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Two Paths to Connect QCD to the Effective Interaction

❖ HOBET (Harmonic-Oscillator-Based Effective Theory)

❖  Compute phase shifts in LQCD - Fit HOBET LECs

❖ See arXiv:1511.02262 (CalLat LQCD)+ arXiv:
1902.03543 (McElvain, Haxton)

❖ Compute nucleon scattering spectrum in LQCD - Fit 
HOBET LECs directly to spectrum + periodic boundary 
conditions.
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The Bloch-Horowitz Equation
❖ For practical calculation reasons we 

often want to work in a subspace of 
the full Hilbert space.   

❖ P projects the subspace and Q=1-
P gets the rest.

❖ The BH equation is the answer to 
the question:  Does there exist an 
operator Heff that lives in P with the 
same eigenvalues and projected 
eigenvectors of the full H.
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PHPψ i + PHQ ψ i = EiPψ i

QHPψ i +QHQ ψ i = EiQ ψ i

Q ψ i = 1
Ei −QH

QHPψ i

P H + H 1
Ei −QH

QH
⎛

⎝⎜
⎞

⎠⎟
Pψ i = EiPψ i

Insert P +Q( ) in H ψ i = Ei ψ i

Heff E( )Pψ i = PH 1
Ei −QH

Pψ i = EiPψ i



BH Characteristics
❖ Eigenstates of Heff(E) are projections with the same eigenvalues.

❖ All eigenstates that overlap P are included!
❖ True even if P projects a finite number of states.

❖ It is continuous in energy, including across E=0.   An effective 
theory based on the BH equation can be fit in the continuum 
and used to find bound states.

❖ Explicitly energy dependent: Must solve self consistently.  

❖ Simple fixed point iteration converges rapidly.
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HO Effective Theory
❖ Why the HO basis?

❖ Discrete so we can use matrix techniques for solution.

❖ Good for confined wave function of nucleus

❖ With a consistent A-body quanta cutoff the center of mass is 
separable.

❖ In an HO ET with included space projector P(Λ,b), both UV and 
IR are excluded.

❖ Major Issue

❖ The kinetic energy operator T is a hopping operator, strongly 
connecting P & Q (IR). 
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HOBET Introduction
❖ HOBET is based on a reorganization of the Bloch-

Horowitz equation by Haxton and Luu.

❖ The reorganization isolates the impact of T for analytic 
calculation to all orders.    

❖ The remaining part is replaced by a long range potential 
(like an OPEP) plus V!, which is a short range expansion 
around it.

!6

H eff ,Λ E( ) = P H E
E −QH

⎡
⎣⎢

⎤
⎦⎥
P = P E

E −TQ
T +T Q

E
T +V +V 1

E −QH
QV⎡

⎣⎢
⎤
⎦⎥

E
E −QT

P

arXiv:1902.03543,  McElvain & Haxton (2019)
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E/(E-QT) Transform of Edge States
<r|5,S>
<r|GQT|5,S>
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❖ Acting on edge state with  
     E/ℏ" = 1/2.   
Recovers scattering wave function 
with phase shift.

❖ Acting on edge state with  
   E/ℏ"=-1/2.    
Recovers bound state exponential 
decay from gaussian falloff of HO 
state.
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E −QT
P = E

E −T
P E
E −T

P⎧
⎨
⎩

⎫
⎬
⎭

−1

, bij = P E
E −T

P⎧
⎨
⎩

⎫
⎬
⎭ij
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Sum T to All Orders
❖ T contributions can be summed to all orders.

❖ A surprisingly simple result.

❖ A non-perturbative sum of kinetic energy scattering is 
key to a convergent ET expansion of the remaining parts.    

j E
E −TQ

T −T Q
E
T

⎡

⎣
⎢

⎤

⎦
⎥

E
E −QT

i = E δ ji −bji( )
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The V! Expansion
❖ V! is described in terms of HO lowering operators. 

❖ This is slightly simplified by absorbing a constant related 
to coupling spins to angular momentum into the LECs.

❖ [     is really                                        , coupling angular 
momentum to spins, with vector HO lowering op    ]

Vδ
S = aLO

S δ r( )+aNLOS Â†δ r( )+δ r( ) Â( )+…
Vδ
SD = aNLO

SD Ĉ†2δ r( )+δ r( )Ĉ2( )+aNNLO22,SD Ĉ†2δ r( ) Â+ Â†δ r( )Ĉ2( )
+aNNLO

40,SD Ĉ†2Â†δ r( )+δ r( ) ÂĈ2( )+…
!

Ĉ lowers L , Â lowers nodal n, Ĉ , Â⎡⎣ ⎤⎦ =0
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Ĉ 2 ≡ !a⊗ !a[ ] 2( )⊙
"σ 1⊗

!σ 2[ ] 2( )Ĉ 2
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HOBET Lepage Plots
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❖ Heff S-D matrix elements in #=8 are are directly calculated at E=-2.2245 MeV from 
HO matrix elements in #=400 and LECs fit in a scheme independent way.   

❖ For the middle plot, O(1) errors appear at n’+n=8 making diagonal matrix elements 
with n=4 unreliable.    n=3 at 4ℏ$=60 MeV is a reasonable breakdown scale.

❖ Convergence is good order by order, but the value of a good long range VIR is clear.  



Power Counting
❖ The expansion is for Vδ, 

whose range R is  shorter 
than that of V.

❖ For a known Vδ the LECs are 
proportional to a non-local 
Talmi integral. 

❖ The tail overlap shrinks 
rapidly with order.

❖ For a short range Vδ the 
expansion parameter is 
function of b/R.
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Local Talmi basis functions with p 
ranging from 0 to 4.  

p = n′ + n− 2

tp r( ) = 1/ p!( )e−r2r 2 p+2

peaks at p +1

LEC ′n ,n ∝ r ′2 dr ′r 2 dr r ′2 n
′ −1( )e−r ′ /2∫ VQe

−r /2r 2 n−1( )

Vδ ′r ,r( ) =V −VIR +V
1

E −QH
QV

Vδ

1 2 3 4 r/b

0.2

0.4

0.6

0.8

1.0



Energy Independence of LECs
❖ Enables fitting to data 

a range of energies.

❖ The upper blue dots 
are the result of solving 
for aLO at individual 
samples (Ei,!i)
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Fit aLO at Ei with aNLO=0
Fit aLO at Ei with aNLO=-0.403
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O

❖ The lower gold dots represent an NLO fit to data from 1 and 10 
MeV to determine aNLO followed by refitting aLO at each energy 
while holding aNLO constant.

❖ Conclusion: Energy dependence is adsorbed into higher order 
operators.



Fitting LECs

❖ The mismatch must be due to LEC values.  

❖ Repair by minimizing

❖ The variance for the difference can be estimated from the 
sensitivity of     to next order LECs, automatically suppressing 
data outside the validity range for the current LEC order.

ε i − Ei( )
i∈samples
∑ 2

/σ i
2

❖ Principle: The BH equation is energy self consistent  
Heff

full Ei( ) P ψ i = EiP ψ i

❖ At fixed order we instead have a nearby eigenstate.
Heff Ei ,LECs( ) P ′ψ i = ε iP ′ψ i

!13

ε i



Predicting the Deuteron
❖ Prediction of Deuteron 

WF from phase shift fit.

❖ ET Wave functions 
should match 
projections of numerical 
solutions with Av18 - 
solid blue lines
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❖ The matrix elements are continuous in energy across E=0, one can fit V! in 
the continuum and determine bound states. 

❖ Using the same phase shift data we get

❖ With pionful VIR=OPEP, at N3LO Ebinding=-2.2278 MeV

❖ With pionless VIR=0, at N3LO Ebinding=-2.0690 MeV

P ψS
P ψD
NLO Heff S
NLO Heff D
NNLO Heff S
NNLO Heff D
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Continuum Wave Functions
❖ ET Wave functions 

(long black dashes) 
should match 
projections of 
numerical solutions 
with Av18 (dotted 
colored lines)
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❖ The energies chosen in the plot are deliberately chosen 
to be distinct from the (Ei,!i) used in fitting the LECs.

❖ Phase shifts are recovered by solving for ! in  

Proj E=3.000 MeV
ET E=3.000 MeV
Proj E=11.00 MeV
ET E=11.00 MeV
Proj E=30.00 MeV
ET E=30.00 MeV
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1P1 Fit  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H eff Ei ,LECs,δ( )P ψ = EiP ψ .



LECs →Phase Shifts
❖ Use fixed LECs at energy 

E, dial phase shift 
produce eigenvalue 
match to E.

❖ Even NLO 3P1 fit 
produces a good 
reproduction of phase 
shifts.

❖ A very small number of 
LECs reproduce phase 
shifts.   P channel NLO 
has 1, other N3LO have 4.
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Connecting to LQCD
❖ Lüscher’s method can be used to map the spectrum of two nucleons to 

phase shifts. 

❖ Use traditional path:   collect enough  
phase shift data in multiple channels  
and use it to fit the HOBET effective  
interaction.

❖ This is the first method of connecting  
QCD to HOBET.

❖ Sources of error

❖ Tail of interaction exceeding L/2.

❖ Divergences of the zeta function in  
higher order terms of Lüscher’s formula.
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R

V=0
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HOBET in Periodic Volumes
❖ This is the second way to connect QCD to HOBET.

❖ Phase shifts as boundary conditions are  
replaced by periodic boundary conditions.

❖ Easier to construct in Cartesian HO  
basis.

❖ Key Observation:  V! is short range and isolated from the boundary conditions by 
Green’s functions.   It is the same object in infinite volume, or periodic volumes.   

❖ We can use Cartesian-spherical brackets to relate V! in both domains.   The 
Cartesian V! can be written in terms of the infinite volume spherical LECs!

❖ If VIR is longer range than L/2, introduce images of VIR.

❖ This is a key advantage over Lüscher’s method which requires a free 
propagation region outside the range of V, but inside the volume. !18

Slice of 3D Cartesian State



Evaluate by Inserting Periodic Basis

❖ VIR matrix elements are the most expensive part of Heff
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!′n E
E −TQ

T +T Q
E
T⎡

⎣⎢
⎤
⎦⎥

E
E −QT

P !n = E δ !′n !n − b!′n !n( )Sum T to all orders:

!′n GTQVIRGQT
!n = b!′n ,!s

! ′m , !m,!s ,
!
t

∑ E
E − λ ! ′m

!s ! ′m ! ′m VIR
!m !m

!
t E
E − λ !m

b!t ,!n

❖ All pieces are precomputed, but sum is still very large.

❖ For                 GQT=1, which can be used to check results.!′n , !n ∈P−

bij = P E
E −T

P
⎧
⎨
⎩

⎫
⎬
⎭ij

−1

!m, ! ′m are discrete momentum states; s,t are HO states



Testing Plan
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Solve 
HΨ=EΨ
In Box

Filter to 
A1 

spectrum

Fit LECs to 
reproduce 
spectrum

Insert LECs in 
infinite volume 

Heff

Self consistency 
determines  
phase  shifts

Choose  
V

=?

Traditional 
generation of 
phase shifts



Induced Mixing
❖ Setup: spherical well potential in a 

periodic finite volume.

❖ The wave function is sampled on sphere 
outside potential and displayed as a 
radial displacement from a unit sphere.

❖ Higher order structure induced by 
periodic boundary conditions is 
obvious.

❖ All this mixing is isolated in E/(E-QT) 
Green’s functions.
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Test Setup:  Range(V)>L/2

❖ Periodic images of the potential make a 
contribution.

❖ Continuum extrapolation done on N^3 
lattice with N={350,400,450}. 

❖ Infinite volume bound state at  
-4.052 MeV.

❖ LECs are fit using states with L=0 overlap. !22

VIR
V
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Phase Shift Setup
❖ Reference phase shifts for L=0 and L=4 are directly calculated 

from V.

❖ HOBET S-channel phase shifts are computed from the N3LO 
LECs that reproduce the spectrum.  The phase shift is found by 
dialing the phase shift to produce energy self consistency.

❖ Lüscher’s method phase shifts come from the formula

❖ An effective range expansion up to  k6 is used to interpolate.

❖ For simplicity the second term is evaluated using the L=4 phase 
shift directly determined from V. !23

k cotδ 0 =
2
π L
Z0,0 1; !k

2( )+ 12288π
7

7L10
Z4,0 1; !k

2( )2
k9 cotδ 4

+O tan2δ 4( ) Luu, Savage,  
arXiv:1101.3347



Phase Shift Results

The V column 
should be 
considered the 
reference.
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❖ ET bound state found at -4.066 MeV v.s. -4.052 MeV (directly from 
V).

❖ HOBET errors are from PV solution + Momentum basis cutoff.

❖ Lüscher errors are from Range(V) > L/2 and magnification of errors 
by Zeta function poles.

L = 14.3 fm
mπL = 10



Effective Operators
❖ The Bloch Horowitz equation tell us how to renormalize 

an operator:

❖        Label eigenstates of H.

❖ The Green’s functions reconstruct  
the full wave function from the  
projection. 

❖ In bound states the boundary condition for E/(E-QH) is 
an exponential decay outside the range of V.
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Ôji
eff ,Λ E( ) = P Ej

Ej − HQ
Ô Ei

Ei −QH
P

P +Q( )H ψ i = Ei ψ i

EiP ψ i = Ei −QH( )ψ i

ψ i = Ei

Ei −QH
P ψ i

i, j



Operator Expansion
❖ Short range operators can also be matched to an expansion.
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Ôji
eff = P

E j

E j −HQ
Ô

Ei
Ei −QH

P

= P
E j

E j −TQ
Ô+VQ

E j

E j −HQ
Ô+ Ô

Ei
Ei −QH

QV +VQ
E j

E j −HQ
Ô

Ei
Ei −QH

QV
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ei
Ei −QT

P

→ P
E j

E j −TQ
Ô+ Ôδ
⎡⎣ ⎤⎦

Ei
Ei −QT

P

❖ O! has an expansion much like V! with an expansion in harmonic 
oscillator quanta.

❖ Key Point:   The LECs of the expansion can be fit to a set of LQCD 
measurements.    The boundary conditions are then replaced in E/(E-
QT) with the infinite volume boundary conditions (phase shifts) to 
give the effective operator in infinite volume.

1̂
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Ôji
eff = P

E j

E j −HQ
Ô

Ei
Ei −QH

P

= P
E j

E j −TQ
Ô+VQ

E j

E j −HQ
Ô+ Ô

Ei
Ei −QH

QV +VQ
E j

E j −HQ
Ô

Ei
Ei −QH

QV
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ei
Ei −QT

P

→ P
E j

E j −TQ
Ô+ Ôδ
⎡⎣ ⎤⎦

Ei
Ei −QT

P

❖ O! has an expansion much like V! with an expansion in harmonic 
oscillator quanta.

❖ Key Point:   The LECs of the expansion can be fit to a set of LQCD 
measurements.    The boundary conditions are then replaced in E/(E-
QT) with the infinite volume boundary conditions (phase shifts) to 
give the effective operator in infinite volume.

1̂

Short Range



Application to 0νββ Operators

❖ Boxed part * 106.

❖ HO Length scale b=1.7fm 

❖ Start in Λ∞ =80 and 
integrate out shell by 
shell.

❖ Note jump when 1S 
becomes an edge state at 
ΛP=0.
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Vi
nn→pp = −Oi

gA
2

4Fπ
2 τ1

+τ 2
+ σ 1 ⋅qσ 2 ⋅q

q 2 +mπ
2( )2Example:

20 40 60 80 ΛP

-0.0002

-0.0001

0.0001

0.0002

1s-1s
Running of 1S-1S Matrix Element, E=-1.961 MeV

Nicholson et al. Phys. Rev. Lett. 
121, 172501 (2018)



Effective Operators in A-Body Context
❖ The E in Ôeff is the A-body E.

❖ Translation invariance requires a  
total # cutoff.   If spectators are  
excited - red dots, then #12 must be reduced.

❖ We add a spectator quanta index to the standard density 
matrix.   The interacting particles are then in a 2 particle 
P space defined by #12=#-#S.

❖ Matched with this we produce          for                     . 
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Spectators

1

6

Ô3214

Oij
eff ,Λ12 Λ12 = 0…Λ



Implementation with BIGSTICK
❖ We (Evan Rule erule@berkeley.edu)  are constructing a 2-

body spectator dependent density matrix for BIGSTICK.

❖ We will use a realistic potential for H in Ôeff.

❖ Given universality with respect  
to the starting potential, we hope for the  
same with          .

❖ We will test with operators associated  
with experiments.

❖ Last we will evaluate various 0%&&  
operators. 
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Ôij
eff ,Λ12

Ô = τ1
+τ 2

+ σ 1 ⋅qσ 2 ⋅q

q 2 +mπ
2( )2

mailto:erule@berkeley.edu


Summary
❖ HOBET can be connected to QCD via LQCD observables, or an 

LQCD nucleon scattering spectrum in finite volume.

❖ Operators have an expansion, with LECs isolated from boundary 
conditions by Green’s functions and can be fit to LQCD 
measurements.

❖ We have made progress on operator renormalization and 
evaluation in an A-body context.   We hope to have results for 0%&& 
soon via a hybrid approach with a standard shell model.

❖ Longer term we are continuing on a path to a HOBET based shell 
model code.
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End
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