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Electroweak currents in chiral EFT

chiral EFT

e Review of nuclear currents for 1 EW probe

— progress, problems, challenges
e Applications: EM FFs of 2H, 3H 3-decay
e Some thoughts on Ovf33 currents

e Summary and conclusions
Q":::::.;“"“' JFG erc=

wrd Forschang
gy taraltt



RUB

Evgeny Epelbaum, RUB Progress and Challenges in Neutrinoless Double Beta Decay
ECT*, Trento, Italy, April 23-27, 2018

Review of chiral EFT
(finite-regulator approach)

® The framework (especially conceptual issues)
e NN sector: a brief overview
e Electroweak currents
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e Write down the effective chiral Lagrangian for n, N (if needed, + A and external fields...)



e Write down the effective chiral Lagrangian for z, N (if needed, + A and external fields...)

e Compute the irreducible part of the few-N amplitude (i.e. nuclear forces & currents) by
combining ChPT with TOPT, method of UT or S-matrix matching
— unitary ambiguities (consistency!)
— pion loops usually computed in DR
— renormalizability of nuclear potentials places constraints on unitary ambiguity



Matching to the amplitude «kaiser et al.

7\ 7\ T /" \

Feynman graphs —» (A)

NS NS N NS

|
N

+
\\
\\

+




Matching to the amplitude «kaiser et al.

N R e
Feynman graphs —» (A) —_ (V) + (V) (V) + coe

-G — vo- - 4



Matching to the amplitude «kaiser et al.

Feynman graphs —>» (:2) —= (/1;) +

o - v
A —_ .-

\_/ N % —~

~
v 12) GV 12)




(arbitrary) off-shell
:@: € extension
oo AR AR
huiay
Y

V 12) oV 12)

shell

uniquely defined A _ > 7(2).
on-the-energy |:: 4

Higher-order terms in the Hamiltonian ,know* about the choice made for the off-shell
extension (consistency...)
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extension (consistency...)

Are nuclear potentials well-defined (i.e. finite)?
not necessarily

D &> ] — UV finite
UV finite = (]  $--¢) = D + 4T + <\"" + ___:r-- /
P G =p

So far, it was always possible to renormalize nuclear forces by systematically
exploiting their unitary ambiguity...
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still consistent beyond the NN system?

® Introduce a cutoff A to make the few-N Schrdodinger equation well defined.
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e Write down the effective chiral Lagrangian for z, N (if needed, + A and external fields...)

e Compute the irreducible part of the few-N amplitude (i.e. nuclear forces & currents) by
combining ChPT with TOPT, method of UT or S-matrix matching
— unitary ambiguities (consistency!)
— pion loops usually computed in DR
— renormalizability of nuclear potentials places constraints on unitary ambiguity

® Introduce a cutoff A to make the few-N Schrdodinger equation well defined.

1 1 P+m2
— long range: S e a2 ~ — (1 + short-range terms
9rangs: mimz T @4z 7+ M2 8 )
— short range: nonlocal Gaussian regulator [Reinert, Krebs, EE, EPJA 54 (2018) 88]

® Solve the Schrédinger equation and tune Ci(A) to data (i.e. implicit renormalization).
Since not v counter terms needed to absorb UV divergences from iterations are taken
into account, one must keep: A ~ Ap. [Lepage’97; EE, MeiBner '06; EE, Gegelia *09; EE et al. '17]
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The issue emerges when resumming nonrenormalizable interactions...
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e Subtractive renormalization: I, — 0, I(p?) — I(p?) — I(—p?), c— cr(p), co — car(p)

cr + 2q%car
1 — h[I(q?) — I(—p?)] (cr + 2g%c2r)

TNRLO(Q) =

— independent of regularization (but p-dependent)
— involves contributions of « number of c.t.; bare VnLo available in a closed form
— exactly reproduces the infinite set of diagrams upon expansion in /1
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® Implicit renormalization: express bare c(A\), c2(A\) in terms of observables a, r:

—4ima [4ahA + 7 (ag® re + 2)] B —4m/m Lo <i>
q

T = _
(q) m [77 (a,2q3 Te + 2aq — 2’],) + 2ahA(aq(2 + Zq re) . 27/)] _% + qz% — A

It is tempting to take the limit A — 00 [seane, conen, phillips '981. HOWever, loop expansion yields:

2 2 2 2a4Aagtr? . 2 2 2) 2 Not completely renormalized!
T(q) — Ta (a?n’l“e - ) + h aqdTe — e q (aq Te 1 ) + ... A-dependence OK if A~Ap~M;;

m m Wigner bound...
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What options are then left?

— relativized approach similar to EOMS-BChPT [ek, cegelia12]: hard calcs., convergence?

— keep A finite of the order of A ~ Ap [Lepage *97]



What is the breakdown scale Apb?

Error plots a la Lepage suggest A\ ~ 600 MeV [EE, Krebs, MeiBner, EPJA 51 (2015) 53]. This (Or a bit
larger) value is found to be statistically consistent by the Bayesian analysis for not too

soft cutoffs [BuQeYE Collaboration, Furnstahl et al., PRC 92 (2015) 024005; Melendez et al., PRC 96 (2017) 024003].
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(2n-exchange, naturalness of LECs, magnitude of Van, the ¢cp term in the 3NF...)
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What expansion of the amplitude does such approach correspond to?
— no long-range forces (i.e. pi-less): ERE
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What about power counting?

Power counting = counting powers of soft scales (p, M) in diagrams after renormalization.
Power counting depends on the choice of renormalization conditions. Since we work with
bare LECs and perform renormalization implicitly, we cannot specify renorm. conditions...



The LO long-range potential (1/g2) leads to a logarithmic divergence
[Cirigliano et al., PRL 120 (2018) 2002001]. At LO in chiral EFT, this conclusion is
not affected by the controversial renormalization issues.
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g Cirigliano et al. then conclude that the corresponding c.t. must be promoted at LO. How
does the regulator dependence for A ~ A, compare with the LO truncation error?



e Write down the effective chiral Lagrangian for n, N (if needed, + A and external fields...)

e Compute the irreducible part of the few-N amplitude (i.e. nuclear forces & currents) by
combining ChPT with TOPT, method of UT or S-matrix matching
— unitary ambiguities (consistency!)
— pion loops usually computed in DR
— renormalizability of nuclear potentials places constraints on unitary ambiguity

e Introduce a cutoff A to make the few-N Schrdédinger equation well defined.

| 1 1 _2+Mz 1 (1 + short ; )

— 10Ng range: > e A ~ short-range terms
grange: @ are F + M? G + M? s

— short range: nonlocal Gaussian regulator [Reinert, Krebs, EE, EPJA 54 (2018) 88]

e Solve the Schrédinger equation and tune Ci(A) to data (i.e. implicit renormalization).
Since not v counter terms needed to absorb UV divergences from iterations are taken
into aCCOUHt, one must keep: A~ Ab- [EE, Gasparyan, Gegelia, MeiBner, EPJA 54 (2018) 186]

e Error analysis and consistency checks (naturalness, Lepage plots, ...). Any observable

— 00

X calculated at order Q" should be approximately A-independent: dX ™ /dA |, ,. =3 0
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Scheme dependence (unitary ambiguity) starts showing up at N3LO: 2 phases (8s, 3o) in the long-
range relativistic corrections + 3 off-shell short-range terms in the 'So, 3S1 and €1 channels.
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— Clear evidence of the parameter-free chiral 2z exchange (Roy-Steiner LECs)!

— Good convergence of the chiral expansion.
— Currently the most precise NN interaction available
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e Bayesian approach by the BUQEYE Collaboration Furnstani et al. 15, 17

— assume some naturalness prior, e.g. pr(c.|c) = \/_ exp(—c2/2¢?) and a prior
pr(c) = $0(€ —c)0(Es — )

In c>/c< c

— marginalize over h-terms and ¢ to compute the posterior pdf pr, <5X (i)|{cn§i}>
— the previous approach re-interpreted as a specific choice of prior pdf.
— statistical determination of the breakdown scale: A, ~ 600...700 MeV
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Neutron-proton total cross section at 150 MeV x - 450 mev;
Otot — ’5]—°4LO — 3°0NLO + 1°7N2LO -+ O°5N3LO + 0°4N4LO -+ 0°]—N4LO+

— 51.10(12)(12)(19)(6) mb to be compared with 0P = 51.02 % 0.30 mb

Lisowski et al. 82



90 ¢
Bayesian model CHz1o ;
80 [EE et al., 1907.03608, Melendez et al. PRC96]
70 :
T sof -
g % $ 5
ts9 sof | T/ ﬁ _________________ ; S— fead o Eoom oo aaelE
F [ ]
40f A =400 MeV ]
A =450 MeV
30 F A =500 MeV 1
| A =550 MeV |
20710 NLO  N2LO  NsLO  NYLO  N4LO-

Lesson from the Bayesian analysis: can not trust LO perturbation theory.

For a related discussion See Furnstanl et al., PRC 92 (2015) 024005; Melendez et al., PRC 96 (2017) 024003
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N3LO
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Eiab = 50 MeV

N4LO
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GoF 80?3 /CQ)’Q‘J/ /Og.v Go
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s

N4LO
ISR N\ NI

80?3 S /C?Q‘p Geo

The dependence on the
assumptions within a
Bayesian model (priors)
gets small at high orders
[Furnstahl et al. "15]

Figure taken from:
[EE et al., 1907.03608]



Electroweak currents

Kélling, EE, Krebs, MeiBner ’09,’12; Krebs, EE, MeiBner ’16,’19

see Hermann Krebs, Nuclear currents in chiral effective field theory, to appear in EPJA



e Switch on external sources s, p, r,, 1, and consider local chiral rotations:
r., — 7,=Rr,R"+iRO,R',
s+ip — s +ip'=R(s+ip)Lt,

ly = U, =LI,L"+4iL3,LT",
s—ip — s —ip'=L(s—ip)R'

® Decouple 7’s to get (nonlocal) nuclear H.g[a,v,s,p] (MUT) & get currents via

Va’ r)— — — Aa r)— — —
u (&) v (Z,t)’ L(Z) dai(z,t)

calculatedat a=v=p=0, s =m,.

Park, Min, Rho ’95
Pastore et al. (TOPT) 08 — ’11
Kélling, EE, Krebs, MeiBner (MUT) '09,’12;

Park, Min, Rho ’93
Baroni et al. (TOPT) '16

Krebs, EE, MeiBner (MUT) ’17: complete (1 loop) & renormalized,
Krebs et al. "19: complete (1 loop) & renormalized also derived pseudoscalar currents

— about 250 topologies

— 2-loop/1-loop/tree for 1N/2N/3N operators

Also derived scalar currents, Krebs et al., in preparation



— —. — . - 8 — —. . . . =
k. AR,0) = [Hstr, Ai (E,0) —£<k-A’(k:)—|—[Hstr, Ag(k:)]+z'qu’(k:))] + im, Pi(E,0)
0

k.Vik,0) = [Hst,,, Vi(k,0) — 8%0(1%’- Vi(k) 4 [Hyr, VJ(’C)])]

® Decouple 7’s to get (nonlocal) nuclear H.g[a,v,s,p] (MUT) & get currents via

s = (sHeﬂ‘ 6Heﬂ‘
Vi(E) = =

2 AYZ)=—="_ calculatedat a=v=p=0, s =m,.
sor @) )T Sz, P="5 ’

Park, Min, Rho ’95
Pastore et al. (TOPT) 08 — ’11

Kélling, EE, Krebs, MeiBner (MUT) "09,’12; Krebs, EE, MeiBner (MUT) ’17: complete (1 loop) & renormalized,
Krebs et al. "19: complete (1 loop) & renormalized also derived pseudoscalar currents

— about 250 topologies
— 2-loop/1-loop/tree for 1N/2N/3N operators

Also derived scalar currents, Krebs et al., in preparation

Park, Min, Rho ’93
Baroni et al. (TOPT) '16
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Kolling, EE, Krebs, MeiBner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, MeiBner, Few Body Syst 60 (19) 31

single-nucleon two-nucleon three-nucleon
Q- 4
Q-1 'wv\:‘ W%ﬂn:" »W+ 'vw:“ oee 'w»\»---‘ },é_‘
current charge

a o o4 e A H T PR

Y ~ ——
depend on ds, do, d1s, d21, d22, parameter-free . parameter-free
no 1/m corrections... H

:’:I \\: (XX ] MN ) (XX} E
W1’ 1 WI{ : | The expressions for em currents

Exchange currents do not depend | : —— ; are off-shell consistent with the
on kO- E parameter-free static two-pion exchange nuclear pOtentIa|S derlved by

our group
Some differences between our : ,M }oeee 5
results and the expressions :

of the JLab-Pisa group...

H M
: depend on Ca, Cs, Cs, C7 + L4, L2; depend onCr
no loop corrections
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w/|q| do/dQ [in pn/sr]
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w/|q| do/dQ2 [in un/sr]
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15

w/|q| do/dQ2 [in un/sr]

10

25

25

20

15

TP =N

NNLO (Q3)

| T,r' = 9.‘88 MeV'. :

T. = 14.61 MeV |

7Data: Liu ’94

1t Data: Salomon et al. 84

25

20 |

™ p— YN

Data: Salomon et al. ’84

Tr = 39.40 MeV |

v atn T, =153.89 MeV |

7Data: Korkmaz et al. ’99

1 05 0
cos ®

1 -1

05 0
cos ®

LECs entering the 17 current:
167 d87 d97 d187 d217 d22

l¢ - known from the & sector

d.s - known from GTD

do - from the axial radius:
doy = 2.2 £ 0.2 GeV 2

CZg, 6521, CZQQ - contribute to
charged pion photoproducti-

on (radiative capture)

Fearing et al.’00
Till Wolf, master thesis, Bochum, 2013

LEC [GeV=2] | Fearing et al. Wolf
dy 2.54+0.8 2.240.9
dao ~1.5+0.5 -3.240.5
2da1 — do 5.7+0.8 6.8+ 1.0

Some di‘s have been determi-
ned by Gasparyan, Lutz ’10
(ChPT + disp. relations)



Krebs, EE, MeiBner, Annals Phys. 378 (2017) 317

H- Hot

N v E ~— _
parameter-free depend on dz ds, ds, d15-2d23, : parameter-free
no 1/m corrections..

M - B XXX

lete ones of the JLab-Pisa group parameter-free statlc two-pion exchange parameter- free (depend on the known CT)
(Baroni et al.) :

e d; are largely unknown (need §>< § >< vx
neutrino-induced mn-production) :

parameter -free; depend on zy, ..., z4;
only tree-level 1/m-corr. survive no loop corrections

>
<
>

<
<




® Our results differ from the incomp-
lete ones of the JLab-Pisa group
(Baroni et al.)

e d; are largely unknown (need
neutrino-induced n-production)

Krebs, EE, MeiBner, Annals Phys. 378 (2017) 317

ﬁz{

Y
parameter-free depend on dz ds, ds, d15-2d23,

no 1/m corrections..

_/

>
<
>

<
<

~
S
eoo
-,
-,
-,

parameter-free statlc two-pion exchange

éX DS

parameter -free; depend on zy, ..., z4;
only tree-level 1/m-corr. survive no loop corrections

e
parameter-free

XXX -

parameter- free (depend on the known CT)

Parameter-free calculation of
B-decay at N3LO once cp is
fixed in the strong sector!



Towards nuclear forces & currents

beyond N2LO

still consistent beyond the NN system?

e Introduce a cutoff A to make the few-N Schrdédinger equation well defined.
1 1 g% +m2

A2 ~

Gz M2 T @M

— long range: (1 4+ short-range terms)

— short range: nonlocal Gaussian regulator [Reinert, Krebs, EE, EPJA 54 (2018) 88]




Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?
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Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Feynman diagram

' rlfs
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Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?
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Linearly divergent: AW



Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Feynman diagram

CD ----1 H ' rq’s
\ . ~ >4 \ . ~ >

q5 95
D
q3 + M?

X c

(finite in DR)

a5 95

Linearly divergent: AW



Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Feynman diagram Faddeev equation

¢ 1 D ' rrfs ' r +

a b
43 q T - T
XD N (finite in DR) VIR Go VET'™ Vau '™ (finite in DR)
3 b

Y

9545 A ey aga

3z + M2 @+ @y [Bernard et al.’08]

Linearly divergent: < A



Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Feynman diagram Faddeev equation
coR---- 1 > ' r ds — ' r +
\ . ~ >4 \ . ~ > \ . ~ >4 - ~ >4
qs qf; T it 27,1/m 2n-11 T
XDy (finite in DR) Vaon Go VN’ Van = (finite in DR)
3 b
a b a b a b
Linearly divergent: o A x A9 AT [Bernard et al.’08]

@ + M G+ M| @M

Renormalization of the iteration requires x-symmetry breaking counter terms!



Hermann Krebs, EE, in preparation

Regularization of the 3NF, 4NF and MEC at N3LO and beyond is nontrivial!

Standard approach: Take expressions obtained in DR and multiply with some cutoff: finite-A
artifacts are expected to be removed by contacts terms (adjusted to data). Is it true?

Feynman diagram Faddeev equation
/\ 1 ' r ' ' r +
\ . ~ >4 \ . ~ > \ . ~ >4 - ~ >4
a b
x ep @2qiq;42 (finite in DR) V% Go VUM Vi (finite in DR)
3 b
a b a b a b
Linearly divergent: o A x A9 AT [Bernard et al.’08]

@ + M G+ M| @M

Renormalization of the iteration requires x-symmetry breaking counter terms!

=17

e The problematic divergence cancels out if Vah'" is calculated using cutoff regularization.
® |rrelevant for Van: momentum dependence of 2N contacts is not constrained by x-symm.
e Regularization of Van must be consistent to maintain matching (of finite pieces).

e Can one enforce renormalizability of Van (i.e. remove problematic divergences) by syste-
matically exploiting unitary ambiguities? This indeed seems to be possible!



The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying
the pion propagators via (g* + M2)™" — exp[—(g* + M2)/A? (q* + M)~ ?

Solution: higher-derivative regularization [siavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)



The same problems affect loop contributions to the exchange charge/current operators.

Is it enough to recalculate all loop contributions to the 3NF/exchange currents by modifying
the pion propagators via (g* + M2)™" — exp[—(g* + M2)/A? (q* + M)~ ?

Not quite... Have to ensure that regularization maintains
the chiral symmetry.
- ( - - - - --
7 1 1 —1

_ — — — 2 3 — 4

U(7) =1+ Fﬂ-T T — 2F7E7T — ﬁ(r T)° — SF T
. DR,

All observables should be a-independent. s indopendent on  n DR, bt o

of one uses (naive) cutoff regularization

Solution: higher-derivative regularization [siavnov, Nucl. Phys. B31 (1971) 301]

(designed to coincide with the employed local regularization in the NN sector)



® Precision calculations of few-N systems at N3.4LO will challenge chiral EFT!
(especially in the 3N continuum)

® Naive regularization of BNF and MECs, calculated using DR, should NOT be
applied beyond N2LQO!

® Need to recalculate loop contributions to SNF and MECs using regularization
which maintains the chiral symmetry and is consistent with the NN force
(in progress...)

Thanks to:

— my Bochum collaborators on these topics:

Vadim Baru, Arseniy Filin, Ashot Gasparyan, Jambul Gegelia
Hermann Krebs, Daniel Moller, Patrick Reinert

— and the whole LENPIC

LENPIC: Low Energy Nuclear Physics International Collaboration
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