

Double beta matrix elements in light nuclei

Xiaobao Wang ECT*, 2019

Collaborate with J.A. Carlson, A.C. Hayes, E. Mereghetti, S. Pastore, R.B. Wiringa, G.X. Dong

Background

Normalizations: model space & radial wavefunctions

Short-range correlations

Results

Conclusion

Large-Scale Shell-Model Analysis of the Neutrinoless ββ Decay of 48Ca Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, and T. Abe,PRL 116, 112502 (2016).

Neutrinoless double- β decay matrix elements in light nuclei

S. Pastore,¹ J. Carlson,¹ V. Cirigliano,¹ W. Dekens,^{1,2} E. Mereghetti,¹ and R. B. Wiringa³ ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²New Mexico Consortium, Los Alamos Research Park, Los Alamos, New Mexico 87544, USA ³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Provide benchmarks, to check the prediction power for different models..

Neutrinoless double- β decay matrix elements in light nuclei

S. Pastore,¹ J. Carlson,¹ V. Cirigliano,¹ W. Dekens,^{1,2} E. Mereghetti,¹ and R. B. Wiringa³
¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²New Mexico Consortium, Los Alamos Research Park, Los Alamos, New Mexico 87544, USA
³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

assume a functional form for the variational wavefunction (trial wavefunction) that depends on a set of parameters $\{p\}$

variational theorem: the expectation value of the Hamiltonian computed on a trial wavefunction is always an upper bound to the true ground state energy of the system

VMC implies a minimization of $E_T(\{p\})$ with respect to the parameters $\{p\}$ in order to find the optimal trial wavefunction that better approximates the ground state wavefunction

Neutrinoless double- β decay matrix elements in light nuclei

S. Pastore,¹ J. Carlson,¹ V. Cirigliano,¹ W. Dekens,^{1,2} E. Mereghetti,¹ and R. B. Wiringa³
¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²New Mexico Consortium, Los Alamos Research Park, Los Alamos, New Mexico 87544, USA
³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

$$E_V = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \ge E_0$$

$$H = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}.$$

$$\begin{split} \langle RS|\Psi\rangle &= \langle RS|\prod_{i< j}f_{ij}^{1}\prod_{i< j< k}f_{ijk}^{3c}\\ &\times \left[\mathbbm{1}+\sum_{i< j}\sum_{p=2}^{6}f_{ij}^{p}\mathcal{O}_{ij}^{p}f_{ij}^{3p} + \sum_{i< j< k}U_{ijk}\right]|\Phi\rangle_{J^{\pi},T}, \end{split}$$

Background

Quantum Monte Carlo calculations of weak transitions in A = 6-10 nuclei

S. Pastore^a, A. Baroni^b, J. Carlson^a, S. Gandolfi^a, Steven C. Pieper^d, R. Schiavilla^{b,c}, and R.B. Wiringa^d Phys. Rev. C97, 022501(R) (2018)

Norm Matrix Element < i | 1 tau+tau+ | f>

Norm Matrix Element < i | 1 tau+tau+ | f>

A=12: < Be12_g.s., T=2 | 1 |C12_g.s., T=0>= 0.000

Different model space, has different nodes.

Of course, extended model space used for shell model gives better agreements with VMC method.

A=12: < Be12_g.s., T=2 | 1 |C12_g.s., T=0>= 0.000

Different J pairs, A=12, H.O.

A=12: < Be12_g.s., T=2 | 1 |C12_g.s., T=0>= 0.000

FIG. 3. NME decomposition in terms of the angular momentum and parity J^{π} of the pair of decaying neutrons, Eq. (3). $0\hbar\omega$ (GXPF1B) and $2\hbar\omega$ (SDPFMU-DB) results are compared, without short-range correlations.

48Ca: Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, and T. Abe, PRL 116, 112502 (2016).

48Ca: Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, and T. Abe, PRL 116, 112502 (2016).

Choice of radial wave functions

Operators for 0vDB NMEs:

$$V_{\nu} = m_{\pi} \tau_{a}^{+} \tau_{b}^{+} \left(\mathbf{1} \times \mathbf{1} \ V_{F}^{\nu}(z) - g_{A}^{2} \ \sigma_{a} \cdot \sigma_{b} \ V_{GT}^{\nu}(z) - g_{A}^{2} \ S_{ab} \ V_{T}^{\nu}(z) \right)$$

$$M_{GT}^{\beta} = (4\pi R_{A}) \sigma_{1} \cdot \sigma_{2} V_{GT}^{\beta}(r_{12}) \tau_{1}^{+} \tau_{2}^{+} ,$$

$$M_{F}^{\beta} = (4\pi R_{A}) V_{F}^{\beta}(r_{12}) ,$$

$$M_{T}^{\beta} = (4\pi R_{A}) \left[3 \left(\sigma_{1} \cdot \hat{r} \right) \left(\sigma_{2} \cdot \hat{r} \right) - \sigma_{1} \cdot \sigma_{2} \right] V_{T}^{\beta}(r_{12})$$

 $R_A = 1.2A^{1/3}$ fm is the nuclear radius

Leading terms: $V_{F,\nu}(z) = \frac{1}{4\pi z}$ $V_{GT,AA}(z) = \frac{1}{4\pi z}$

 $V_{GT,\nu}(z) = V_{GT,AA}(z) + V_{GT,AP}(z)$ $+ V_{GT,PP}(z) + V_{GT,MM}(z)$

	$^{10}\text{Be}(0^+_1)$ -	$\rightarrow^{10} C(0_1^+)$
	E,	GT
VMC-1	-1.001(40)	2.273(91)
VMC-2		
$SM_{H.0.}(w/o SRC, p)$	-1.127	2.616
$SM_{WS}(w/o SRC, p)$	-0.980	2.269
$SM_{H.O.}(w/o \ SRC, \ psd)$	-1.274	3.228
$SM_{WS}(w/o SRC, psd)$	-1.100	2.783

p -> *psd*

Larger model space→ more correlations→ matrix elements become larger

H.O. -> WS

W.S. r.w.f is less concentrated than H.O. ones \rightarrow reduced matrix elements

Operator 1/r

A=12, Delta T =2

	$^{12}\text{Be}(0^+_1) \rightarrow ^{12}\text{C}(0^+_1)$		
	\mathbf{F}	GT	
VMC-1	-0.100(4)	0.257(10)	
VMC-2	-0.113(5)	0.274(11)	
$SM_{H.0.}(w/o SRC, p)$	-0.183	1.228	
$SM_{WS}(w/o SRC, p)$	-0.147	1.023	
$SM_{H.O.}(w/o \ SRC, \ psd)$	-0.271	0.431	
$SM_{WS}(w/o SRC, psd)$	-0.198	0.570	

p -> *psd*

Larger model space→ more correlations→ matrix elements can be reduced (remind: canceling effect for the normalizations) H.O. -> WS

W.S. r.w.f is less concentrated than H.O. ones \rightarrow reduced matrix elements

Test by VMC, GT, delta T=2, A=10 More correlations, reduced matrix element

Neutrinoless double- β decay matrix elements in light nuclei

S. Pastore,¹ J. Carlson,¹ V. Cirigliano,¹ W. Dekens,^{1,2} E. Mereghetti,¹ and R. B. Wiringa³ ¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²New Mexico Consortium, Los Alamos Research Park, Los Alamos, New Mexico 87544, USA ³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

FIG. 6. The left (right) panel shows the GT-AA distribution in *r*-space (*q*-space) for the ¹⁰He \rightarrow ¹⁰Be transition, with and without "one-pion-exchange-like" correlations in the nuclear wave functions. See text for explanation.

Short range correlations: "disaster" for shell model?

Short range repulsion and High momentum tail

Momentum [fm^-1]

D. Lonardoni, S. Gandolfi, X. B. Wang, and J. Carlson, PRC 98, 014322 (2018)

A collection of short range correlations:

CCM SRCF. Simkovic, A. Faessler, H. Muther, V. Rodin, and M. Stauf, Phys. Rev. C79, 055501 (2009)CCM SRC is fitted to Correlated 2-bd wavefunction of CCM (S_2 correlation) / H.O. 2-bd wavefunction in the relative

Coordinate, in the S_0 channel with node as 0 (R_{n=0,l=0}).

To get rid off the node dependence of the correlated wavefunction? SRC will change if the other choices are made.

FIG. 1. Two-nucleon wave functions as a function of the relative distance for the ${}^{1}S_{0}$ partial wave and radial quantum numbers n = 0, 1, 2, 3, and 4. The results are for the (a) uncorrelated two-nucleon wave functions, (b) coupled-cluster method with CD-Bonn potential, (c) coupled-cluster method with Argonne potential, and (d) Miller-Spencer Jastrow short-range correlations. The harmonic oscillator parameter *b* is 2.18 fm.

Introduce a new parameter "c":

It means that at r = 0, the 2-bd w.f. is not zero (not eliminated by the hard core).

CCM SRC

- There is systematic difference between CCM SRC and traditional SRC (MS SRC):
- (1) CCM SRC's peak is at 1.0 fm, but MS SRC's peak is at 1.5 fm. So MS SRC will shift the peak of NME distribution toward 1.5 fm (NME w/o SRC peak at 1.0 fm), but CCM SRC does not shift NME distribution. So CCM SRC maintain the original peak position.
- (2) MS SRC eliminate the distribution at r=0 completely (C parameter =0); CCM SRC does not.

For convenience, we provide the following parameterization for the pp/nn and pn correlation functions determined from CVMC:

$$F(r) = 1 - e^{-\alpha r^2} \times \left(\gamma + r \sum_{i=1}^{3} \beta_i r^i\right)$$
(11)

Table 1 Parameters describing F(r), using the functional form of equation (11).

Parameter	Units	Value (pp/nn)	Value (pn)	
α	fm ⁻²	3.17	1.08	
Y	-	0.995	0.985	
β_1	fm ⁻²	1.81	-0.432	
β2	fm ⁻³	5.90	-3.30	
β ₃	fm ⁻⁴	-9.87	2.01	

Results

	$1^{10}\text{Be}(0^+_1) \rightarrow {}^{10}\text{C}(0^+_1) {}^{12}\text{Be}(0^+_1) \rightarrow {}^{12}\text{C}(0^+_1)$			
	\mathbf{F}	GT	\mathbf{F}	GT
VMC-1	-1.001(40)	2.273(91)	-0.100(4)	0.257(10)
VMC-2			-0.113(5)	0.274(11)
$SM_{WS}(M.S. SRC, psd)$	-0.967	2.381	-0.122	0.342
$SM_{WS}(CCM SRC, psd)$	-1.069	2.683	-0.175	0.499
$SM_{WS}(CVMC SRC, psd)$	-0.992	2.457	-0.141	0.398
$SM_{WS}(Fab, psd)$	-0.988	2.449	-0.138	0.388
$SM_{WS}(Fab+abc, psd)$	-0.957	2.362	-0.128	0.361

Conclusions from the study of light nuclei

- 1. The use of H.O. radial wave functions will likely lead
- to an overestimate of matrix elements.
- 2. Limited size model space calculations could affect the magnitude of the predicted $0\nu\beta\beta$ matrix elements, particularly for calculations constrained to a single shell.
- 3. The inclusion of a SRC function is needed.
- The best choice for this function requires further study.

THANKS!