

HOBET: QCD to Effective Interaction and Effective Operators

Kenneth S. McElvain

Two Paths to Connect QCD to the Effective Interaction

* HOBET (Harmonic-Oscillator-Based Effective Theory)
* Compute phase shifts in LQCD - Fit HOBET LECs
* See arXiv:1511.02262 (CalLat LQCD)+ arXiv: 1902.03543 (McElvain, Haxton)
* Compute nucleon scattering spectrum in LQCD - Fit HOBET LECs directly to spectrum + periodic boundary conditions.

The Bloch-Horowitz Equation

* For practical calculation reasons we often want to work in a subspace of the full Hilbert space.
* P projects the subspace and $\mathrm{Q}=1$ P gets the rest.
* The BH equation is the answer to the question: Does there exist an operator Heff that lives in P with the same eigenvalues and projected eigenvectors of the full H .

$$
\operatorname{Insert}(P+Q) \operatorname{in} H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle
$$

$$
\begin{aligned}
& P H P\left|\psi_{i}\right\rangle+P H Q\left|\psi_{i}\right\rangle=E_{i} P\left|\psi_{i}\right\rangle \\
& Q H P\left|\psi_{i}\right\rangle+Q H Q\left|\psi_{i}\right\rangle=E_{i} Q\left|\psi_{i}\right\rangle
\end{aligned}
$$

$$
Q\left|\psi_{i}\right\rangle=\frac{1}{E_{i}-Q H} Q H P\left|\psi_{i}\right\rangle
$$

$$
P\left(H+H \frac{1}{E_{i}-Q H} Q H\right) P\left|\psi_{i}\right\rangle=E_{i} P\left|\psi_{i}\right\rangle
$$

$$
H^{e f f}(E) P\left|\psi_{i}\right\rangle=P H \frac{1}{E_{i}-Q H} P\left|\psi_{i}\right\rangle=E_{i} P\left|\psi_{i}\right\rangle
$$

BH Characteristics

* Eigenstates of $H^{\operatorname{eff}}(\mathrm{E})$ are projections with the same eigenvalues.
* All eigenstates that overlap P are included!
* True even if P projects a finite number of states.
* It is continuous in energy, including across $\mathrm{E}=0$. An effective theory based on the BH equation can be fit in the continuum and used to find bound states.
* Explicitly energy dependent: Must solve self consistently.
* Simple fixed point iteration converges rapidly.

HO Effective Theory

*Why the HO basis?

* Discrete so we can use matrix techniques for solution.
* Good for confined wave function of nucleus
* With a consistent A-body quanta cutoff the center of mass is separable.
* In an HO ET with included space projector $\mathrm{P}(\Lambda, \mathrm{b})$, both UV and IR are excluded.
* Major Issue
* The kinetic energy operator T is a hopping operator, strongly connecting P \& Q (IR).

HOBET Introduction

* HOBET is based on a reorganization of the BlochHorowitz equation by Haxton and Luu.

$$
H^{f f i \wedge}(E)=P\left[H \frac{E}{E-Q H}\right] P=P \frac{E}{E-T Q}\left[T+T \frac{Q}{E} T+V+V \frac{1}{E-Q H} Q V\right] \frac{E}{E-Q T} P
$$

* The reorganization isolates the impact of T for analytic calculation to all orders.
* The remaining part is replaced by a long range potential (like an OPEP) plus $\mathrm{V}_{\delta,}$ which is a short range expansion around it.

HOBET Introduction

* HOBET is based on a reorganization of the BlochHorowitz equation by Haxton and Luu.

$$
H^{\text {ef.A. }}(E)=P\left[H \frac{E}{E-Q H}\right] P=P \frac{E}{E-T Q}[T+T \frac{Q}{E} T+V \underbrace{E-Q T}_{\overbrace{V_{I R}+V}^{E-Q H}} Q T] \frac{E}{E-Q T} P
$$

* The reorganization isolates the impact of T for analytic calculation to all orders.
* The remaining part is replaced by a long range potential (like an OPEP) plus $\mathrm{V}_{\delta,}$ which is a short range expansion around it.

E/(E-QT) Transform of Edge States

- Acting on edge state with
$E / \hbar \omega=1 / 2$.
Recovers scattering wave function with phase shift.

* Acting on edge state with $E / \hbar \omega=-1 / 2$.

Recovers bound state exponential decay from gaussian falloff of HO state.

$$
G_{Q T} P=\frac{E}{E-Q T} P=\frac{E}{E-T}\left\{P \frac{E}{E-T} P\right\}^{-1}, \quad b_{i j}=\left\{P \frac{E}{E-T} P\right\}_{i j}^{-1}
$$

Sum T to All Orders

* T contributions can be summed to all orders.

$$
\langle j| \frac{E}{E-T Q}\left[T-T \frac{Q}{E} T\right] \frac{E}{E-Q T}|i\rangle=E\left(\delta_{j i}-b_{j i}\right)
$$

* A surprisingly simple result.
* A non-perturbative sum of kinetic energy scattering is key to a convergent ET expansion of the remaining parts.

The V_{δ} Expansion

* V_{δ} is described in terms of HO lowering operators.

$$
\begin{aligned}
\hat{C} & \text { lowers } L, \hat{A} \text { lowers nodal } n, \quad[\hat{C}, \hat{A}]=0 \\
V_{\delta}^{S} & =a_{L O}^{s} \delta(r)+a_{\text {NLO }}^{s}\left(\hat{A}^{\dagger} \delta(r)+\delta(r) \hat{A}\right)+\ldots \\
V_{\delta}^{\text {SD }} & =a_{\text {NLO }}^{\text {SD }}\left(\hat{C}^{+2} \delta(r)+\delta(r) \hat{C}^{2}\right)+a_{\text {NNLO }}^{22, S D}\left(\hat{C}^{+2} \delta(r) \hat{A}+\hat{A}^{\dagger} \delta(r) \hat{C}^{2}\right) \\
& +a_{\text {NNLO }}^{00, S D}\left(\hat{C}^{+2} \hat{A}^{+} \delta(r)+\delta(r) \hat{A} \hat{C}^{2}\right)+\ldots
\end{aligned}
$$

* This is slightly simplified by absorbing a constant related to coupling spins to angular momentum into the LECs.
* $\left[\hat{C}^{2}\right.$ is really $\hat{C}^{2} \equiv[\tilde{a} \otimes \tilde{a}]^{(2)} \odot\left[\vec{\sigma}_{1} \otimes \vec{\sigma}_{2}\right]^{(2)}$, coupling angular momentum to spins, with vector HO lowering op \tilde{a}]

HOBET Lepage Plots

* Heff S-D matrix elements in $\Lambda=8$ are are directly calculated at $\mathrm{E}=-2.2245 \mathrm{MeV}$ from HO matrix elements in $\Lambda=400$ and LECs fit in a scheme independent way.
* For the middle plot, $\mathrm{O}(1)$ errors appear at $\mathrm{n}^{\prime}+\mathrm{n}=8$ making diagonal matrix elements with $\mathrm{n}=4$ unreliable. $\mathrm{n}=3$ at $4 \hbar \omega=60 \mathrm{MeV}$ is a reasonable breakdown scale.
* Convergence is good order by order, but the value of a good long range VIR is clear.

Power Counting

* The expansion is for V_{δ}, whose range R is shorter than that of V.
* For a known V_{δ} the LECs are proportional to a non-local Talmi integral.
- The tail overlap shrinks rapidly with order.
* For a short range V_{δ} the expansion parameter is function of b / R.

$$
\begin{aligned}
& V_{\delta}\left(r^{\prime}, r\right)=V-V_{I R}+V \frac{1}{E-Q H} Q V \\
& L E C_{n^{\prime}, n} \propto \int r^{\prime 2} d r^{\prime} r^{2} d r r^{2(n-1)} e^{-r / 2} V_{Q} e^{-r / 2} r^{2(n-1)}
\end{aligned}
$$

Energy Independence of LECs

* Enables fitting to data a range of energies.
* The upper blue dots are the result of solving for aLo at individual samples $\left(\mathrm{E}_{\mathrm{i}}, \delta_{\mathrm{i}}\right)$

* The lower gold dots represent an NLO fit to data from 1 and 10 MeV to determine $\mathrm{a}_{\text {NLO }}$ followed by refitting a L_{LO} at each energy while holding $a_{\text {NLO }}$ constant.
* Conclusion: Energy dependence is adsorbed into higher order operators.

Fitting LECs

* Principle: The BH equation is energy self consistent

$$
H_{e f f}^{\text {fill }}\left(E_{i}\right) P\left|\psi_{i}\right\rangle=E_{i} P\left|\psi_{i}\right\rangle
$$

* At fixed order we instead have a nearby eigenstate.

$$
H_{e f f}\left(E_{i}, L E C s\right) P\left|\psi_{i}^{\prime}\right\rangle=\varepsilon_{i} P\left|\psi_{i}^{\prime}\right\rangle
$$

* The mismatch must be due to LEC values.
- Repair by minimizing

$$
\sum_{i \in \text { samples }}\left(\varepsilon_{i}-E_{i}\right)^{2} / \sigma_{i}^{2}
$$

* The variance for the difference can be estimated from the sensitivity of ε_{i} to next order LECs, automatically suppressing data outside the validity range for the current LEC order.

Predicting the Deuteron

* Prediction of Deuteron WF from phase shift fit.
* ET Wave functions should match projections of numerical solutions with Av_{18} solid blue lines

- The matrix elements are continuous in energy across $\mathrm{E}=0$, one can fit V_{δ} in the continuum and determine bound states.
* Using the same phase shift data we get
* With pionful $\mathrm{V}_{\text {IR }}=$ OPEP, at N3LO Ebinding $=-2.2278 \mathrm{MeV}$
* With pionless $\mathrm{V}_{\mathrm{IR}}=0$, at N3LO E E binding $=-2.0690 \mathrm{MeV}$

Continuum Wave Functions

* ET Wave functions (long black dashes) should match projections of numerical solutions with Av_{18} (dotted colored lines)

* The energies chosen in the plot are deliberately chosen to be distinct from the $\left(\mathrm{E}_{\mathrm{i}}, \delta_{\mathrm{i}}\right)$ used in fitting the LECs.
* Phase shifts are recovered by solving for δ in

$$
H^{e f f}\left(E_{i}, L E C s, \delta\right) P|\psi\rangle=E_{i} P|\psi\rangle .
$$

LECs \rightarrow Phase Shifts

* Use fixed LECs at energy E, dial phase shift produce eigenvalue match to E .
* Even NLO 3P1 fit produces a good reproduction of phase shifts.
* A very small number of LECs reproduce phase shifts. P channel NLO has 1, other N3LO have 4.

Connecting to LQCD

* Lüscher's method can be used to map the spectrum of two nucleons to phase shifts.
* Use traditional path: collect enough phase shift data in multiple channels and use it to fit the HOBET effective interaction.
* This is the first method of connecting QCD to HOBET.
- Sources of error
* Tail of interaction exceeding L/2.

* Divergences of the zeta function in higher order terms of Lüscher's formula.

Connecting to LQCD

* Lüscher's method can be used to map the spectrum of two nucleons to phase shifts.
* Use traditional path: collect enough phase shift data in multiple channels and use it to fit the HOBET effective interaction.
* This is the first method of connecting QCD to HOBET.
* Sources of error
* Tail of interaction exceeding L/2.

* Divergences of the zeta function in higher order terms of Lüscher's formula.

HOBET in Periodic Volumes

* This is the second way to connect QCD to HOBET.
* Phase shifts as boundary conditions are replaced by periodic boundary conditions.
* Easier to construct in Cartesian HO basis.

Slice of 3D Cartesian State

* Key Observation: V_{δ} is short range and isolated from the boundary conditions by Green's functions. It is the same object in infinite volume, or periodic volumes.
* We can use Cartesian-spherical brackets to relate V_{δ} in both domains. The Cartesian V_{δ} can be written in terms of the infinite volume spherical LECs!
* If $\mathrm{V}_{\text {IR }}$ is longer range than $\mathrm{L} / 2$, introduce images of $\mathrm{V}_{\text {IR }}$.
* This is a key advantage over Lüscher's method which requires a free propagation region outside the range of V , but inside the volume.

Evaluate by Inserting Periodic Basis

Sum T to all orders: $\left\langle\vec{n}^{\prime}\right| \frac{E}{E-T Q}\left[T+T \frac{Q}{E} T\right] \frac{E}{E-Q T} P|\vec{n}\rangle=E\left(\delta_{\vec{n}^{\prime} \bar{n}}-b_{\vec{n} \vec{n}}\right)$

$$
b_{i j}=\left\{P \frac{E}{E-T} P\right\}_{i j}^{-1}
$$

* $\mathrm{V}_{\text {IR }}$ matrix elements are the most expensive part of $\mathrm{H}_{\text {eff }}$

$$
\left\langle\vec{n}^{\prime}\right| G_{T Q} V_{I R} G_{Q T}|\vec{n}\rangle=\sum_{\bar{m}^{\prime}, \vec{m}, \vec{s}, \bar{i}} b_{\vec{n}^{\prime}, s} \frac{E}{E-\lambda_{\vec{m}^{\prime}}}\left\langle\vec{s} \mid \vec{m}^{\prime}\right\rangle\left\langle\vec{m}^{\prime}\right| V_{I R}|\vec{m}\rangle\langle\vec{m} \mid \vec{t}\rangle \frac{E}{E-\lambda_{\vec{m}}} b_{i, \bar{n}}
$$

$\vec{m}, \vec{m}^{\prime}$ are discrete momentum states; s,t are HO states

* All pieces are precomputed, but sum is still very large.
* For $\vec{n}^{\prime}, \vec{n} \in P^{-} \quad G_{Q T}=1$, which can be used to check results.

Testing Plan

Induced Mixing

* Setup: spherical well potential in a periodic finite volume.
* The wave function is sampled on sphere outside potential and displayed as a radial displacement from a unit sphere.
* Higher order structure induced by periodic boundary conditions is obvious.
* All this mixing is isolated in E/(E-QT) Green's functions.

Test Setup: Range(V)>L/2

$$
\begin{aligned}
& L=14.3 \mathrm{fm} \\
& m_{\pi} L=10
\end{aligned}
$$

* Periodic images of the potential make a contribution.
* Continuum extrapolation done on $\mathrm{N}^{\wedge} 3$ lattice with $\mathrm{N}=\{350,400,450\}$.
* Infinite volume bound state at -4.052 MeV.
* LECs are fit using states with $L=0$ overlap.

Rep	MeV	$\mathrm{L}=0$	$\mathrm{~L}=2$	$\mathrm{~L}=4$	$\mathrm{~L}=6$
A_{1}^{+}	-4.4428	0.5	0	0.866	0
A_{1}^{+}	2.0314	0.155	0	0.988	0
E^{+}	7.5995	0	0.424	0.361	0.830
E^{+}	15.2980	0	0.474	0.393	0.788
A_{1}^{+}	21.6167	0.326	0	0.265	0.908
E^{+}	23.2423	0	0.468	0.597	0.651
A_{1}^{+}	29.4041	0.521	0	0.853	0.023
E^{+}	30.9457	0	0.567	0.428	0.704
A_{1}^{+}	35.2449	0.655	0	0.189	0.732
E^{+}	38.4043	0	0.882	0.176	0.437
A_{1}^{+}	45.1402	0.526	0	0.576	0.625

Phase Shift Setup

* Reference phase shifts for $\mathrm{L}=0$ and $\mathrm{L}=4$ are directly calculated from V.
* HOBET S-channel phase shifts are computed from the N3LO LECs that reproduce the spectrum. The phase shift is found by dialing the phase shift to produce energy self consistency.
* Lüscher's method phase shifts come from the formula

$$
k \cot \delta_{0}=\frac{2}{\sqrt{\pi} L} \mathcal{Z}_{0,0}\left(1 ; \tilde{k}^{2}\right)+\frac{12288 \pi^{7}}{7 L^{10}} \frac{\mathcal{Z}_{4,0}\left(1 ; \tilde{k}^{2}\right)^{2}}{k^{9} \cot \delta_{4}}+\mathcal{O}\left(\tan ^{2} \delta_{4}\right) \quad \text { Luu, Savage, }
$$

* An effective range expansion up to k^{6} is used to interpolate.
* For simplicity the second term is evaluated using the $\mathrm{L}=4$ phase shift directly determined from V .

Phase Shift Results
 $$
\begin{aligned} & L=14.3 \mathrm{fm} \\ & m_{\pi} L=10 \end{aligned}
$$

The V column should be considered the reference.

			Leading	Next Order E MeV
V	HOBET	Lüscher	Lüscher	
1	142.023	141.931	142.552	142.751
2	128.972	128.860	129.571	129.823
4	113.602	113.464	114.205	114.403
8	96.919	96.752	97.575	97.3135
10	91.473	91.296	92.228	91.6403
15	81.672	81.480	82.852	81.3184
20	74.876	74.691	76.667	74.0936

* ET bound state found at -4.066 MeV v.s. -4.052 MeV (directly from V).
* HOBET errors are from PV solution + Momentum basis cutoff.
* Lüscher errors are from Range $(\mathrm{V})>\mathrm{L} / 2$ and magnification of errors by Zeta function poles.

Effective Operators

* The Bloch Horowitz equation tell us how to renormalize an operator: $\quad \hat{O}_{i i}^{\text {eff. }}(E)=P \frac{E_{j}}{E_{j}-H Q} \hat{o} \frac{E_{i}}{E_{i}-Q H} P$
* $\quad i, j$ Label eigenstates of H .

$$
(P+Q) H\left|\psi_{i}\right\rangle=E_{i}\left|\psi_{i}\right\rangle
$$

* The Green's functions reconstruct $E_{i} P\left|\psi_{i}\right\rangle=\left(E_{i}-Q H\right)\left|\psi_{i}\right\rangle$ the full wave function from the projection.

$$
\left|\psi_{i}\right\rangle=\frac{E_{i}}{E_{i}-Q H} P\left|\psi_{i}\right\rangle
$$

* In bound states the boundary condition for $\mathrm{E} /(\mathrm{E}-\mathrm{QH})$ is an exponential decay outside the range of V .

Operator Expansion

- Short range operators can also be matched to an expansion.

$$
\begin{aligned}
\hat{O}_{j i}^{\text {eff }} & =P \frac{E_{j}}{E_{j}-H Q} \hat{O} \frac{E_{i}}{E_{i}-Q H} P \\
& =P \frac{E_{j}}{E_{j}-T Q}\left[\hat{O}+V Q \frac{E_{j}}{E_{j}-H Q} \hat{O}+\hat{O} \frac{E_{i}}{E_{i}-Q H} Q V+V Q \frac{E_{j}}{E_{j}-H Q} \hat{O} \frac{E_{i}}{E_{i}-Q H} Q V\right] \frac{E_{i}}{E_{i}-Q T} P \\
& \rightarrow P \frac{E_{j}}{E_{j}-T Q}\left[\hat{O}+\hat{O}_{\delta}\right] \frac{E_{i}}{E_{i}-Q T} P
\end{aligned}
$$

* O_{δ} has an expansion much like V_{δ} with an expansion in harmonic oscillator quanta.
* Key Point: The LECs $\hat{1}_{\text {of }}$ the expansion can be fit to a set of LQCD measurements. The boundary conditions are then replaced in $\mathrm{E} /(\mathrm{E}-$ QT) with the infinite volume boundary conditions (phase shifts) to give the effective operator in infinite volume.

Operator Expansion

* Short range operators can also be matched to an expansion.

$$
\begin{aligned}
\hat{O}_{j i}^{\text {eff }} & =P \frac{E_{j}}{E_{j}-H Q} \hat{O} \frac{E_{i}}{E_{i}-Q H} P \\
& =P \frac{E_{j}}{E_{j}-T Q}\left[\hat{O}+V Q \frac{E_{j}}{E_{j}-H Q} \hat{O}+\hat{O} \frac{E_{i}}{E_{i}-Q H} Q V+V Q \frac{E_{j}}{E_{j}-H Q} \hat{O} \frac{E_{i}}{E_{i}-Q H} Q V\right] \frac{E_{i}}{E_{i}-Q T} P \\
& \rightarrow P \frac{E_{j}}{E_{j}-T Q}\left[\hat{O}+\hat{O}_{i}\right] \frac{E_{i}}{E_{i}-Q T} P
\end{aligned}
$$

* O_{δ} has an expansion much like V_{δ} with an expansion in harmonic oscillator quanta.
- Key Point: The LECs ${ }^{\hat{1}}$ of the expansion can be fit to a set of LQCD measurements. The boundary conditions are then replaced in E/(EQT) with the infinite volume boundary conditions (phase shifts) to give the effective operator in infinite volume.

Application to $0 v \beta \beta$ Operators

Example: $\quad V_{i}^{n n \rightarrow p p}=-O_{i} \frac{g_{A}^{2}}{4 F_{\pi}^{2}} \tau_{1}^{+} \tau_{2}^{+} \frac{\sigma_{1} \cdot \mathbf{q} \sigma_{2} \cdot \mathbf{q}}{\left(|q|^{2}+m_{\pi}^{2}\right)^{2}}$
Nicholson et al. Phys. Rev. Lett. 121, 172501 (2018)

Running of 1S-1S Matrix Element, $E=-1.961 \mathrm{MeV}$

* Boxed part * 10^{6}.
* HO Length scale $b=1.7 \mathrm{fm}$
* Start in $\Lambda_{\infty}=80$ and integrate out shell by shell.
* Note jump when 15 becomes an edge state at $\Lambda_{\mathrm{P}}=0$.

Effective Operators in A-Body Context

* The E in Ôeff is the A-body E.
* Translation invariance requires a total Λ cutoff. If spectators are
 excited - red dots, then Λ_{12} must be reduced.
* We add a spectator quanta index to the standard density matrix. The interacting particles are then in a 2 particle P space defined by $\Lambda_{12}=\Lambda-\Lambda$ s.
- Matched with this we produce ${ }_{i j}^{e f \cdot \Lambda_{12}}$ for $\Lambda_{12}=0 \ldots \Lambda$.

Implementation with BIGSTICK

* We (Evan Rule erule@berkeley.edu) are constructing a 2body spectator dependent density matrix for BIGSTICK.
- We will use a realistic potential for H in Ôeff.
* Given universality with respect to the starting potential, we hope for the same with $\hat{O}_{i j}^{\text {eff }, \Lambda_{1}}$.
* We will test with operators associated with experiments.
* Last we will evaluate various $0 \imath \beta \beta$ operators.

$$
\hat{o}=\tau_{1}^{+} \tau_{2}^{+} \frac{\sigma_{1} \cdot \mathbf{q} \sigma_{2} \cdot \mathbf{q}}{\left(|q|^{2}+m_{\pi}^{2}\right)^{2}}
$$

Summary

* HOBET can be connected to QCD via LQCD observables, or an LQCD nucleon scattering spectrum in finite volume.
* Operators have an expansion, with LECs isolated from boundary conditions by Green's functions and can be fit to LQCD measurements.
* We have made progress on operator renormalization and evaluation in an A-body context. We hope to have results for $0 v \beta \beta$ soon via a hybrid approach with a standard shell model.
* Longer term we are continuing on a path to a HOBET based shell model code.

End

