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Solve the Schrödinger equation and tune Ci(Λ) to data (i.e. implicit renormalization). 

Since not ∀ counter terms needed to absorb UV divergences from iterations are taken 

into account, one must keep: Λ ~ Λb. [Lepage’97; EE, Meißner ’06; EE, Gegelia ’09; EE et al. ’17]
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Subtractive renormalization: In → 0, I(p2) → I(p2) − I(−µ2), c → cR(µ), c2 → c2R(µ)

TR

NLO
(q) =

cR + 2q2c2R

1 − ~ [I(q2) − I(−µ2)] (cR + 2q2c2R)

— independent of regularization (but μ-dependent)

— involves contributions of ∞ number of c.t.; bare VNLO available in a closed form

— exactly reproduces the infinite set of diagrams upon expansion in ℏ
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Implicit renormalization: express bare c(Λ), c2(Λ) in terms of observables a, r:

T (q) =
−4iπa [4a~Λ + π (aq2 re + 2)]

m [π (a2q3 re + 2aq − 2i) + 2a~Λ(aq(2 + iq re) − 2i)]
=

−4π/m

−

1

a
+ q2re

2
− iq

+ O

✓

1

Λ

◆

It is tempting to take the limit Λ → ∞ [Beane, Cohen, Phillips ’98]. However, loop expansion yields: 

T (q) =
2πa (aq2re + 2)
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Not completely renormalized! 

Λ-dependence OK if Λ~Λb~Mπ; 

Wigner bound…
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But why not to perform subtractive renormalization as in the case of pi-less EFT?

No analytic results for iterated V1π beyond 2 loops available… [see, however, D. Kaplan, 1905.07485 !]

What options are then left?

— relativized approach similar to EOMS-BChPT [EE, Gegelia’12]:  hard calcs., convergence?

— keep Λ finite of the order of Λ ~ Λb [Lepage ’97]
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How do we organize the expansion? 

We organize terms in the potential according to NDA (minimal choice for contacts). 

Alternatives have been proposed and can be tested by looking at the convergence 

pattern (requires high orders + error analysis). So far, no signs of departure found 

(2π-exchange, naturalness of LECs, magnitude of V3N, the cD term in the 3NF…)

Power counting = counting powers of soft scales (p, Mπ) in diagrams after renormalization.

Power counting depends on the choice of renormalization conditions. Since we work with 

bare LECs and perform renormalization implicitly, we cannot specify renorm. conditions…

What about power counting? 



 New LO contribution to 0νββ decay
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The LO long-range potential  (1/q2) leads to a logarithmic divergence
[Cirigliano et al., PRL 120 (2018) 2002001]. At LO in chiral EFT, this conclusion is 
not affected by the controversial renormalization issues.  

✅ The LO long-range potential  (1/q2) leads to a logarithmic divergence
[Cirigliano et al., PRL 120 (2018) 2002001]. At LO in chiral EFT, this conclusion is 
not affected by the controversial renormalization issues.  

? Cirigliano et al. then conclude that the corresponding c.t. must be promoted at LO. How 

does the regulator dependence for Λ ~ Λb compare with the LO truncation error?
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Solve the Schrödinger equation and tune Ci(Λ) to data (i.e. implicit renormalization). 

Since not ∀ counter terms needed to absorb UV divergences from iterations are taken 

into account, one must keep: Λ ~ Λb. [EE, Gasparyan, Gegelia, Meißner, EPJA 54 (2018) 186]

Error analysis and consistency checks (naturalness, Lepage plots, …). Any observable 

X(n) calculated at order Qn should be approximately Λ-independent: dX(n)/dΛ |
Λ∼Λb

n→∞

−→ 0



 

Nuclear forces
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Scheme dependence (unitary ambiguity) starts showing up at N3LO: 2 phases (          ) in the long-

range relativistic corrections + 3 off-shell short-range terms in the 1S0, 3S1 and ε1 channels.
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β̄8, β̄9
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Convergence of the chiral expansion for np phase shifts [Λ = 450 MeV]
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— Clear evidence of the parameter-free chiral 2π exchange (Roy-Steiner LECs)! 

— Good convergence of the chiral expansion.

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Partial wave analysis of NN data

— Currently the most precise NN interaction available 
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Lesson from the Bayesian analysis: can not trust LO perturbation theory. 

For a related discussion see Furnstahl et al., PRC 92 (2015) 024005; Melendez et al., PRC 96 (2017) 024003
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The dependence on the 
assumptions within a 
Bayesian model (priors)
gets small at high orders
[Furnstahl et al. ’15]

Figure taken from:

[EE et al., 1907.03608]



 

Electroweak currents
Kölling, EE, Krebs, Meißner ’09,’12;  Krebs, EE, Meißner ’16,’19

see Hermann Krebs, Nuclear currents in chiral effective field theory, to appear in EPJA



 Current operators

Vµ

vµ

e
−

e
−

p p

n n

γ
∗

p

n n

A
b
µ

a
b
µ

µ
−

νµ

n

W

Kölling, EE, Krebs, Meißner (MUT) ’09,’12; 
Krebs et al. ’19:  complete (1 loop) & renormalized

Pastore et al. (TOPT) ’08 — ’11 

Krebs, EE, Meißner (MUT) ’17:  complete (1 loop) & renormalized,
                                                     also derived pseudoscalar currents

Baroni et al. (TOPT) ’16

Park, Min, Rho ’95 Park, Min, Rho ’93

Decouple π’s to get (nonlocal) nuclear                      (MUT) & get currents viaHeff [a, v, s, p]

calculated at                                    .

Switch on external sources                   and consider local chiral rotations:

rµ → r0

µ
= RrµR

† + iR ∂µR
† ,

→

lµ → l0
µ
= L lµL

† + iL ∂µL
† ,→

s + i p → s0 + i p0 = R(s + i p)L† ,

→

s − i p → s0 − i p0 = L(s − i p)R†

s, p, rµ, lµ

a = v = p = 0, s = mq

Also derived scalar currents, Krebs et al., in preparation
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— about 250 topologies

— 2-loop/1-loop/tree for 1N/2N/3N operators  
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single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d8, d9, d18, d21, d22,
no 1/m corrections… 

parameter-free

depend on C2, C4, C5, C7 + L1, L2; 
no loop corrections

depend on CT

parameter-free static two-pion exchange

parameter-free

 Chiral expansion of electromagnetic currents

ci

1/m

di

ei

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502;  PRC 86 (12) 047001;  Krebs, EE, Meißner, Few Body Syst 60 (19) 31

current charge

The  expressions for em currents
are off-shell consistent with the 
nuclear potentials derived by 
our group 

Some differences between our 
results and the expressions 
of the JLab-Pisa group…

Exchange currents do not depend
on k0.



 πN low-energy constants: HB

(a) Tπ = 9.88 MeV (b) Tπ = 14.61 MeV

(c) Tπ = 19.85 MeV (d) Tπ = 27.40 MeV

(e) Tπ = 39.30 MeV (f) Tγ = 152.89 MeV
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l̄6, d̄8, d̄9, d̄18, d̄21, d̄22
d

l̄6,
±

, d̄18,

 - known from the π sector

 - known from GTD

l6, d8, d9, d

d̄9, d̄21, d̄22  - contribute to

charged pion photoproducti-

on (radiative capture)

e in terms of d̄i Fearing et al. present work

5 d̄9 2.5± 0.8 2.2± 0.9

7 d̄20 −1.5± 0.5 −3.2± 0.5

6 2d̄21 − d̄22 5.7± 0.8 6.8± 1.0

Fearing et al.’00
Till Wolf, master thesis, Bochum, 2013 

LEC  [GeV-2] Wolf

Some di‘s have been determi-

ned by Gasparyan, Lutz ’10 

(ChPT + disp. relations)

Data: Liu ’94 Data: Liu ’94

Data: Liu ’94 Data: Salomon et al. ’84

Data: Salomon et al. ’84 Data: Korkmaz et al. ’99

LO (Q)

NLO (Q2)
NNLO (Q3)

l6, d8, d9, d18, d21, d22
d̄22 = 2.2± 0.2 GeV

−2

 - from the axial radius:

l6, d

d̄22



single-nucleon two-nucleon three-nucleon

Q-3

Q-1

Q0

Q1

depend on d2, d5, d6, d15-2d23,
no 1/m corrections… 

parameter-free

parameter-free; 
only tree-level 1/m-corr. survive

depend on z1, …, z4;
no loop corrections

parameter-free static two-pion exchange

parameter-free

parameter-free (depend on the known CT)

 Axial currents
Chiral expansion of the axial current and charge operators 
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neutrino-induced π-production) 

Krebs, EE, Meißner, Annals Phys. 378 (2017) 317
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Parameter-free calculation of 
β-decay at N3LO once  cD is 
fixed in the strong sector!
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Towards nuclear forces & currents 
beyond N2LO

Introduce a cutoff Λ to make the few-N Schrödinger equation well defined.

— long range:
1

~q2 + M2

π

�!

1

~q2 + M2

π

e
−

~q2+M2
⇡

Λ2 '

1

~q2 + M2

π

(1 + short-range terms)

— short range: nonlocal Gaussian regulator [Reinert, Krebs, EE, EPJA 54 (2018) 88]

still consistent beyond the NN system?



 Towards consistent 3NF and MECs

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-Λ 

artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Hermann Krebs, EE, in preparation
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Renormalization of the iteration requires χ-symmetry breaking counter terms!

2π-1π
The problematic divergence cancels out if V3N     is calculated using cutoff regularization. 

Regularization of V3N must be consistent to maintain matching (of finite pieces). 

Irrelevant for V2N: momentum dependence of 2N contacts is not constrained by χ-symm.

Can one enforce renormalizability of V3N (i.e. remove problematic divergences) by syste-
matically exploiting unitary ambiguities? This indeed seems to be possible!

Hermann Krebs, EE, in preparation



 Regularization and the chiral symmetry

The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying 

the pion propagators via                                                                                            ?(~q 2 + M2

π
)−1

−→ exp[−(~q 2 + M2

π
)/Λ2] (~q 2 + M2

π
)−1

Solution: higher-derivative regularization [Slavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)
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the pion propagators via                                                                                            ?(~q 2 + M2

π
)−1
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π
)/Λ2] (~q 2 + M2

π
)−1

Solution: higher-derivative regularization [Slavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)

Not quite…  Have to ensure that regularization maintains 
the chiral symmetry.

U(~⇡) = 1 +
i

Fπ

~⌧ · ~⇡ −

1

2F 2

π

~⇡
2
−

i↵

F 3

π

(~⌧ · ~⇡)3 −
8↵ − 1

8F 4

π

~⇡
4 + . . .

is independent on α in DR, but not

of one uses (naive) cutoff regularizationAll observables should be α-independent. 

+



Naive regularization of 3NF and MECs, calculated using DR, should NOT be 

applied beyond N2LO!

 Summary and outlook

Need to recalculate loop contributions to 3NF and MECs using regularization 

which maintains the chiral symmetry and is consistent with the NN force

(in progress…)

Thanks to:

— my Bochum collaborators on these topics: 

Vadim Baru, Arseniy Filin, Ashot Gasparyan, Jambul Gegelia 

Hermann Krebs, Daniel Möller, Patrick Reinert

— and the whole LENPIC

LENPIC: Low Energy Nuclear Physics International Collaboration

LENPIC

Precision calculations of few-N systems at  N3,4LO will challenge chiral EFT!

(especially in the 3N continuum)  


