The DBD Collaboration

and the

Multi-Reference In-Medium SRG

J. Engel

July 15, 2019

Collaboration Members who are Here

- Lattice QCD: H. Monge Camacho, A. Walker-Loud
- **EFT**: V. Cirigliano, J. De Vries, E. Mereghetti
- Nuclear Structure:
 - HOBET: K. McElvain
 - QMC: S. Pastore
 - Coupled Clusters: S. Novario
 - Shell Model: M. Horoi
 - SM-IMSRG: J. Holt

Collaboration Members who are Here

- Lattice QCD: H. Monge Camacho, A. Walker-Loud
- **EFT**: V. Cirigliano, J. De Vries, E. Mereghetti
- Nuclear Structure:
 - HOBET: K. McElvain
 - QMC: S. Pastore
 - Coupled Clusters: S. Novario
 - Shell Model: M. Horoi
 - ▶ SM-IMSRG: J. Holt
 - MR-IMSRG: Just me (so I'll talk about this after a brief review...)

Part I: The Collaboration

Integrated Approach to $\beta\beta$ Decay

New Physics at Hadronic Level

New Physics at Hadronic Level

New physics inside blobs

Improving Nuclear Structure: Ab Initio Methods

Use most accurate methods:

No-Core Shell Model, Quantum Monte Carlo

in light nuclei to verify other methods:

Coupled Clusters, RG-based techniques

that are not quite as accurate but better able to treat heavy nuclei.

Improving Nuclear Structure: Ab Initio Methods

Use most accurate methods:

No-Core Shell Model, Quantum Monte Carlo

in light nuclei to verify other methods:

Coupled Clusters, RG-based techniques

that are not quite as accurate but better able to treat heavy nuclei.

Practitioners have come together to explain most of the " g_A quenching" in ordinary β decay.

Improving Nuclear Structure: Ab Initio Methods

Use most accurate methods:

No-Core Shell Model, Quantum Monte Carlo

in light nuclei to verify other methods:

Coupled Clusters, RG-based techniques

that are not quite as accurate but better able to treat heavy nuclei.

Practitioners have come together to explain most of the " g_A quenching" in ordinary β decay.

Finally: Error Quantification

PHYSICAL REVIEW LETTERS 122, 062502 (2019)

Neutron Drip Line in the Ca Region from Bayesian Model Averaging

Léo Neufcourt, ¹² Yuchen Cao (曹宇晨), ³ Witold Nazarewicz, ⁴ Erik Olsen, ² and Frederi Viens ¹ Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA FERB Laboratory, Michigan 48824, USA Essa Lansing, Michigan 48824, USA

³Department of Physics and Astronomy and NSCL Laboratory, Michigan State Üniversity, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

(Received 12 September 2018; revised manuscript received 15 November 2018; published 14 February 2019)

Will apply similar techniques to our ab-initio and DFT-based calculations.

Part II: The MR-IMSRG

Idea from DFT: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\langle Q_0 \rangle$. Then diagonalize H in space of symmetry-restored quasiparticle vacua with different $\langle Q_0 \rangle$.

Robledo et al.: Minima at $\beta_2 \approx \pm .15$

Rodriguez and Martinez-Pinedo: Wave functions peaked at $\beta_2 \approx \pm .2$

How Important are Collective Degrees of Freedom?

Can extract collective separable interaction — monopole + pairing + isoscalar pairing + spin-isospin + quadrupole — from shell model interaction, see how well it mimics full interaction for $\beta\beta$ matrix elements in light pf-shell nuclei.

How Important are Collective Degrees of Freedom?

Can extract collective separable interaction — monopole + pairing + isoscalar pairing + spin-isospin + quadrupole — from shell model interaction, see how well it mimics full interaction for $\beta\beta$ matrix elements in light pf-shell nuclei.

Example: Proton-Neutron Pairing in SO(8)

Can build possibility of pn correlations into mean field. They are frozen out in mean-field minimum, but included in GCM.

Proton-neutron pairing significantly reduces matrix element.

GCM in Shell-Model Spaces

P = subspace you want Q = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

P = subspace you want Q =the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

P = subspace you want Q = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing most important eigenvalues.

Must must apply same unitary transformation to transition operator.

In-Medium Similarity Renormalization Group

One way to determine the transformation

Flow equation for effective Hamiltonian. Gradually decouples selected set of states.

from H. Hergert

Trick is to keep all 1- and 2-body terms in *H* at each step *after normal ordering* (approximate treatment of 3-, 4-body ... terms).

If selected set contains just a single state, approach yields ground-state energy. If it contains a typical valence space, result is effective shell-model interaction and operators.

In-Medium Similarity Renormalization Group

One way to determine the transformation

Flow equation for effective Hamiltonian. Gradually decouples selected set of states.

Trick is to keep all 1- and 2-body terms in *H* at each step *after normal ordering* (approximate treatment of 3-, 4-body ... terms).

If selected set contains just a single state, approach yields ground-state energy. If it contains a typical valence space, result is effective shell-model interaction and operators.

Begin with an arbitrary ground state $|\Phi\rangle$ (or density operator $\hat{\rho}$). Let

$$\rho_i^i = \langle \Phi | \alpha_i^{\dagger} \alpha_j | \Phi \rangle \qquad \qquad \rho_{kl}^{ij} = \langle \Phi | \alpha_i^{\dagger} \alpha_i^{\dagger} \alpha_k \alpha_l | \Phi \rangle .$$

Begin with an arbitrary ground state $|\Phi\rangle$ (or density operator $\hat{\rho}$). Let

$$\rho_j^i = \langle \Phi | \alpha_i^\dagger \alpha_j | \Phi \rangle \qquad \qquad \rho_{kl}^{ij} = \langle \Phi | \alpha_i^\dagger \alpha_j^\dagger \alpha_k \alpha_l | \Phi \rangle \ .$$

Define

$$: a_p^{\dagger} a_q := a_p^{\dagger} a_q - \rho_q^p$$

$$: a_p^{\dagger} a_r^{\dagger} a_q a_s := a_p^{\dagger} a_r^{\dagger} a_q a_s - \rho_q^p a_r^{\dagger} a_s - \text{permutations} - \rho_{qs}^{pr}$$

$$\vdots$$

Begin with an arbitrary ground state $|\Phi\rangle$ (or density operator $\hat{\rho}$). Let

$$\rho_j^i = \langle \Phi | \alpha_i^\dagger \alpha_j | \Phi \rangle \qquad \qquad \rho_{kl}^{ij} = \langle \Phi | \alpha_i^\dagger \alpha_j^\dagger \alpha_k \alpha_l | \Phi \rangle \ .$$

Define

$$: a_p^{\dagger} a_q := a_p^{\dagger} a_q - \rho_q^p$$

$$: a_p^{\dagger} a_r^{\dagger} a_q a_s := a_p^{\dagger} a_r^{\dagger} a_q a_s - \rho_q^p a_r^{\dagger} a_s - \text{permutations} - \rho_{qs}^{pr}$$

$$\vdots$$

which implies that

$$\langle \Phi | : a_p^{\dagger} a_r^{\dagger} \dots a_q a_s \dots : | \Phi \rangle = 0.$$

Begin with an arbitrary ground state $|\Phi\rangle$ (or density operator $\hat{\rho}$). Let

$$\rho_j^i = \langle \Phi | \alpha_i^\dagger \alpha_j | \Phi \rangle \qquad \qquad \rho_{kl}^{ij} = \langle \Phi | \alpha_i^\dagger \alpha_j^\dagger \alpha_k \alpha_l | \Phi \rangle \ .$$

Define

$$: a_p^{\dagger} a_q := a_p^{\dagger} a_q - \rho_q^p$$

$$: a_p^{\dagger} a_r^{\dagger} a_q a_s := a_p^{\dagger} a_r^{\dagger} a_q a_s - \rho_q^p a_r^{\dagger} a_s - \text{permutations} - \rho_{qs}^{pr}$$

$$\vdots$$

which implies that

$$\langle \Phi | : a_p^{\dagger} a_r^{\dagger} \dots a_q a_s \dots : | \Phi \rangle = 0.$$

And \exists a useful Wick's theorem that relates products of (generalized) normal-ordered operators to sums of such operators.

MR-IMSRG

For properties of a single nucleus, we let $|\Phi\rangle$ be a GCM state, obtained from an ab initio calculation in 6 to 12 shells. The reference includes the collective correlations explicitly and the IMSRG builds in the rest.

For $\beta\beta$ decay we choose a reference ensemble,

$$\rho = \alpha |\Phi_I\rangle\langle\Phi_I| + (1-\alpha) |\Phi_F\rangle\langle\Phi_F| ,$$

where we can examine the dependence on α .

MR-IMSRG

For properties of a single nucleus, we let $|\Phi\rangle$ be a GCM state, obtained from an ab initio calculation in 6 to 12 shells. The reference includes the collective correlations explicitly and the IMSRG builds in the rest.

For $\beta\beta$ decay we choose a reference ensemble,

$$\rho = \alpha |\Phi_I\rangle\langle\Phi_I| + (1-\alpha) |\Phi_F\rangle\langle\Phi_F| ,$$

where we can examine the dependence on α .

With and ensemble, the IMSRG flow makes neither $|\Phi_I\rangle$ nor $|\Phi_F\rangle$ exact ground states of the transformed H, so we do a second GCM calculation with the evolved Hamiltonian in both nuclei and compute the $\beta\beta$ matrix element with the evolved decay operator.

Deformation Energy

⁴⁸Ca is spherical and ⁴⁸Ti can be represented well by an axially-symmetric state.

Spectrum in ⁴⁸Ti

In 9 shells

Smaller $\hbar\omega$ gives a bit more collectivity.

Effects of Isoscalar (pn) Pairing

Weaker effect than shell-model and SO(8) results indicate. Quenches matrix element by only about 17%.

Spatial Dependence

Similar shape, different amplitude

Increasing Size of Single-Particle Space

10 shells seems to be nearly good enough.

Variation with BE2 and Summary of Results

The green band is our best (preliminary) guess for the matrix element.

Uncertainty and Things to Do

Hard to quantify uncertainty right now. On the GCM front, need to test effects of fluctuations in

- like-particle pairing gap
- isovector pn pairing gap
- triaxiality (though its effect is likely small here)

and include a few more shells. This may require a better way to generate and select HFB vacua.

Uncertainty and Things to Do

Hard to quantify uncertainty right now. On the GCM front, need to test effects of fluctuations in

- like-particle pairing gap
- isovector pn pairing gap
- triaxiality (though its effect is likely small here)

and include a few more shells. This may require a better way to generate and select HFB vacua.

On the IMSRG front, need to incorporate three-body operators into flow equations. We're getting there (well ..., not me, exactly).

In Sum ...

- The DBD collaboration is great!
- ▶ Jiangming Yao, Benjamin Bally, Tomás Rodríguez, Roland Wirth, Heiko Hergert, and I have done and an ab initio calculation of the (light) v-exchange matrix element for the decay of ⁴⁸Ca. We haven't included absolutely everything but don't expect the number to change too much when we do.
- The method is applicable to other deformed open-shell nuclei, even those with shape coexistence. ⁷⁶Ge is next!

In Sum ...

- The DBD collaboration is great!
- Jiangming Yao, Benjamin Bally, Tomás Rodríguez, Roland Wirth, Heiko Hergert, and I have done and an ab initio calculation of the (light) ν-exchange matrix element for the decay of ⁴⁸Ca. We haven't included absolutely everything but don't expect the number to change too much when we do.
- The method is applicable to other deformed open-shell nuclei, even those with shape coexistence. ⁷⁶Ge is next!

That's all. Thanks very much for your kind attention!