron coupling constant

'g(#+
i j

light

Uei
L Ue j

L Pi j . )8*

The explicit form of the kinematical factor GB can be found
in Ref. $2&.

III. EFFECTIVE TRANSITION OPERATOR

Within the impulse approximation the nuclear current JL
,

in Eq. )1* expressed with nucleon fields - takes the form

JL
.†#-̄/$"gV)q2*0."igM)q2*

1.!

2mp
q!"gA)q2*0.05

$gP)q2*q.05#- , )9*

where q.#(p"p!). is the momentum transferred from had-
rons to leptons )p and p! are four momenta of neutron and
proton, respectively* and 1.!#(i/2)$0.,0!& . gV(q2),
gM(q2), gA(q2), and gP(q2) are real functions of a Lorenz
scalar q2. The values of these form factors in the zero-
momentum transfer limit are known as the vector, weak-
magnetism, axial-vector, and induced pseudoscalar coupling
constants, respectively.

A. Effective transition operator in momentum space

For nuclear structure calculations it is necessary to reduce
the nucleon current to the nonrelativistic form. We shall ne-
glect small energy transfers between nucleons in the nonrel-
ativistic expansion. Then the form of the nucleon current
coincides with those in the Breit frame and we arrive at $24&,

J.)x! *# +
n#1

A

/n
$$g.0J0)q! 2*$g.kJn

k)q! 2*&2)x!"r!n*,

k#1,2,3, )10*

with

J0)q! 2*#gV)q2*,

J! n)q! 2*#gM)q! 2*i
1! n%q!

2mp
$gA)q! 2*1! "gP)q! 2*

q! 1! n•q!
2mp

.

)11*

r!n is the coordinate of the nth nucleon.
For the form factors we shall use the following pa-

rametrization: gV(q! 2)#gV /(1$q! 2/3V
2 )2, gM(q! 2)#(.p

".n)gV(q! 2), gA(q! 2)#gA /(1$q! 2/3A
2 )2 and the induced

pseudoscalar coupling is given by the partially conserved
axial-vector current hypothesis )PCAC* $25&

gP)q! 2*#2mpgA)q! 2*/)q! 2$m4
2 *$ 1"

m4
2

3A
2 % , )12*

where gV#1, gA#1.254, (.p".n)#3.70, 3V
2#0.71

(GeV)2 $29& and 3A#1.09 GeV $25&. In previous calcula-
tions only one general cutoff 3V#3A%0.85 GeV was used.
In this work we take the empirical value of 3A deduced from
the antineutrino quasielastic reaction !̄.p→.$n . A larger
value of the cutoff 3A is expected to increase slightly the
values of the corresponding nuclear matrix elements. It is
worth noting that with these modifications of the nuclear
current one gets a new contribution in the neutrino mass
mechanism, namely the tensor contribution.
As we have already mentioned in the Introduction,

momentum-dependent terms, in particular the weak-
magnetism term, have been considered previously in the ""
decay by Tomoda et al. [15] and Pantis et al. [6], but in
connection with the 5 term. This term is proportional to the
mixing between the vector bosons WL and WR , which medi-
ate the left- and right-handed weak interaction, respectively.
They are dominant since, due to their momentum structure,
they can proceed via the s-wave electron wave function,
while the standard terms in this case require p-wave electron
wave functions. The pseudoscalar term is not accompanied
by parity change and thus it is not important in the extraction
of 5 . To our knowledge this term has not been considered in
connection with the usual light Majorana neutrino mass term
of the 0!"" decay.
Under the PCAC hypothesis $see Eq. )12*& the two-body

effective transition operator takes in momentum space the
form

6#/$/$)"hF$hGT112"hTS12*, )13*

where the three terms correspond to Fermi )F*, Gamow-
Teller )GT*, and Tensor )T*. One finds that

S12#3)1! 1• q̂1! 2• q̂ *"112 , 112#1! 1•1! 2 . )14*

hF#gV
2 )q! 2*

hGT)q! 2*#gA
2 )q! 2*" 1"

2
3

q! 2

q! 2$m4
2 $

1
3 $ q! 2

q! 2$m4
2 % 2#

$
2
3
gM
2 )q! 2*q! 2

4mp
2 ,

hT)q! 2*#gA
2 )q! 2*" 23 q! 2

q! 2$m4
2 "

1
3 $ q! 2

q! 2$m4
2 % 2#

$
1
3
gM
2 )q! 2*q! 2

4mp
2 , )15*
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The exact results will depend on the details of the nuclear
model, since the new operators have different momentum
!radial" dependence than the traditional ones and the tensor
component is entirely new. We can get a crude idea of what
is happening by taking the above average momentum #q$
!100 MeV. Then we find that the GT matrix element is
reduced by 22%. Then assuming that T matrix element is
about half the GT one, we find that the total reduction is
28%. This will be compared below with the results of our
detailed calculations.

B. Effective transition operator in coordinate space

The nuclear matrix elements entering the half-life formula
of 0%&&-decay process now take the form

M #m%$ ,'N
I !MVV

I "MMM
I "MAA

I "MAP
I "MPP

I !16"

with I!light, heavy. The partial nuclear matrix elements
MVV

I , MMM
I , MAA

I , MPP
I , and MAP

I have their origin
from the vector, the weak-magnetism, the axial, the pseudo-
scalar coupling and the interference of the axial-vector and
pseudoscalar coupling, respectively. They can be expressed
in relative coordinates by using second quantization. We end
up with formula

M type
I !#H type#F

I !r12""H type#GT
I !r12"(12"H type#T

I !r12"S12$

!17"

with type!VV ,MM ,AA ,PP ,AP , and

r12!r1#r2 , r12!!r12!, r̂12!
r12
r12
,

S12!3!(! 1• r̂12"!(! 2• r̂12"#(12 , (12!(! 1•(! 2 . !18"

r1 and r2 are coordinates of the & decaying nucleons. The
form of the matrix element #O(1,2)$ within the pn-RQRPA
will be presented in the next section.
The light and heavy neutrino-exchange potentials

H type-K
light,heavy(r12) (K!F, GT, T) have the following forms:

H type-K
light !r12"!

2
)gA

2

R
r12
"
0

* sin!qr12"
q"EJ

m#!Eg.s.
i "Eg.s.

f "/2

$h type#K!q2"dq , !19"

H type-K
heavy !r12"!

1
mpme

2
)gA

2

R
r12
"
0

*

sin!qr12"h type-K!q2"qdq .

!20"

Here, Eg.s.
i , Eg.s.

f , and EJ
m are, respectively, the energies of

the initial, final, and intermediate nuclear states. R!r0A1/3 is
the mean nuclear radius, with r0!1.1 fm. The relevant cou-
plings are

hVV!q! 2"!#gV
2 !q! 2",

hMM#GT!q! 2"!
2
3
gM
2 !q! 2"q! 2

4mp
2 ,

hMM#T!q! 2"!
1
3
gM
2 !q! 2"q! 2

4mp
2 ,

hAA#GT!q! 2"!gA
2 !q! 2",

hPP#GT!q! 2"!
1
3
gP
2 !q! 2"q! 4

4mp
2 ,

hPP#T!q2"!#
1
3
gP
2 !q! 2"q! 4

4mp
2 ,

hAP#GT!q! 2"!#
2
3
gA!q! 2"gP!q! 2"q! 2

2mp
,

hAP#T!q! 2"!
2
3
gA!q! 2"gP!q! 2"q! 2

2mp
. !21"

The tensor form factor includes a sign change going from
momentum to coordinate space.
The full matrix element is of the form:

M #m%$
light !#

MF
light

gA
2 "MGT

light"MT
light . !22"

We see that the Fermi component is unchanged, the Gamow-
Teller is modified and the tensor component appeared due to
the new terms.

IV. NUCLEAR STRUCTURE INGREDIENTS

As we have mentioned above, we would like to evaluate
the changes in the 0%&&-decay nuclear matrix elements due
to the modifications of the nuclear current introduced above,
relevant for the neutrino mass mechanism. It is clear that the
0%&& decay is a second-order process in the weak interac-
tion and, thus, the corresponding nuclear matrix elements
require the summation over a complete set of intermediate
nuclear states. Even though the construction of these states is
not needed, a closure approximation with a reasonable aver-
age energy denominator is very accurate +26–28,, the initial
and final states of the nuclear systems, which can undergo
double & decay, are not easy to construct, since these nuclei
are far removed from closed shells. Thus the introduction of
additional approximations is necessary.
Thus at this point we will reduce the computational diffi-

culty in evaluating the effects of the above-mentioned modi-
fications, by using the proton-neutron quasiparticle random
phase approximation !pn-QRPA" +30–33,, which is an ap-
proximation to solve the nuclear many-body problem. Ad-
mittedly the intermediate states must be explicitly con-
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Fig. 2. The overlap factor of the initial and final BCS
vacua as a function of the quadrupole deformation pa-
rameter β2 of 76Se. The results are presented for spher-
ical (β2 = 0.0), oblate (β2 = −0.25,−0.10), and prolate
(β2 = 0.10, 0.25) deformations of 76Ge.

state transition 76Ge → 76Se, we use the recom-
mended value for χ (χ = 0.25 MeV) and κ is con-
sidered as a free variable.

The QRPA calculations for the K = 0,±1 states
are performed by following the procedure described
in Section 2. The assumption of separable forces
simplifies the RPA matrix equation to an algebraic
equation. The eigenvalue of the matrix equation is
replaced in this way by searching for the poles of the
equation, and the wave functions of the eigenstates
are calculated accordingly.

The half-life of the 2νββ decay of 76Ge is known
with high accuracy from the Heidelberg–Moscow ex-
periment, in particular, T 2ν

1/2 = [1.55 ±
0.01(stat.)+0.19

−0.15(syst.)] × 1021 yr [13]. All existing
positive results on the 2νββ decay were analyzed
by Barabash [7], who suggested considering for the
ground state transition 76Ge → 76Se the average
value T 2ν

1/2 = 1.43+0.09
−0.07 × 1021 yr. By using (13) and

knowledge of the kinematical factor G2ν

[G2ν(76Ge) = 1.49 × 10−20 yr−1MeV2] from the
2νββ-decay half-life of 76Ge, one can deduce the ab-
solute value of the nuclear matrix element |M2ν− exp

GT |
equal to 0.138 MeV−1 by assuming gA = 1.25. If
the value of the axial coupling constant gA is con-
sidered to be unity, the value of |M2ν− exp

GT | deduced
from the average half-life for A = 76 is larger than
0.216 MeV−1.

In Fig. 1, the effect of the deformation on the
2νββ-decay matrix element M2ν

GT is analyzed. The re-
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Fig. 3. The overlap factor of the initial and final BCS
vacua as function of the quadrupole deformation parame-
ter β2 of the final nucleus for double-beta decay of 76Ge,
100Mo, 130Te, and 136Xe. The deformation parameter of
the initial nucleus is chosen to be β2(initial) = 0.1.

sults for the 2νββ-decay matrix element are displayed
as a function of the particle–particle strength κ. The
curves drawn in panels (a), (b), and (c) [panels (d),
(e), and (f)] correspond to the case where both initial
and final nuclei are oblate [prolate]. The two horizon-
tal lines represent M2ν− exp

GT = 0.138 MeV−1(gA =
1.25) and M2ν− exp

GT = 0.216 MeV−1(gA = 1.0).
From Fig. 1, we note that, within the whole range of
κ, there is only a minimal difference between values of
M2ν

GT corresponding to the same value of ∆β2, which
is defined

∆β2 = |β2(76Ge) − β2(76Se)|. (19)

In addition, one finds that, by increasing the value
of ∆β2, the suppression of M2ν

GT becomes stronger
within the range 0 ≤ κ ≤ 0.06 MeV. This is a new
suppression mechanism of the 2νββ-decay matrix
element; namely, M2ν

GT depends strongly on the differ-
ence in deformations of parent and daughter nuclei.

One might ask what is the origin of this suppres-
sion. In Fig. 2, this point is clarified by presenting the
overlap factor of two BCS vacua for different values of
β2(76Ge) as a function of the quadrupole deformation
of 76Se. We see that, for a given β2(76Ge), the curve
has a maximum for β2(76Se) = β2(76Ge) and, with
increasing difference in deformations of initial and
final nuclei, i.e., ∆β2, the value of the BCS overlap
factor decreases rapidly. We note that the approximate
calculation of ⟨BCS(76Ge)|BCS(76Se)⟩ is slightly
sensitive to the approximations used in the case
where one of the nuclei is oblate and the second
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FIG. 7. GT strengths extracted from the 150Nd(3He,t) experiment
and the comparison with calculated values in QRPA (solid line).

higher value in the former method indicates the presence of
some GT strength not clearly associated with peaks in the
spectrum below 2 MeV.

As shown in Fig. 6(b), the spin-dipole resonance (IVSGDR)
is evident at angles of 1.5◦–2◦ and peaks at an excitation energy
of 22 MeV. Significant dipole contributions to the excitation
energy spectrum are also found at lower excitation energies.
As mentioned, a proven proportionality between strengths and
differential cross sections for dipole transitions is lacking.
However, the shape of the extracted !L = 1 distribution was
compared with the theoretical strength distribution calculated
in QRPA, as discussed in Sec. IV.

Given the limited angular range covered in the present
experiment, contributions to the spectra from transitions asso-
ciated with !L ! 2 were not investigated in detail. The larger
the transfer of angular momentum, the larger the uncertainties
in the associated contributions extracted from the data, due
to the absence of assumed contributions from transitions with
!L ! 5 in the MDA. Although the extraction of !L = 2
contributions should be relatively reliable compared to those
associated with !L = 3 and 4, the lack of any specific features
in the spectrum associated with this transition makes it hard
to gain insight in the quality of the extracted distribution, even
on the qualitative level.

B. Analysis of the 150Sm(t ,3He) experiment

The analysis of the 150Sm(t ,3He) data was similar to
that of the 150Nd(3He,t) data, but complicated by lower
statistics and poorer excitation-energy resolution. Because of
the lower statistics, the data set could only be subdivided
into 5 separate 1◦-wide scattering-angle bins, limiting the
MDA to at most 4 different angular momentum components.
An analysis with contributions associated with !L = 0, 1, 2,
and 3 resulted in poor fitting results at the largest angles,

indicating the necessity of including a contribution due to
!L = 4 transitions, which could only be accomplished by
excluding the !L = 3 contribution in the fits. The use
of a !L = 4 component instead of !L = 3 component
improved the overall quality of the fits, but strongly affected
the extracted strength distribution for transitions associated
with !L = 2. However, the results from the MDA for the
!L = 0 and 1 contributions to the spectrum were not strongly
affected (compared to the statistical uncertainties) by the
choice of which higher multipole was included. The results
presented in this work are from the MDA with !L = 0, 1, 2,
and 4 contributions, but we stress that by leaving out the
!L = 3 contribution in the MDA, the results for !L = 2
and 4 contributions are heavily biased.

Figure 8 shows the MDA results as performed for 1-MeV-
wide bins for the excitation-energy spectrum up to 26 MeV
and scattering angles between 0◦ and 1◦ [Fig. 8(a)] and 1◦ and
2◦ [Fig. 8(b)]. Transitions associated with !L = 0 peak at 0◦

and thus appear strongest in Fig. 8(a). A broad resonance-like
structure is observed, centered around an excitation energy of
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FIG. 8. (Color online) MDA results for the 0◦–1◦ and 1◦–2◦

angular bins in the 150Sm(t ,3He) experiment. Contributions from
!L = 2 and !L = 4 transitions are strongly biased due to the
absence of a !L = 3 component in the MDA (see text). In both (a)
and (b), the results in each 1-MeV-wide bin from the MDA for each
multipole are connected by lines, rather than showing the individual
points.
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about 13 MeV. Dipole transitions, which peak at ∼1.5◦, are
seen predominantly at low excitation energies in Fig. 8(b) and
are nearly absent above 15 MeV. The steady decrease of the
!L = 2 contributions above 15 MeV and steady increase of
the !L = 4 contributions are partially caused by the absence
of a !L = 3 component in the fit and likely artificial, as
mentioned above.

As discussed in Sec. I, GT transitions from 150Sm to
150Pm are expected to be strongly Pauli blocked. On the other
hand, the broad IVSGMR is expected to peak at 15–20 MeV,
similar to the !L = 0 distribution extracted from the data. To
gain more insight into the nature of the observed !L = 0
strength, we tested two hypotheses: One assumed that all
!L = 0 strength was due to Gamow-Teller transitions and
the second assumed that it was entirely due to the excitation
of the IVSGMR. To test the first hypothesis, the measured
differential cross sections for the !L = 0 contribution in
each 1-MeV-wide bin were extrapolated to q = 0, and the
GT strengths were extracted by using Eq. (6). This method
is identical to that applied for the extraction of GT strength
from the !L = 0 distribution in the 150Nd(3He,t) reaction.
The results are shown in Fig. 9, in which the vertical scale
on the left-hand axis refers to the GT strength extracted on
the basis of the above hypothesis. The error bars in this figure
include statistical errors, errors associated with the subtraction
of background, and a 15% estimated error due to systematic
uncertainties in the MDA analysis. The relatively large error
margins for the data points at high excitation energies are due
to the small magnitudes of !L = 0 strength extracted in the
MDA in combination with the relatively large multiplicative
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FIG. 9. (Color online) Strengths associated with !L = 0 transi-
tions in the 150Sm(t ,3He) data interpreted as fully due to GT transitions
(vertical scale on left-hand-side axis) and fully due to the excitation
of the IVSGMR (vertical scale on the right-hand axis). The solid
red line represents the calculated GT strength distribution in QRPA.
Based on the comparison with the QRPA calculations and simple
considerations based on the Pauli principle, it is concluded that the
vast majority of the observed !L = 0 strength is due to the excitation
of the IVSGMR, except at excitation energies below 2 MeV.

factor associated with the extrapolation to q = 0 at large
excitation energies: Even minute cross sections extracted from
the MDA for !L = 0 transitions represent a relatively large
amount of strength. The summed GT strength up to 26 MeV
equals 20 ± 2 ± 2, where the first error includes statistical
and systematic errors in the MDA (which were assumed to
be uncorrelated between 1-MeV-wide energy bins) and the
second error refers to the systematic uncertainty in the unit
cross section. This large value exceeds by far the amount
of GT strengths observed in other (n,p)-type experiments
[54,83,88–90] on medium-heavy nuclei. Moreover, Pauli
blocking of GT transitions is expected to be stronger for
150Sm than for the nuclei studied in those experiments.
Therefore, it is not plausible that a large fraction of the
extracted !L = 0 strength is associated with Gamow-Teller
transitions.

For the second hypothesis, the differential cross sections
extrapolated to q = 0 were used to calculate the percentage
by which the NEWSR for the IVSGMR was exhausted. It was
assumed that the percentage of exhaustion of the NEWSR for
the IVSGMR is proportional to the cross section at q = 0, i.e.,
that a unit cross section σ̂IVSGMR exists that serves the same
purpose as σ̂GT (σ̂F ) for the GT (Fermi) !L = 0 transitions.
The value of σ̂IVSGMR was determined by calculating the
ratio of σ̂IVSGMR to σ̂GT in DWBA and rescaling σ̂IVSGMR
by the same factor needed to match the calculated value
of σ̂GT in DWBA to the empirical value from Eq. (6). We
found that σ̂IVSGMR = 0.45 mb/sr per 1% of the full NEWSR
strength of the IVSGMR (100% of the NEWSR corresponds
to a strength of 1433 fm4 as calculated in the normal-modes
formalism). The extracted exhaustion of the NEWSR for
the IVSGMR is also shown in Fig. 9; the relevant scale is
defined on the right-hand side. The summed exhaustion is
106 ± 11 ± 11%, where the error bars have meanings similar
to those for the GT strength above. This number is inflated by
as much as 20% due to a small contribution from the IVGMR
(estimated at <∼5%), the presence of some GT strength, and
the possible misinterpretation of small and perhaps spurious
!L = 0 contributions at high excitation energies which add
significantly to the strength observed due to the extrapolation
to q = 0. Nevertheless, this result provides strong evidence
for the excitation of the IVSGMR. The large error bars at
high excitation energies make it difficult to extract accurate
resonance parameters, but the approximate peak location
of 15 MeV and width of 10 MeV are consistent with the
expectation for the IVSGMR.

The large contributions from the IVSGMR to the spectrum
make it hard to extract GT strength of interest for ββ studies.
Nevertheless, the spectrum below 3 MeV was studied in
more detail to search for isolated transitions that could be
associated with GT transitions. The contributions from the
IVSGMR are expected to be small at these low excitation
energies and not expected to exhibit isolated peaks. The
excitation-energy region below 3 MeV was divided into bins
of 300 keV and a MDA performed for each bin. The extracted
!L = 0 contributions were assumed to be due to Gamow-
Teller transitions and GT strengths were deduced following
the procedure described above. The results are shown in Fig. 5
(red square markers) and also provided in Table II.
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are presented. The upper panels represent the results obtained
with the shifted calculated QRPA spectrum [case I; see the
explanation after Eq. (10)] and in the lower ones the results
obtained with the usual unshifted QRPA spectrum (case II)
are shown. The solid lines in Figs. 5 and 6 represent the

matrix elements M2ν
GT calculated in the spherical limit whereas

the dashed ones (and dot-dashed in Fig. 6) represent M2ν
GT

calculated for realistic deformations. The dotted horizontal line
corresponds to the corresponding experimental M2ν

exp values
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TABLE I. Values of the deformation (def.) parameter β2 for initial
(final) nuclei adopted in the calculations along with the fitted values
of the p-p strength parameters g0

pp (for the realistic Bonn-CD force)
and κ0 (for a phenomenological separable force).

Nucleus β2 g0
pp κ0 (MeV)

76Ge (76Se) 0.0(0.0) 0.94 0.087
0.10(0.16) 0.99 0.091

150Nd (150Sm) 0.0(0.0) 1.11 0.051
Def. I 0.37(0.23) 0.78 0.033
Def. II 0.24(0.21) 1.35 0.053

and 2. Each panel in the figures shows four types of calculated
running sums corresponding to different combinations of
quenched and unquenched strength parameters (columns are
labeled by values of g ph, and rows by values of gpp in the
calculation).

As shown in Figs. 1 and 2, this is the p-p interaction
parameter gpp(κ) that is responsible for the qualitative change
in the behavior of the calculated 2νββ running sums. For the
quenched strengths gpp = g0

pp/2 (κ = κ0/2), all calculations

reveal a monotonically growing M2ν
GT(ω). The total calculated

M2ν
GT is, however, rather strongly overestimated for these

quenched gpp. For the realistic, unquenched, gpp = g0
pp (κ =

κ0), a substantial overshoot of the total M2ν
GT at low excitation

energies is compensated by a negative contribution coming
from the region of the GTR at ω ≈ 10 MeV. The absence
of such a pronounced overshoot in the case of 150Nd →150Sm
2νββ decay calculated with set I of the deformation parameters
β2 can again be attributed to a substantially smaller fitted value
of g0

pp (κ0) in this case; see Table I. In this case the difference
in β2 between the initial and the final nucleus is large, and this
leads to a large overall suppression of the calculated M2ν

GT by
a small BCS overlap factor [14].

We have calculated the 2νββ-decay running sums for 76Ge
and 150Nd nuclei within the QRPA approach of Ref. [14],
which takes nuclear deformation into account and implements
a realistic nucleon-nucleon residual interaction based on the
Brueckner G matrix (for the Bonn CD force). We have
studied the influence of different QRPA model parameters
on the functional behavior of the running sums within the
QRPA approach. It has been found that the parameter gpp
renormalizing the G matrix in the particle-particle channel is
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FIG. 1. The partial contributions M0ν(Kπ ) of different intermediate Kπ states to M0ν(1/r) for 150Nd→150Sm in the cases of vanishing
and realistic deformations. For simplicity, the BCS overlap factor is omitted in these results. The Fermi M0ν

F (1/r) and the GT M0ν
GT (1/r)

contributions are shown in the panels (a) and (b), respectively. The three bars represent (from left to right) the results obtained with the spherical
harmonic oscillator (HO) wave functions, with the Woods-Saxon (WS) wave functions in the spherical limit, and with the deformed WS wave
functions for realistic deformations from Table I.

Bohr-Mottelson approximation is not applicable in the limit
of vanishing deformation, it is easy to see that the basic
Eqs. (12)–(16) do have the correct spherical limit.

According to Eq. (12), the total calculated 0νββ-decay
NME is formed by the sum of all partial contributions
M0ν(Kπ ) of different intrinsic intermediate states Kπ , with
M0ν(|K|π ) = M0ν(−|K|π ). In the spherical limit, the total
angular momentum J becomes a good quantum number,
and the intermediate Kπ states corresponding to a given
J π state become degenerate. In addition, in this limit, each
projection K of an intermediate J π state contributes equally
to the calculated 0νββ-decay NME, as a consequence of
rotational symmetry. To represent standard spherical results
in the terms of the present paper, one has to use the following
expression for the spherical partial contribution of a projection
K: M0ν(Kπ ) =

∑
J!|K| M

0ν(J π )/(2J + 1); it is easy to see
that having summed over all Kπ , one obtains the total NME

M0ν =
∑

J M0ν(J π ). From this representation it can generally
be expected that the smaller is |K|, the larger the corresponding
partial contribution M0ν(Kπ ) should be (since simply more J ’s
contribute, and their contributions are of the same sign in most
cases, see Ref. [7]). This behavior is in fact revealed by most
of the calculation results (see below).

To test our new numerical code calculating 0νββ-decay
NME for deformed nuclei, we have taken the spherical limit
and used in it the spherical harmonic oscillator wave functions
as usually done in the QRPA calculations [7,21,22]. The NME
calculated by different codes are found to be in an excellent
agreement.

For the further discussion, we define the following contribu-
tions to the total 0νββ-decay NME: M0ν

F (1/r) and M0ν
GT (1/r)

are calculated by taking into account only the Coulomb-
like radial dependence of the neutrino potential. The total
corrections $M0ν

F and $M0ν
GT to M0ν

F (1/r) and M0ν
GT (1/r),

TABLE II. Different contributions to the total calculated NME M ′0ν for 0νββ decays 76Ge→76Se, 150Nd→150Sm, and 160Gd→160Dy. The
BCS overlap is taken into account. In columns 4 and 9 the leading contributions MF (1/r) and MGT (1/r) are shown. In columns 5 and 10
the total corrections $MF and $MGT to MF (1/r) and MGT (1/r) are listed. In columns 6,7 and 11,12 the corrections δiMF and δiMGT ,
respectively, coming from different choices of the s.r.c., are listed. In columns 8 and 13 both the F and GT parts of the total NME (17) are
shown (we prefer here the final value of M0ν corresponding to the modern self-consistent treatment of the s.r.c. [22]). Finally, in columns 14
and 15 the 0νββ-decay NME M ′0ν (3) and corresponding decay half-lives (assuming mββ = 50 meV) are listed.

A Def. gA M0ν
F M0ν

GT M ′0ν T 0ν
1/2 (1026 yr)

M(1/r) $M δ1M δ2M Total M(1/r) $M δ1M δ2M Total (mββ = 50 meV)

76 “1” 1.25 −2.83 0.69 0.40 −0.08 −2.22 5.59 −2.49 −0.88 0.18 3.27 4.69 7.15
0.94 −2.98 0.73 0.40 −0.18 −2.44 7.69 −3.65 −1.47 0.27 4.31 4.00 9.83

“0” 1.25 −3.15 0.78 0.45 −0.09 −2.47 6.37 −2.85 −1.01 0.20 3.72 5.30 5.60
0.94 −3.31 0.82 0.46 −0.10 −2.59 7.28 −3.15 −1.04 0.21 4.35 4.10 9.36

150 “1” 1.25 −2.09 0.51 0.33 −0.06 −1.64 4.01 −1.86 −0.72 0.14 2.29 3.34 0.41
0.94 −2.16 0.52 0.33 −0.06 −1.70 4.44 −2.00 −0.73 0.14 2.58 2.55 0.71

“0” 1.25 −4.07 0.99 0.67 −0.13 −3.21 7.35 −3.54 −1.46 0.26 4.07 6.12 0.12
0.94 −4.12 1.00 0.68 −0.13 −3.25 7.69 −3.65 −1.47 0.27 4.31 4.52 0.23

160 “1” 1.25 −2.14 0.51 0.32 −0.07 −1.69 4.57 −2.04 −0.71 0.14 2.67 3.76 2.26
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FIG. 4. (Color online) Multipole decomposition of the matrix
element M0ν

F . The results with the old and new parametrizations are
compared. Note the dominant effect for the 0+ multipole and the
relatively small effects for the other multipoles. This is the case of
76Ge.

From the tables one can see that the new parametrization,
leading to M2ν

F = 0.0, leads to a substantial reduction of the
M0ν

F component of M0ν and an overall ∼10%–20% reduction
of the final M0ν nuclear matrix elements. It is encouraging
that both variants of the M0ν matrix elements for 48Ca are now
rather close to the results of nuclear shell model evaluation.
(With gA = 1.27 our M0ν values are 0.54 in the listed case
and 0.71 in the variant where the even-odd mass differences
are treated as arising from pairing, both with the Argonne V18
potential and 0.59 (0.77) with the CD-Bonn potential, while
the shell model values are 0.59 in Ref. [18] and 0.82 (0.90) for
the Argonne V18 (CD-Bonn) potential in Ref. [19].) Note that
only in the case of 48Ca is the full oscillator pf shell included
and hence the Ikeda sum rule is fulfilled in the nuclear shell
model treatment. We are, naturally, well aware of the fact that

0

1

2

3

4

5

6

7

M
0ν

48Ca
76Ge

82Se
96Zr

100Mo
110Pd

116Cd
124Sn

128Te
130Te

134Xe
136Xe

FIG. 5. (Color online) Nuclear matrix elements M0ν evaluated
with the new parametrization developed in this work (filled squares)
compared with the old method (gT =1

pp = gT =0
pp ≡ gpp) (empty circles).

This is a QRPA with gA = 1.27 and a large-size single-particle level
scheme, as in Table I, evaluation using the Argonne V18 potential.

applying the QRPA in the case of 48Ca is questionable; our
results should be treated with that in mind.

Finally, in order to better visualize the effect of the new
parametrization of the particle-particle interaction, we show
in Fig. 4 an example of the multipole decomposition of the
matrix element M0ν

F . One can see there that the contribution of
the intermediate multipole 0+ is drastically reduced with our
choice of gT =1

pp , while all the other multipoles are affected only
slightly or not at all. This is, in some sense, analogous to the
situation with M0ν

GT, where the parameter gT =0
pp affects mostly

the intermediate 1+ states, while all the other multipolarities
are affected much less.

We compare in Fig. 5 the M0ν matrix elements for all
considered nuclei evaluated with the old and new parametriza-
tions of gpp. The smaller values of M0ν in 48Ca, 166Cd, 124Sn,
136Xe, and to some extent also in 96Zr are related to the magic
or semimagic nucleon number in these nuclei, and thus to the
reduced pairing correlations in them.

V. COMPARISON OF THE χF VALUES EVALUATED
BY DIFFERENT METHODS

As we argued in this work, the result of the new parametriza-
tion of the particle-particle interaction, which partially restores
isospin symmetry and leads to the correct M2ν

F = 0 value,
is the reduction of the Fermi part M0ν

F of the 0νββ nuclear
matrix element. At the same time, the largest component of
that matrix element, M0ν

GT, remains essentially unaffected. One
can see that most clearly by considering the quantity χF , the
ratio M0ν

F /M0ν
GT.

In Table IV we compare the χF values obtained with
different methods. [An analogous table, naturally without our
new results, appears in Ref. [20] in their Table VII. However,
as we already mentioned, their definition of χF contains an
extra factor (gV /gA)2.] One can see in Table IV that in the
nuclear shell model, and in our QRPA calculation with the
new parametrization of gpp, the χF values are substantially
smaller than in the previous approaches. (In IBM-2 the χF are
very small when neutrons and protons are in different shells.
That is an artifact of the model where only one shell in each
system is included.)

In the shell model, and in our new QRPA calculations, the
χF values are relatively close to −1/3, the value one would
obtain in pure S = 0 states. However, in the shell model the
χF values are systematically smaller than in our version of
the QRPA. Why this is so remains to be understood. (To be
really precise, χF = −1/3 would arise for pure S = 0 when
the higher order terms in the weak current are absent, when
in the nucleon form factor the cutoff parameters for the vector
and axial vector currents are the same, and the average energies
Ē are chosen to be the same in both neutrino potentials.) As
we pointed out before, while the S = 0 component is large,
the other parts, in particular S = 1, are clearly present.

We may notice that the QRPA values of χF are always
smaller with the quenched value gA = 1.0 compared to the
unquenched value gA = 1.27. That trend continues when the
amount of quenching is increased, e.g., to gA = 0.8 where χF

values are really quite close to −1/3. However, the question
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From the tables one can see that the new parametrization,
leading to M2ν

F = 0.0, leads to a substantial reduction of the
M0ν

F component of M0ν and an overall ∼10%–20% reduction
of the final M0ν nuclear matrix elements. It is encouraging
that both variants of the M0ν matrix elements for 48Ca are now
rather close to the results of nuclear shell model evaluation.
(With gA = 1.27 our M0ν values are 0.54 in the listed case
and 0.71 in the variant where the even-odd mass differences
are treated as arising from pairing, both with the Argonne V18
potential and 0.59 (0.77) with the CD-Bonn potential, while
the shell model values are 0.59 in Ref. [18] and 0.82 (0.90) for
the Argonne V18 (CD-Bonn) potential in Ref. [19].) Note that
only in the case of 48Ca is the full oscillator pf shell included
and hence the Ikeda sum rule is fulfilled in the nuclear shell
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applying the QRPA in the case of 48Ca is questionable; our
results should be treated with that in mind.

Finally, in order to better visualize the effect of the new
parametrization of the particle-particle interaction, we show
in Fig. 4 an example of the multipole decomposition of the
matrix element M0ν

F . One can see there that the contribution of
the intermediate multipole 0+ is drastically reduced with our
choice of gT =1

pp , while all the other multipoles are affected only
slightly or not at all. This is, in some sense, analogous to the
situation with M0ν

GT, where the parameter gT =0
pp affects mostly

the intermediate 1+ states, while all the other multipolarities
are affected much less.

We compare in Fig. 5 the M0ν matrix elements for all
considered nuclei evaluated with the old and new parametriza-
tions of gpp. The smaller values of M0ν in 48Ca, 166Cd, 124Sn,
136Xe, and to some extent also in 96Zr are related to the magic
or semimagic nucleon number in these nuclei, and thus to the
reduced pairing correlations in them.

V. COMPARISON OF THE χF VALUES EVALUATED
BY DIFFERENT METHODS

As we argued in this work, the result of the new parametriza-
tion of the particle-particle interaction, which partially restores
isospin symmetry and leads to the correct M2ν

F = 0 value,
is the reduction of the Fermi part M0ν

F of the 0νββ nuclear
matrix element. At the same time, the largest component of
that matrix element, M0ν

GT, remains essentially unaffected. One
can see that most clearly by considering the quantity χF , the
ratio M0ν

F /M0ν
GT.

In Table IV we compare the χF values obtained with
different methods. [An analogous table, naturally without our
new results, appears in Ref. [20] in their Table VII. However,
as we already mentioned, their definition of χF contains an
extra factor (gV /gA)2.] One can see in Table IV that in the
nuclear shell model, and in our QRPA calculation with the
new parametrization of gpp, the χF values are substantially
smaller than in the previous approaches. (In IBM-2 the χF are
very small when neutrons and protons are in different shells.
That is an artifact of the model where only one shell in each
system is included.)

In the shell model, and in our new QRPA calculations, the
χF values are relatively close to −1/3, the value one would
obtain in pure S = 0 states. However, in the shell model the
χF values are systematically smaller than in our version of
the QRPA. Why this is so remains to be understood. (To be
really precise, χF = −1/3 would arise for pure S = 0 when
the higher order terms in the weak current are absent, when
in the nucleon form factor the cutoff parameters for the vector
and axial vector currents are the same, and the average energies
Ē are chosen to be the same in both neutrino potentials.) As
we pointed out before, while the S = 0 component is large,
the other parts, in particular S = 1, are clearly present.

We may notice that the QRPA values of χF are always
smaller with the quenched value gA = 1.0 compared to the
unquenched value gA = 1.27. That trend continues when the
amount of quenching is increased, e.g., to gA = 0.8 where χF

values are really quite close to −1/3. However, the question
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“partial restoration of isospin symmetry” is that in exact shell
model calculations, where the isospin symmetry is conserved,
all the successive single-particle transitions from initial to
intermediate and then to final states are exactly zero. For
QRPA only the overall sum of these transitions disappears.)
Reference [12] shows that gT =1

pp should be approximately the
same as the pairing strength dpp and dnn in the T = 1 channel.
We checked this in the present calculations in the large model
space. We find for 150Nd, dpp = 0.94 and dnn = 1.03, and
for 150Sm, dpp = 0.95 and dnn = 1.04. This gives an average
pairing strength of d = 0.98 and d̄ = 1.00 respectively, about
5% smaller than gT =1

pp . These results agree with Ref. [12]
and imply that the parameter introduced is consistent with the
pairing strength in the T = 1 channel.

In the present calculations, we fit two sets of M2ν
GT values,

one for the bare gA0 = 1.27 and another for the quenched
gA = 0.75gA0 values obtained from experiment [18]. Using
calculated 1+

1 excitation energies in the energy denominator
barely changes the matrix elements compared to Ref. [8]. The
newly fitted gT =0

pp values only differ by 1 to 2% while M0ν
GT is

basically not changed. As a result of improved computational
facilities we can now use a much larger model space of up
to eight major shells N = 0–7 compared with a model space
N = 4–6 used in Ref. [8]. The values of gpp in this larger model
space are smaller. This implies that in a smaller model space,
the interaction in the particle-particle channel is enhanced to
account for the smaller model space. The enlargement of the
model space changes the results of 0νββ decay as we shall
show below.

We illustrate the results of single intermediate Kπ contri-
butions in Fig. 1. The blue (gray, left) bars are the results
in the small basis N = 4 to 6 without isospin symmetry
restoration and with the conventional choice of gT =0

pp = gT =1
pp .

The symmetry-restored results in the small basis are displayed
by the red bars (gray, middle). Here as for all results calculated
in this paper the CD-Bonn nucleon-nucleon Brueckner G-
matrix elements and the Brueckner short-range correlations
(src) of Ref. [19] are used.

The effect of the isospin restoration leads to changes
of M0ν

F for each Kπ . The largest change is obtained for
Kπ = 0+, which corresponds to J π = 0+ in the spherical
limit in Ref. [12]. For Kπ = 0+ the Fermi matrix element M0ν

F

is reduced to about 1/3. Changes for other Kπ ’s are not that
significant. Compared with the conventional parametrization,

FIG. 1. (Color online) The decomposition of 0νββ matrix ele-
ments for different values of Kπ . Here, “Msp” is an abbreviation for
“model space,” where “Msp I” refers to the N = 4–6 space and “Msp
II” refers to the N = 0–7 space. “ISR” denotes “isospin symmetry
restoration.”

the formalism increases gT =1
pp by 0.35 (more than 30%; see

Table I). But this large increase does barely change the values
of M0ν

GT , since its main contribution is due to T = 0 nucleon
pairs.

Only M0ν
F for Kπ = 0+ is sensitive to gT =1

pp , because the
main contribution originates from the interaction in T = 1
nucleon pairs.

In Fig. 1, we show also how the enlargement of the model
space affects the final results. Amazingly, previous truncations
of the model space, though numerically insufficient due to its
small size, produce similar results as the ones obtained from
a large model space. The main increase of M0ν

GT is due to the
two states Kπ = 0+ and Kπ = 1+ by the larger model space.
For other Kπ ’s the large model space could either increase or
reduce slightly the matrix elements depending on the detailed
transitions. This does not mean that the contributions from
transitions outside of the truncated model space N = 4 to 6 are
not important, since we have quite different renormalization
strength parameters gpp’s for both T = 0 and T = 1 parts for
the truncated and large model space (see Table I). For the
2νββ decay larger values for gpp’s are required for the small

TABLE II. A summary of the results calculated with the Bonn CD potential with different model spaces, with or without Brueckner
short-range correlations (scr and no scr) of the Bonn CD nucleon-nucleon interaction, two axial vector coupling constants gA = 1.27 and
gA = 0.95, and with and without partial isospin restoration (ISR and no ISR). The matrix element M ′0ν is defined in Eq. (8).

gA = 1.27 gA = 0.95

M0ν
F M0ν

GT M ′0ν M0ν
F M0ν

GT M ′0ν

N = 4–6 ISR, no src −1.308 2.081 2.891 −1.306 2.371 2.143
no ISR, no src −1.565 2.091 3.061 −1.614 2.381 2.340

ISR, src −1.367 2.214 3.062 −1.365 2.508 2.257
no ISR, src −1.628 2.224 3.233 −1.679 2.518 2.457

N = 0–7 ISR, no src −1.390 2.309 3.171 −1.369 2.629 2.328
ISR, src −1.454 2.466 3.367 −1.433 2.790 2.458
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FIG. 2: (Color online) The same as Fig.1 but for heavy neutrino mechanism.
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FIG. 1: (Color online) Decomposition of the matrix elements(M0⌫
F , M0⌫

GT and M0⌫
T ) for over di↵erent K⇡ of intermediate

states(left panel) and di↵erent ⇡ of nucleon pairs. The di↵erent colors correspond to di↵erent model spaces as indicated in
the figures, the shaded area of the first and second bars are contributions from sub spaces in a larger one.

sults for 0⌫�� are obviously not any more the same.

TABLE IV: 0⌫�� NME’s of 150Nd for di↵erent Model space
and contributions from sub-space.

MSp-III MSp-II MSp-I
Full N=0-6 N=4-6 Full N=4-6 Full

M0⌫
F,l -1.43 -1.55 -1.55 -1.52 -1.55 -1.34

M0⌫
GT,l 3.55 3.91 3.91 3.75 3.87 3.04

M0⌫
T,l -0.53 -0.44 -0.18 -0.44 -0.18 -0.21

M0⌫
F,h -120.1 -124.9 -109.3 -120.2 -107.7 -98.8

M0⌫
GT,h 325.0 331.8 280.7 339.1 290.9 264.4

M0⌫
T,h -62.4 -51.5 -21.2 -57.5 -22.0 -25.5

The general contributions from di↵erent K⇡ are sim-
ilar for M0⌫

F and M0⌫
GT , low K states contributes more,

this is understandable, since low K states consists transi-
tions near Fermi surface. This partially holds for tensor
part M0

T ⌫, unlike the GT part where the NME decrease
nearly monotonically with increasing K, we see stagger-
ing behavior for the magnitude of tensor part, we find
the reductions for the so-called natural parity ⇡ = (�1)K

are much smaller than the unnatural one. For all these
parts of NME’s of 150Nd, we find negative parity states
are generally larger than positive states with similar K.
This is somehow not the general case for all isotopes[21],
but for heavier nuclei only. Since heavier ones are gener-
ally neutron-richer, the proton and neutron Fermi levels
are in di↵erent major shells with opposite parities. This
makes the transitions with negative parity more favored
and contributes more to 0⌫�� NME’s.

The gpp dependences for di↵erent K⇡’s are
di↵erent[31], this can also be seen by comparing
the blue solid bars and shaded blue areas. we should
be aware that the explicit dependency of gpp’s from[12]:
MF depends only on iso-vector strength and MGT only
on iso-scalar, so hereafter, we discuss only corresponding

gpp dependence. From the figures, we see that for Fermi
part only 0+ and for GT part only 0+,±1+ are sensitive
to gpp, while for tensor part, compared with GT or F
parts, the results are basically gpp independent.

Now we start the discussion of how di↵erent shells
contributes to the results. From the partially oc-
cpied MSp-I, when occupied orbits from the bottom are
added(comparing the blues and reds in first and second
bars), we see reductions for several K⇡’s mainly for low
K’s. In the meantime, we could also observe the enhance-
ment of NME for other multipoles(mainly high K’s), to
see their overall e↵ects, we present these partial NME’s
in Table.IV, the results show that the high K enhance-
ment nearly equal to the low K reduction for the occupied
levels. Therefore, when occupied shells are included, al-
though states with di↵erent K behaves di↵erently, the
total NME for GT and Fermi doesn’t change too much,
for them, the over-correlation of particle-particle strength
from fitting 2⌫�� NME will gives over reduction to the
final results. The Tensor part behaves di↵erently, occu-
pied shells added will give more reductions to the overall
NME somehow. The e↵ect of inclusion of non-occupied
shells can be obtained by comparing the yellow bars and
red shadows, for nearly all multipoles, these orbits give
reductions to the NME’s. For GT and Fermi parts, these
orbits reduces about 10% of NME to the total one, and
for Tensor part, we have further reductions but those are
much smaller.

In general, Fig.1 and Table.IV show that in our cal-
culation, the roles of truncation to the final results are
dependent on the specific truncations one makes. Our
calculation shows that, for LNM, truncations of occupied
levels tend to reduce the overall NME while the removal
of unoccupied orbitals tends to enhance the overall NME.
Therefore, we could make a estimation on how the errors
are generated with current model space MSp-III. At first,
we see that the actual gpp in an infinite Hilbert space
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the figures, the shaded area of the first and second bars are contributions from sub spaces in a larger one.

sults for 0⌫�� are obviously not any more the same.

TABLE IV: 0⌫�� NME’s of 150Nd for di↵erent Model space
and contributions from sub-space.

MSp-III MSp-II MSp-I
Full N=0-6 N=4-6 Full N=4-6 Full

M0⌫
F,l -1.43 -1.55 -1.55 -1.52 -1.55 -1.34

M0⌫
GT,l 3.55 3.91 3.91 3.75 3.87 3.04

M0⌫
T,l -0.53 -0.44 -0.18 -0.44 -0.18 -0.21

M0⌫
F,h -120.1 -124.9 -109.3 -120.2 -107.7 -98.8

M0⌫
GT,h 325.0 331.8 280.7 339.1 290.9 264.4

M0⌫
T,h -62.4 -51.5 -21.2 -57.5 -22.0 -25.5

The general contributions from di↵erent K⇡ are sim-
ilar for M0⌫

F and M0⌫
GT , low K states contributes more,

this is understandable, since low K states consists transi-
tions near Fermi surface. This partially holds for tensor
part M0

T ⌫, unlike the GT part where the NME decrease
nearly monotonically with increasing K, we see stagger-
ing behavior for the magnitude of tensor part, we find
the reductions for the so-called natural parity ⇡ = (�1)K

are much smaller than the unnatural one. For all these
parts of NME’s of 150Nd, we find negative parity states
are generally larger than positive states with similar K.
This is somehow not the general case for all isotopes[21],
but for heavier nuclei only. Since heavier ones are gener-
ally neutron-richer, the proton and neutron Fermi levels
are in di↵erent major shells with opposite parities. This
makes the transitions with negative parity more favored
and contributes more to 0⌫�� NME’s.

The gpp dependences for di↵erent K⇡’s are
di↵erent[31], this can also be seen by comparing
the blue solid bars and shaded blue areas. we should
be aware that the explicit dependency of gpp’s from[12]:
MF depends only on iso-vector strength and MGT only
on iso-scalar, so hereafter, we discuss only corresponding

gpp dependence. From the figures, we see that for Fermi
part only 0+ and for GT part only 0+,±1+ are sensitive
to gpp, while for tensor part, compared with GT or F
parts, the results are basically gpp independent.

Now we start the discussion of how di↵erent shells
contributes to the results. From the partially oc-
cpied MSp-I, when occupied orbits from the bottom are
added(comparing the blues and reds in first and second
bars), we see reductions for several K⇡’s mainly for low
K’s. In the meantime, we could also observe the enhance-
ment of NME for other multipoles(mainly high K’s), to
see their overall e↵ects, we present these partial NME’s
in Table.IV, the results show that the high K enhance-
ment nearly equal to the low K reduction for the occupied
levels. Therefore, when occupied shells are included, al-
though states with di↵erent K behaves di↵erently, the
total NME for GT and Fermi doesn’t change too much,
for them, the over-correlation of particle-particle strength
from fitting 2⌫�� NME will gives over reduction to the
final results. The Tensor part behaves di↵erently, occu-
pied shells added will give more reductions to the overall
NME somehow. The e↵ect of inclusion of non-occupied
shells can be obtained by comparing the yellow bars and
red shadows, for nearly all multipoles, these orbits give
reductions to the NME’s. For GT and Fermi parts, these
orbits reduces about 10% of NME to the total one, and
for Tensor part, we have further reductions but those are
much smaller.

In general, Fig.1 and Table.IV show that in our cal-
culation, the roles of truncation to the final results are
dependent on the specific truncations one makes. Our
calculation shows that, for LNM, truncations of occupied
levels tend to reduce the overall NME while the removal
of unoccupied orbitals tends to enhance the overall NME.
Therefore, we could make a estimation on how the errors
are generated with current model space MSp-III. At first,
we see that the actual gpp in an infinite Hilbert space
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Error Analysis

To compare different many-body approaches, we need 
some assumptions: 

Different approaches have something in common 

The some approximation plays similar role 

For example: inclusion of pp force will reduce the 
2νββ NME 

Narrow the deviations brought by the method itself
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FIG. 2. (Color online) Nuclear matrix elements for 2νββ decay
of 76Ge. The top point in green is the experimental value [47]. The
QRPA results are shown for gT =0

pp = 0.673 (red dots) and gT =0
pp =

0.643 (red crosses). The CI results are shown for the JUN45 (dot),
jj44bpn (cross), and gcn28:50 (triangle) Hamiltonians.

pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of

0 10 20 30 40 50

m
od

el

M0ν(GT−heavy)/10

76Ge

IBM (jj44)

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

QRPA ([29])

FIG. 3. (Color online) The 0N NME for heavy-neutrino decay
of 76Ge. See caption for Fig. 2. The QRPA point with the triangle is
from Ref. [29].

R0N
V = 1.9 as the number of orbitals included in the sums

increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,
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FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.
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pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,
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pfg show that part of this reduction is due to the missing
spin-orbit partners in the jj44 model space. The particle-hole
correlations are dominated by a strong repulsive interaction in
the 1+ channel. Relative to the noninteracting single-particle
distribution, Gamow-Teller strength is reduced in low-lying
states and shifted into the giant Gamow-Teller resonance. As
shown by the QRPA results for jj44 and fpg, both spin-orbit
partners are important for the reduction. A similar behavior
was observed for CI in the case of 136Xe [64].

Beyond QRPA, it is known that two-particle two-hole
(2p-2h) admixtures into the model-space wave functions
are important for Gamow-Teller β decay. The experimental
Gamow-Teller strength is observed to be reduced by a factor
of R′

V = 0.5–0.6 relative to the CI calculations in the sd [65]
and pf [66] model spaces. Also the strength extracted from
charge-exchange reactions for the total Gamow-Teller strength
up to about 25 MeV in excitation energy is reduced by this
factor relative to QRPA [67] and the 3(N − Z) Ikeda sum
rule [68]. Arima et al. [69] and Towner [70] have explained
this reduction using MBPT in terms of 2p-2h admixtures into
the model-space wave functions. Earlier calculations claimed
that the reduction in GT strength was due to # excitations [71]
in the nucleus. However, calculations with a realistic N #π
interaction vertex have shown that the influence of # (and other
mesonic-exchange currents) is small [69,70]. These results are
compared to the empirical sd results in Fig. 13 of Ref. [65]. In
order to conserve the Ikeda sum rule, the reduction in low-lying
B(GT) strength is associated with a spreading of strength to
high excitation energy [72] that gets removed from the 2ν
NME due to the energy denominator in the summation over
intermediate states. To summarize, relative to CI in the jj44
model space, reductions due to a spin-orbit complete model
space together with 2p-2h admixtures are required for the 2νββ
NME. The observed factor of RV = 0.45 is consistent with
expectations.

The results for 0N (heavy neutrino) are shown in Fig. 3. In
addition to our own QRPA results, we show the QRPA result
from Ref. [29]. The Jpp intermediate states are dominated
by the 0+ ground state of 74Ge (see Ref. [56] for details on
the analysis). In QRPA the NME increases by a factor of
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increases from jj44 to full (21 orbitals). This is due to
the strong pairing (particle-particle) part of the Hamiltonians
and the resulting increase in the number of coherent pairs
contributing to the 0N NME. The pairing also gives rise to the
odd-even staggering of the nuclear binding energies quantified
by the pairing energies D [73,74]. For the germanium isotopes
the experimental pairing energies are a factor of 1.45 larger
than that obtained with the first-order expectation value of the
CD-Bonn Hamiltonian. Based on the average of this result and
the increase observed in QRPA, we will use R0N

V = 1.65(25).
The results for 0νββ (light neutrino) are shown in Fig. 4.

The largest term in the 0ν NME is from the J π
pp = 0+ ground

state of 74Ge [56]. In QRPA the NME is nearly constant as the
number of orbitals included in the sums increase. Qualitatively
this is due to a competition between the reduction from the
particle-hole channel observed for 2ν and the enhancement
due to the particle-particle channel observed for 0N . The
connection of the 0ν matrix elements with pairing has been
previously discussed [31]. The new point of our analysis is
that the increase expected from pairing coming from MBPT
beyond the jj44 model space is canceled by the reduction
from the ph-type correlations.

Contributions from states with Jpp > 0 cancel part of the
NME from Jpp = 0+. Within jj44 the reduction is dominated
by the Jpp = 2+ states [56]. For the 0ν NME within jj44,

0 2 4 6

m
od

el

M0ν(GT−light)

76Ge

IBM (jj44)

CI (jj44)

QRPA (jj44)

QRPA (fpg)

QRPA (21 orbit)

QRPA ([29])

FIG. 4. (Color online) The 0ν NME for the light-neutrino decay
of 76Ge. See captions for Figs. 2 and 3.

041301-3

RAPID COMMUNICATIONS

B. A. BROWN, D. L. FANG, AND M. HOROI PHYSICAL REVIEW C 92, 041301(R) (2015)

one finds R0ν
pp = {M0ν

GT/[M0ν
GT(Jpp = 0+)]} = 0.53 for CI [56],

0.90 for IBM-2 [39], and 0.72 for QRPA. The reason for these
differences may be due to the truncation within jj44 made by
IBM-2 and QRPA. For the 0N NME this ratio is R0N

pp = 0.89
in CI [56]; the cancellation from higher Jpp is much less,
the result is dominated by the Jpp = 0+ contribution, and its
connection to pairing is discussed above. In the jj44 model
space the agreement between the 0N NME (Fig. 3) for CI,
QRPA, and IBM-2 is much better than that for 0ν (Fig. 4)
since the cancellation from higher Jpp terms is small.

Holt and Engel [75] considered the effect of 2p-2h admix-
tures beyond the jj44 model space by treating the effective
transition operator in MBPT. They found a 20% increase in
the 0ν NME for 76Ge. Part of these MBPT contributions goes
beyond QRPA. At present this is the best estimate for the
correction beyond CI in the jj44 model space. We will use
R0ν

V = 1.2(2) with a generously large value of 20% for its
uncertainty.

The results shown above are based on the CD-Bonn SRC.
This is the weakest of several SRCs that have been used [55].
The strongest is the AV18 SRC, and the UCOM [76] SRC is
about half way between. For our final result we use the average
of CD-Bonn and AV18 with an error that encompasses both.
The result is that the 0N NMEs are multiplied by R0N

S =
0.80(20) and the 0ν NMEs are multiplied by R0ν

S = 0.97(3),
where RS is the SRC correction relative to the CD-Bonn
starting point.

Finally, we combine all of the factors discussed above
in the form M = [MGT(CI)][RV ][RS][RGT]. Based on the
experimental value for 2ν the NME is

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due to
mixing beyond the jj44 model space. The error in the CI
NME reflects the spread obtained with the three different
Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
(4)

where the CI value is from Fig. 3. The error for 0N is
dominated by the SRC correction. Finally for 0ν,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 4. The error for 0ν is dominated
by an estimated uncertainty of 20% in the correction beyond
jj44. Comparison to previous values must take into account
the isospin correction for QRPA and IBM discussed above
and the choice of SRC (in our RS factor). The range is from
2.8 for CI [33] to 4.7 for IBM-2 [41] and 5.3 for QRPA [29].

Our result is in between these, but it is not an average since
we have made comments on the deficiencies of all of these
models. Using Eq. (1) with the experimental limit of the half-
life (T 0ν

1/2 > 3 × 1025 yr [54]) and the phase-space factor from
Ref. [44], we obtain |ην |mec

2 < 0.3 eV.
Sometimes the 2ν correction factor (0.45 in this case) is

expressed in terms of an effective gA value (g′
A = 0.85 in this

case). Since the factor (gA)4 appears inside the phase-space
factor of Eq. (1), one might think that the decay rate for 0ν and
0N could be reduced by a factor of (g′

A/1.27)4 = 0.20 [41,77].
However, this g′

A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occupation
numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
terms of changes relative to the various contributions we have
discussed, and evaluations for other cases of interest [46]
should be performed.
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space the agreement between the 0N NME (Fig. 3) for CI,
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one finds R0ν
pp = {M0ν

GT/[M0ν
GT(Jpp = 0+)]} = 0.53 for CI [56],

0.90 for IBM-2 [39], and 0.72 for QRPA. The reason for these
differences may be due to the truncation within jj44 made by
IBM-2 and QRPA. For the 0N NME this ratio is R0N

pp = 0.89
in CI [56]; the cancellation from higher Jpp is much less,
the result is dominated by the Jpp = 0+ contribution, and its
connection to pairing is discussed above. In the jj44 model
space the agreement between the 0N NME (Fig. 3) for CI,
QRPA, and IBM-2 is much better than that for 0ν (Fig. 4)
since the cancellation from higher Jpp terms is small.

Holt and Engel [75] considered the effect of 2p-2h admix-
tures beyond the jj44 model space by treating the effective
transition operator in MBPT. They found a 20% increase in
the 0ν NME for 76Ge. Part of these MBPT contributions goes
beyond QRPA. At present this is the best estimate for the
correction beyond CI in the jj44 model space. We will use
R0ν

V = 1.2(2) with a generously large value of 20% for its
uncertainty.

The results shown above are based on the CD-Bonn SRC.
This is the weakest of several SRCs that have been used [55].
The strongest is the AV18 SRC, and the UCOM [76] SRC is
about half way between. For our final result we use the average
of CD-Bonn and AV18 with an error that encompasses both.
The result is that the 0N NMEs are multiplied by R0N

S =
0.80(20) and the 0ν NMEs are multiplied by R0ν

S = 0.97(3),
where RS is the SRC correction relative to the CD-Bonn
starting point.

Finally, we combine all of the factors discussed above
in the form M = [MGT(CI)][RV ][RS][RGT]. Based on the
experimental value for 2ν the NME is

M2ν = 0.140(5) = [0.31(3)][0.45][1][1]. (3)

The second term is the empirical correction for RV due to
mixing beyond the jj44 model space. The error in the CI
NME reflects the spread obtained with the three different
Hamiltonians used (Fig. 2). For 0N ,

M0N = [155(10)][1.65(25)][0.80(20)][1.13(13)] = 232(80),
(4)

where the CI value is from Fig. 3. The error for 0N is
dominated by the SRC correction. Finally for 0ν,

M0ν = [3.0(3)][1.2(2)][0.97(3)][1.12(7)] = 3.9(8), (5)

where the CI value is from Fig. 4. The error for 0ν is dominated
by an estimated uncertainty of 20% in the correction beyond
jj44. Comparison to previous values must take into account
the isospin correction for QRPA and IBM discussed above
and the choice of SRC (in our RS factor). The range is from
2.8 for CI [33] to 4.7 for IBM-2 [41] and 5.3 for QRPA [29].

Our result is in between these, but it is not an average since
we have made comments on the deficiencies of all of these
models. Using Eq. (1) with the experimental limit of the half-
life (T 0ν

1/2 > 3 × 1025 yr [54]) and the phase-space factor from
Ref. [44], we obtain |ην |mec

2 < 0.3 eV.
Sometimes the 2ν correction factor (0.45 in this case) is

expressed in terms of an effective gA value (g′
A = 0.85 in this

case). Since the factor (gA)4 appears inside the phase-space
factor of Eq. (1), one might think that the decay rate for 0ν and
0N could be reduced by a factor of (g′

A/1.27)4 = 0.20 [41,77].
However, this g′

A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
further checked against spectroscopic observables (occupation
numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
terms of changes relative to the various contributions we have
discussed, and evaluations for other cases of interest [46]
should be performed.
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A is only for a specific operator associated with
a specific observable (2νββ decay) relative to a specific model
(CI in jj44 in this case). The operators involved in 0ν and 0N
decay are different (short ranged), and corrections beyond CI
cannot be expressed in terms of an overall change in gA. It is
better to express the renormalizations in terms of factors, such
as RV , that are operator and model-space dependent.

The model-space truncation contributions to Rpp should be
understood. The error for the RGT correction could be reduced
if reasons for the variations within the models is understood.
The error for the RV correction could be reduced if the MBPT
results, such as those in Ref. [75], should be expanded to
include the renormalization of the separate effects in the ph
and pp channels in order to compare to the results found
previously relative to the jj44 model space. This includes
the reduction in Gamow-Teller β-decay strength [69,70]
and the enhancements of the pairing strength seen in the
D values. The basic division between CI and its MBPT
corrections from all other orbitals can be checked by no-core
and ab initio CI in lighter nuclei where they are tractable.
Other methods, such as in-medium similarity renormalization
group [78] and coupled cluster [79], can be used in place
of MBPT, and at this level the division between short-range
renormalization RS and long-range renormalization RV might
be merged. The CI results for the A = 76 region can be
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numbers are in good agreement with CI [33]) including
two-nucleon transfer. Future results should be presented in
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reduced transition operators, where M̃0ν is defined as

M̃0ν(βI ,βF ) = NFNI ⟨βF |Ô
0ν P̂ J=0P̂NI P̂ZI |βI⟩, (6)

with N−2
a = ⟨βa|P̂ J=0

00 P̂NaP̂Za |βa⟩ for a = I, F . It
is seen that the error arisen from the first-order non-
relativistic reduction is marginal, which can either in-
crease or decrease the total NME by a factor within 2%.
This value is modified only slightly in the full GCM cal-
culation, for instance becoming ∼ 5% for 150Nd [37]. The
one-body charge-changing nucleon current, Eq. (4), gen-
erates not only the Fermi and Gamow-Teller (GT) terms
but also tensor terms that have been neglected in the non-
relativistic study [34]. With the help of non-relativistic
approximation of the transition operator, one can isolate
the contribution of the tensor part [26, 37], which is ob-
tained by subtracting the contributions of Fermi and GT
terms from the total NME. It is shown in Table I that
the contribution of tensor terms is within 5% of the total
NME.

FIG. 4: (Color online) Normalized NME M̃0ν as a function
of the intrinsic deformation parameter β of the initial AZ and
final A(Z + 2) nuclei.

Figure 4 displays the normalized NME M̃0ν as a func-
tion of the intrinsic quadrupole deformation βI and βF
of the mother and daughter nuclei, respectively. Simi-
lar to the behavior of the GT part shown in the MR-
DFT (D1S) calculation [34], the normalized NME M̃0ν

is concentrated rather symmetrically along the diagonal
line βI = βF , implying that the decay between nuclei
with different deformation is strongly hindered. More-
over, the M̃0ν has the largest value at the spherical con-
figuration for most candidate nuclei except for 48Ca-Ti,
96Zr-Mo, and 136Xe-Ba. It implies that generally the
0νββ-decay is favored if both nuclei are spherical. The
largest M̃0ν in 136Xe-Ba is found around the deformation

FIG. 5: (Color online) (a) Decomposition of the total NMEs
from the final GCM+PNAMP (PC-PK1) calculation; (b)
the total NMEs calculated with either only spherical config-
uration or full configurations, in comparison with those of
GCM+PNAMP (D1S) from Ref. [34]. The shaded area indi-
cates the uncertainty of the SRC effect within 10%. See text
for more details.

region with βI = βF ≃ 0.5, at which deformed configura-
tion, pairing energy is peaked in both nuclei due to the
very high single-particle level density. However, this con-
figuration (β ≃ 0.5) has a negligible contribution to the
final NME of 136Xe-Ba because its weight is almost zero
in the ground-state wave function, cf. Fig. 3.

Figure 5(a) displays the contribution of each cou-
pling term (AA, V V, PP,MM,AP ) in Eq.(4) to the to-
tal NMEs. It is shown that the weak-magnetism (MM)
term is negligible (∼ 4%). The interference term (AP )
of the axial-vector and pseudoscalar coupling has an op-
posite contribution (∼ 30%), which almost cancels out
the sum of V V , PP , and MM terms. Of particular
interest is that the total NME has a very similar be-
havior as that of the predominated AA term with the
ratio RAA ≃ 95%. Actually, we have found that the
deformation-dependent NMEs shown in Fig. 4 are also
very similar even if we include only the AA term. It in-
dicates that the AA term provides a good approximation
for the total NME, Eq.(3). In the non-relativistic approx-
imation, the two-current operator with only the axial-
vector coupling term is simplified as J †

L,µ(x1)J
µ†
L (x2) =

−g2A(q
2)σ(1) · σ(2)τ (1)− τ (2)− , the calculation of which is

much cheaper than computing the full terms, cf. (4).
Similar conclusion can also be made based on the re-
sults of QRPA calculation [26] using the non-relativistic

J. M. Yao et. al. PRC91,024306(2015)
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symmetry breaking is related to the sensitivity of the NME on gpp.
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Figure 5.17: The dependence of the 0⌫�� NME’s of 76
Ge on g

pp

for di↵erent multipoles.

The final results are sums of the contributions of all multipoles, this is in contrast to the 2⌫�� case
where one has only the contribution from the intermediate J⇡ = 1+ states. These total NMEs of
M0⌫

F and M0⌫
GT as functions of gpp are plotted in fig.5.18. Because the 0+ and 1+ contributions

are ones of the largest contributions of to the total M0⌫
GT , we observe the changes of slope of the

M0⌫
GT (gpp) curve. The curve M0⌫

F (gpp) has a nearly constant small slope. In the deformed case,
M0⌫

F is less sensitive to gpp than M0⌫
GT .

The overall 0⌫�� NME in our convention has the form:

M0⌫(g0
A) = (g0

A/gA)2[M0⌫
GT (g0

A)� (gV /gA)2M0⌫
F (g0

A)) (5.9)

here gA = 1.25 is bare axial coupling constant for nucleons. It is commonly accepted that in
the nuclear environment, this constant is quenched, but the detailed value is unknown. As M2⌫
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FIG. 2. (Color online) Dependence of the GCM (solid) and
QRPA (dashed) 0νββ matrix elements on the strength gT =0 of the
isoscalar pairing interaction. The red (upper) and blue (lower) lines
of each type correspond to the interaction parameters extracted from
SkO′ and SkM*. The divergence in the QRPA near gT =0/ḡT =1 = 1.5
is discussed in the text.

To clarify this last statement, we show the GCM and QRPA
matrix elements as functions of gT =0/ḡT =1 in Fig. 2. The
QRPA curves lie slightly above their GCM counterparts until
gT =0/ḡT =1 reaches a critical value slightly larger than 1.5;
at that point a mean-field phase transition from an isovector
pair condensate to an isoscalar condensate causes the famous
QRPA “collapse.” The collapse is spurious, as the GCM results
show. Its presence in mean-field theory makes the QRPA
unreliable near the critical point. It is actually a bit of a
coincidence that the QRPA matrix elements in the table are
as close as they are to those of the GCM; a small change in
gT =0 would alter them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather than
1.0 does not have a huge effect on the 0νββ matrix element).
The GCM result is not only better behaved near the critical
point but also, we believe, quite accurate. In the SO(8) model
used to test many-body methods in ββ decay many times,
the GCM result is nearly exact for all gT =0. That is not the
case for extensions of the QRPA that attempt to ameliorate
its shortcomings [32,33], though some of those work better
around the phase transition than others.

To show why the GCM behaves well, we dis-
play in the bottom right part of Fig. 3 the quantity
NφI

NφF
⟨φF |PF M̂0νPI |φI ⟩, where |φI ⟩ is a quasiparticle vac-

uum in 76Ge constrained to have isoscalar pairing amplitude
φI , φF is an analogous state in 76Se, PI , PF project onto states
with angular momentum zero and the appropriate values of
Z and N , and NφI

,NφF
normalize the projected states. This

quantity is the contribution to the 0νββ matrix element from
states with particular values of the initial and final isoscalar
pairing amplitudes. The contribution is positive around zero
condensation in the two nuclei and negative when the final
pairing amplitude is large. Thus the GCM states must contain
components with significant pn pairing when gT =0 is near its
fit value. The appearance of this plot is different from those
in which the matrix element is plotted versus initial and final
deformation [6–8]. Here the matrix element is small or negative
even if the initial and final pairing amplitudes have the same
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FIG. 3. (Color online) Bottom right: NφI
NφF

⟨φF |PF M̂0ν

PI |φI ⟩ for projected quasiparticle vacua with different values of the
initial and final isoscalar pairing amplitudes φI and φF , from the
SkO′-based interaction (see text). Top and bottom left: Square of
collective wave functions in 76Ge and 76Se.

value, as long as that value is large. The behavior reflects the
qualitatively different effects of isovector and isoscalar pairs
on the matrix element [3], effects that have no analog in the
realm of deformation.

The weight function f in the GCM ansatz multiplies
nonorthogonal states and so is not really a “collective ground-
state wave function.” The object that does play that role is a
member of an orthogonalized set defined, e.g., in Refs. [4]
and [7]. The top and left parts of Fig. 3 show the square of
this collective wave function for 76Ge and 76Se, with gT =0

set both to zero and the fit value. It is clear in both nuclei,
but particularly in 76Se, that the isoscalar pairing interaction
pushes the wave function into regions of large φ, where
the matrix element in the bottom right panel is significantly
reduced. It is also clear that for gT =0 ̸= 0 the collective wave
functions are far from the Gaussians that one would obtain in
the harmonic (QRPA) approximation. Isoscalar pairing really
is, and must be treated as, a large-amplitude mode.

We turn finally to the more realistic calculation that includes
both deformation and the pn pairing amplitude as generator
coordinates. We fit the couplings in H just as described earlier;
the strength of the quadrupole interaction no longer vanishes
and some of the other parameters change slightly: gT =1

0 = 0.90
for the interaction based on SkO′ and 0.79 for that based on
SkM*, and gT =0 = 1.75 for SkO′ and 1.51 for SkM*, in units
of ḡT =1. The calculated B(GT+) in both cases is larger than the
experimental data with or without quenching, which therefore
does not affect the value of gT =0.

First we analyze the influence of the number and
angular-momentum projection on energy. The bottom part
of Fig. 1 shows the projected potential energy surfaces
⟨β,φ|PHP |β,φ⟩ for two values of φ, along with the
unprojected surface from the top part of the panel. Projecting
at φ = 0 without including pn interactions, the figure shows,
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Open Questions

Inputs needed by many-body approaches: 

Beyond “impulse approximation”— the chiral two body 
currents? 

The gA quenching problem—is it originated from the 
choice of hadron current 

More degrees of freedom for hard neutrino?



Conclusion

We adopted deformed QRPA method with realistic force 
for the calculation of nuclear matrix elements for double 
beta decay 

The major effects of deformation comes from the BCS 
overlaps 

Possible errors are analyzed



Thanks


