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Improving Nuclear Structure: Ab Initio Methods
Use most accurate methods:
No-Core Shell Model, Quantum Monte Carlo

in light nuclei to verify other methods:
Coupled Clusters, RG-based techniques

that are not quite as accurate but better able to treat heavy nuclei.

Practitioners have come together to explain most
of the “gA quenching” in ordinary β decay.

NUCLEAR SHELL MODEL 43 

() parameters can be empirically extracted as the residuals between a set 
of experimental values and the values of the matrix elements calculated 
with the free-nucleon operators. Our results are discussed in Sections 3.2 
and 3.3 for the GT and M I  operators, respectively. Values for the () 
parameters in the effective operator can also be calculated from fun­
damental considerations. Our empirical results are compared with such 
calculations in Section 3.4. 

3.2 Gamow-Teller Results 

The relationships between experimental GT matrix elements from sd-shell 
beta decays and the predictions of the W interaction have been studied 
comprehensively in (57). This study incorporated a compilation of extant 
beta decay in A = 17-39 nuclei together with shell-model calculations 
for all the initial and final states concerned. The essential conclusions 
drawn in (57) can be inferred from the comparisons of experimental and 
theoretical matrix elements presented in Figure 6. The values of the 
matrix elements are normalized to reflect the 3(N - Z) sum rule, such 
that R(GT) = M(GT)/W, where W = 19A/9vl[(2Jj+ 1)3(Nj _Zj)]1/2 for 
Ni i= Zi and W = 19A/9vl[(2Jr+ 1)3(Nr - Zr)]1/2 for Ni = Zi' The matrix 
elements M(GT) are obtained from it = 6170j[B(F)+B(GT)], where 
B(GT) = M(GT)2j(2Ji + I). B(GT) is the GT transition probability (which 
depends on the transition direction). M(GT) is the GT reduced matrix 
element (which is independent of the transition direction). 

It is evident from inspection of the left side of Figure 6 that the exper­
imental values of GT matrix elements in the sd shell are systematically 
smaller than the predictions of the W-interaction wave functions coupled 
with the free-nucleon operator, by a factor of about 0.77 (indicated by the 
lower line on the left side of Figure 6). The same wave functions combined 
with the effective operator account for most of the data extremely well. 
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THEORY 
Figure 6 Theoretical vs experimental R(GT) matrix elements (see Sections 3 and 3.2). 
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The region of heavy calcium isotopes forms the frontier of experimental and theoretical nuclear structure
research where the basic concepts of nuclear physics are put to stringent test. The recent discovery of the
extremely neutron-rich nuclei around 60Ca O. B. Tarasov et al. [Phys. Rev. Lett. 121, 022501 (2018)] and
the experimental determination of masses for 55–57Ca S. Michimasa et al. [Phys. Rev. Lett. 121, 022506
(2018)] provide unique information about the binding energy surface in this region. To assess the impact of
these experimental discoveries on the nuclear landscape’s extent, we use global mass models and statistical
machine learning to make predictions, with quantified levels of certainty, for bound nuclides between Si
and Ti. Using a Bayesian model averaging analysis based on Gaussian-process-based extrapolations we
introduce the posterior probability pex for each nucleus to be bound to neutron emission. We find that
extrapolations for drip-line locations, at which the nuclear binding ends, are consistent across the global
mass models used, in spite of significant variations between their raw predictions. In particular, considering
the current experimental information and current global mass models, we predict that 68Ca has an average
posterior probability pex ≈ 76% to be bound to two-neutron emission while the nucleus 61Ca is likely to
decay by emitting a neutron (pex ≈ 46%).

DOI: 10.1103/PhysRevLett.122.062502

Introduction.—How many protons and neutrons can
form a bound atomic nucleus? Out of about 3 200 isotopes
known [1] only 286 primordial nuclides have existed in
their current form since before the Earth was formed. They
form the valley of stability on the nuclear landscape.
Moving away from the region of stable isotopes by adding
neutrons or protons, one enters the regime of short-lived
radioactive nuclei, which are beta unstable. Nuclear exist-
ence ends at the “drip lines,” where the last nucleons are no
longer attached to the nucleus by the strong interaction and
drip off. According to current theoretical estimates [2,3] the
number of bound nuclides with atomic number Z between 2
and 120 is around 7 000.
The particle stability of a nuclide is determined by its

separation energy, i.e., the energy required to remove from it
a single nucleon or a pair of like nucleons. If the separation
energy is positive, the nucleus is bound to nucleon decay;
if the separation energy is negative, the nucleus is particle
unstable. In this Letter, we study the one-neutron (S1n) and
two-neutron (S2n) separation energies of neutron-rich
nuclei. The drip line is reached when the separation energy
reaches zero; hence, one can talk about the one-neutron drip
line when S1n ¼ 0 and the two-neutron drip line when
S2n ¼ 0. Very weakly bound, or unbound, nuclei that lie in
the immediate vicinity of drip lines are referred to as
threshold systems. The separation energies and drip-line
positions are strongly affected by nucleonic pairing, or

nuclear superfluidity [4]. Since it costs energy to break a
nucleonic pair, nuclei with even numbers of nucleons are
more bound than their odd-nucleon-number neighbors. As a
result, the one-nucleon drip line is reached earlier than the
two-nucleon drip line, which results in a highly irregular
pattern of nuclear existence that meanders between odd- and
even-particle systems.
The territory of neutron-rich nuclei is arguably the most

fertile ground for breakthroughs in nuclear structure
research and the Ca region is of particular interest. The
heaviest Ca isotope discovered to date is 60Ca [5]. This
nucleus, having Z ¼ 20 protons and N ¼ 40 neutrons, i.e.,
containing 12 more neutrons than the heaviest stable
calcium isotope, was found recently together with seven
other neutron-rich nuclei: 47P, 49S, 52Cl, 54Ar, 57K, 59Ca, and
62Sc. In addition, one event consistent with 59K was
registered [5]. This discovery extends the range of known
nuclei in this region, previously established in Refs. [6,7].
In separate experimental studies, the atomic masses of
55–57Ca were determined [8] and the uncertainties of the
52–55Ti mass values were significantly reduced [9].
The Ca region is arguably the most critical one to look at

from a theory perspective, because it provides an exciting
opportunity to bridge the refined methods based on realistic
interactions, in which all A nucleons are considered as
elementary degrees of freedom, with nuclear density func-
tional theory (DFT) employing energy density functionals

PHYSICAL REVIEW LETTERS 122, 062502 (2019)
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we apply the Bayesian method to provide a full quantifi-
cation of the uncertainty surrounding the point estimate.
For more details we refer the reader to the SM.
Results.—The GP’s superior predictive power was

assessed in Ref. [24] for the S2n of even-even nuclei. The
present work achieves comparable performances for odd-Z
nuclei and for S1n values, with prediction improvements
ranging from 20% to 40% for most models (see the SM).
To further assess the performance of our approach, we apply
it to the recently measured masses of 55–57Ca [8]. As seen in
Fig. 1, the predictedS1n values for 55;57Ca are consistentwith
experiment for most models while the S2n of 56Ca is slightly
overestimated. The impact of newer mass measurements
beyond AME2003 on our predictions is minor; this is
because very few data points that can impact our local
GP model were added in the Ca region. The large deviation
in the S1n of 55Ca in HFB-24 is noteworthy. As illustrated in
the SM and Ref. [24], neutron separation energies predicted
by this model often exhibit irregular behavior.
Figure 2 shows extrapolated separation energies for the

Ca isotopic chain for three global mass models corrected
with the GP emulator. (Here and in the following we shall
use the notation “modelþ GP” (e.g., UNEDF0þ GP) to
emphasize that the statistical corrections are done with
the GP emulator.) The models are consistent overall once
the statistical correction and uncertainty are taken into
account. According to the computed empirical coverage
probabilities [54,55], our credibility intervals are slightly
conservative for large credibility levels (see Sec. I C of the
SM for more discussion).

For a given isotopic chain and nuclear model, one obtains
an upper bound on the location of the first isotope at which
the binding energy becomes negative, depending on the
choice of credibility level. For instance, the posterior mean
values (full lines) of the UNEDF0þ GPmodel place the 2n
drip line for Ca aroundN ¼ 54, while considering the lower
bound of the one-sigma credibility intervals provides that it
is placed beyond N ¼ 46 with probability 84%. This very
wide interval suggests that the posterior distribution of the
separation energies is perhaps not the most appropriate
quantity to consider. To this end, for each model, we
consider the probability pexðZ;NÞ of the predicted separa-
tion energy S�1n=2nðZ;NÞ to be positive under the posterior
probability distribution conditioned on the experimental
masses available. In the Bayesian paradigm, this probability
is pexðZ;NÞ ≔ pðS�1n=2nðZ;NÞ > 0jS1n=2nÞ. The insert in
Fig. 2 shows pex for the Ca chain. The model-averaged
existence probabilities for the Ca region are shown in
Fig. 3(a) assuming uniform prior weights. (For the values
of pex for individual models, see Sec. III. C of the SM.) As
noticed in Ref. [5], the N ¼ 35 isotones 52Cl and 53Ar, as
well as 49S represent a challenge for nuclear mass models.
Our results in Fig. 3(a) confirm this finding through the low
calculated prior-average pex values for these nuclei. Indeed,
with the exception of SV-min, UNEDF0, and FRDM-2012,
othermodels calculate them to be eithermarginally bound or
to lie outside the one-neutron drip line. Since 49S, 52Cl, and
53Ar do exist [5,6], this prior knowledge can inform the
model averaging process [56–58] throughposteriorweights:

wk ≔ pðMkj52Cl; 53Ar; 49S existÞ ð1Þ

(see additional discussion in the SM). Theweightwk reflects
the ability of themodelMk to predict the existence of nuclei
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Will apply similar techniques to our ab-initio and DFT-based calculations.



Part II: The MR-IMSRG



Idea from DFT: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g.
quadrupole moment 〈Q0〉. Then diagonalize H in space of
symmetry-restored quasiparticle vacua with different 〈Q0〉.

β2 = deformation

Robledo et al.: Minima at β2 ≈ ±.15

Collective wave functions
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration

5

β2

Rodriguez and Martinez-Pinedo:
Wave functions peaked at β2 ≈ ±.2



How Important are Collective Degrees of Freedom?

Can extract collective separable interaction —— monopole + pairing
+ isoscalar pairing + spin-isospin + quadrupole —— from shell model
interaction, see how well it mimics full interaction for ββ matrix
elements in light pf-shell nuclei.

From Javier et al.
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Example: Proton-Neutron Pairing in SO(8)

Can build possibility of pn correlations into mean field. They are
frozen out in mean-field minimum, but included in GCM.

0νββ matrix element
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GCM in Shell-Model Spaces
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FIG. 2: Calculated low-lying excitation spectra of 76Ge and 76Se given by pfsdg-2 interaction,

compared with experimental data [5].

FIG. 3: The calculated occupancies of valence neutron and proton orbits for 76Ge and 76Se, com-

pared with the experimental occupancies of valence orbits [6, 7].

4

GCM Spectrum in 2 Shells

ββ Matrix Elements in 1 and 2 Shells

FIG. 1: The calculated M0⌫
GT of the 0⌫�� decay, compared with those by the shell-model (SM) cal-

culation with JUN45 interaction [1], with the GCN2850 interaction [2], with KB3G interaction [3],

and with the SDPFMU-DB interaction [4]. “pfsdg-1” denotes the pfsdg-shell interaction in which

the 3N forces are normal ordered with respect to 40Ca, while “pfsdg-2” denotes the pfsdg-shell

interaction with respect to 56Ni.
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Brief Detour: Ab Initio Many-Body Methods

Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Shell model done here.

P = subspace you want
Q = the rest

Task: Find unitary transformation to
make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

Must must apply same unitary
transformation to transition
operator.

As difficult as solving original problem.

But many-body effective operators (beyond
2- or 3-body) can be treated approximately.
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In-Medium Similarity Renormalization Group
One way to determine the transformation

Flow equation for effective Hamiltonian.
Gradually decouples selected set of states.
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Figure 7: Decoupling for the White generator, Eq. (41), in the Jπ = 0+ neutron-
neutron interaction matrix elements of 40Ca (emax = 8, ~ω = 20 MeV, Entem-Machleidt
N3LO(500) evolved to λ = 2.0 fm−1). Only hhhh, hhpp, pphh, and pppp blocks of the
matrix are shown.

mechanism. A likely explanation is that the truncation of the commutator (49) to one-
and two-body contributions only (Eqs. (50), (51)) causes an imbalance in the infinite-
order re-summation of the many-body perturbation series. For the time being, we have to
advise against the use of the Wegner generator in IM-SRG calculations with (comparably)
“hard” interactions that exhibit poor order-by-order convergence of the perturbation
series.

5.4. Decoupling

As discussed in Sec. 4.1, the IM-SRG is built around the concept of decoupling the
reference state from excitations, and thereby mapping it onto the fully interacting ground
state of the many-body system within truncation errors. Let us now demonstrate that
the decoupling occurs as intended in a sample calculation for 40Ca with our standard
chiral N3LO interaction at λ = 2.0 fm−1. Figure 7 shows the rapid suppression of the
off-diagonal matrix elements in the Jπ = 0+ neutron-neutron matrix elements as we
integrate the IM-SRG(2) flow equations. At s = 2.0, after only 20–30 integration steps
with the White generator, the Γpp′hh′(s) have been weakened significantly, and when we
reach the stopping criterion for the flow at s = 18.3, these matrix elements have vanished
to the desired accuracy. While the details depend on the specific choice of generator, the
decoupling seen in Fig. 7 is representative for other cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form first indicated in Fig. 2. The IM-SRG evolution not only
decouples the ground state from excitations, but reduces the coupling between excitations
as well. This coupling is an indicator of strong correlations in the many-body system,
which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3, the IM-SRG can be understood as
a non-perturbative, infinite-order re-summation of the many-body perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this,
we show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and
post-HF methods in Fig. 8.

After the same 20–30 integration steps that lead to a strong suppression of the off-
diagonal matrix elements (cf. Fig. 14), the energies of all methods collapse to the same
result, which is the IM-SRG(2) ground-state energy. By construction, this is the result

29

from H. Hergert

Trick is to keep all 1- and 2-body terms in H at each step after
normal ordering (approximate treatment of 3-, 4-body . . . terms).

If selected set contains just a single state, approach yields
ground-state energy. If it contains a typical valence space, result is
effective shell-model interaction and operators.

We use GCM state — more precisely, and ensemble of
initial and final states in ββ decay — as selected set.
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Generalized Normal Ordering
Begin with an arbitrary ground state |Φ〉 (or density operator ρ̂). Let

ρ i
j = 〈Φ |a

†

i aj |Φ〉 ρ
ij
kl = 〈Φ|a

†

i a†j akal |Φ〉 .

Define

: a†paq : = a†paq − ρ
p
q

: a†pa†r aqas : = a†pa†r aqas − ρ
p
qa†r as − permutations − ρpr

qs

...

which implies that

〈Φ| : a†pa†r . . . aqas · · · : |Φ〉 = 0 .

And \ a useful Wick’s theorem that relates products of (generalized)
normal-ordered operators to sums of such operators.
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MR-IMSRG

For properties of a single nucleus, we let |Φ〉 be a GCM state,
obtained from an ab initio calculation in 6 to 12 shells. The
reference includes the collective correlations explicitly and the
IMSRG builds in the rest.

For ββ decay we choose a reference ensemble,

ρ = a |ΦI〉〈ΦI | + (1 − a) |ΦF〉〈ΦF | ,

where we can examine the dependence on a.

With and ensemble, the IMSRG flow makes neither
|ΦI〉 nor |ΦF〉 exact ground states of the transformed H,
so we do a second GCM calculation with the evolved
Hamiltonian in both nuclei and compute the ββ matrix
element with the evolved decay operator.
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Deformation Energy

48Ca is spherical and 48Ti can be represented
well by an axially-symmetric state.



Spectrum in 48Ti

0

2

4
E

x
[M

eV
]

0+

2+

4+

0+

2+

4+

48Ti

125(5)

201(18)

108

152

101

140

136

193

2.0/2.0(16) 1.8/2.0(16) 1.8/2.0(12) EXP

In 9 shells

Smaller ħω gives a bit more collectivity.



Effects of Isoscalar (pn) Pairing

3

success for low-lying states of nuclei with complex shapes.
It has been found however that most of the MR-EDF frame-
works may su↵er from the issue of spurious divergences and
finite steps [31, 32], and therefore a lot of e↵ort is devoted to
addressing this issue. We note that this issue does not exist in
our Hamiltonian-based calculation.

Results and discussion. Figure 1 displays the potential en-
ergy surfaces for Ca48 and Ti48 in the deformation (�2, �)
plane from the PNVAP calculation using the IM-SRG evolved
interaction EM1.8/2.0(8/16), where emax = 8, ~⌦ = 16 MeV.
The parameter �2 is related to the quadrupole moments as
�2 = 4⇡/(3AR2

0)
p

q20 + 2q22 with R0 = 1.2A1/2, A the mass
number, and � = arctan

p
2q22/q20. Here we use the bare

one-body quadrupole operators in the definition of the defor-
mation parameters (�, �) for convenience. This definition will
not a↵ect our discussion on the quadrupole collectivity of the
nuclei as these degrees of freedom will be integrated out in the
final GCM calculation. It is seen that Ca48 has a pronounced
energy minimum at the spherical shape and Ti48 has a pro-
nounced one at the prolate shape with �2 ⇠ 0.2, �2 = 0.0. The
e↵ect of triaxiality on the low-lying states of both nuclei and
the NME of 0⌫�� is expected to be negligible.

The predicted energy for the ground state of Ca48 is
�413.83(4) MeV from the IM-SRG+GCM calculation with
the EM1.8/2.0(8/16) interaction. The ground-state energy of

Ti48 is �418.22(3) MeV. Following Ref. [25], the uncertainty
from the choice of natural states in the GCM calculation is
provided, even though it is negligible in most cases. Besides,
we note that the IM-SRG+GCM method is able to reproduce
the energy ordering for the ground states of these two nuclei,
even though the Q�� value of 5.95 MeV is somewhat overes-
timated compared to the literature value of 4.26 MeV. The
low-lying energy spectra of Ti48 are given in Fig. 2. The
energy spectrum is only slightly more stretched compared to
the data and the B(E2 : 2+1 ! 0+1 ) value is reasonably re-
produced in all cases. The inclusion of non-collective con-
figurations from neutron-proton isoscalar pairing compresses
the spectra by about 6%. and changes the B(E2 : 2+1 ! 0+1 )
from 101(2) e2 fm4 to 96(1) e2 fm4 in the calculation with the
EM1.8/2.0(8/16) interaction. It is worth mentioning that the
IM-SRG induced two-body part of E2 operator only con-
tributes ⇠ 3% to the total transition strength. The di↵erence
in the predicted low-lying states for Ti48 by EM1.8/2.0(10/16)
and EM1.8/2.0(8/16) is less than 1 %, comparable to the accu-
racy of the NO2B approximation in the IM-SRG calculation
[33]. In other words, the choice of emax = 8 provides rea-
sonable convergent solutions for Ti48 . We also notice that the
change of the mixing coe�cients (cI , cF) of Ca48 and Ti48 in
the ensemble reference state from (0.5, 0.5) to (0.1, 0.9) only
has a minor impact on the low-lying states (c.f. the supple-
mentary material).

The NME M0⌫ entering into the half-life of the 0⌫�� decay
in Eq. (1) is determined as

M0⌫ = h ( Ti48 )|e⌦O0⌫e�⌦| ( Ca48 )i , (11)

where the transition operator under long-wave approximation
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FIG. 2. The low-lying energy spectrum in Ti48 from the IM-
SRG+GCM calculation using di↵erent interactions labeled with
EM�/⇤(~⌦), in comparison with data [34]. The thickness of the
levels indicates the uncertainty from GCM calculations.
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and closure approximation is [35]

O0⌫ =
4⇡R
g2

A

Z
d3r1d3r2

Z
d3q

(2⇡)3

eiq·(r1�r2)

q(q + Ed)
J†µ (r1)Jµ†(r2).

(12)
The nuclear radius R = 1.2A1/3 is inserted to make the
NME dimensionless. q labels the momentum transfer and
Ed ⌘ Ē�(EI+EF)/2 is an average excitation energy, to which
the matrix element is not sensitive (Ē is an absolute average
energy). gA ⇡ 1.27 is used. The non-relativistic reduction
form of the current operator J†µ is adopted [9, 36]. In princi-
ple, the O0⌫ operator should be evolved to the same resolution
� as that of the chiral interaction with the free-space SRG. It

pn pairing ampl.

Weaker effect than shell-model and SO(8) results indicate.

Quenches matrix element by only about 17%.



Spatial Dependence
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Increasing Size of Single-Particle Space
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10 shells seems to be nearly good enough.



Variation with BE2 and Summary of Results
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The green band is our best (preliminary) guess for the matrix element.



Uncertainty and Things to Do

Hard to quantify uncertainty right now. On the GCM front, need to
test effects of fluctuations in

like-particle pairing gap
isovector pn pairing gap
triaxiality (though its effect is likely small here)

and include a few more shells. This may require a better way to
generate and select HFB vacua.

On the IMSRG front, need to incorporate three-body operators
into flow equations. We’re getting there (well . . . , not me, exactly).
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In Sum . . .

The DBD collaboration is great!

Jiangming Yao, Benjamin Bally, Tomás Rodrı́guez, Roland
Wirth, Heiko Hergert, and I have done and an ab initio
calculation of the (light) ν-exchange matrix element for the
decay of 48Ca. We haven’t included absolutely everything but
don’t expect the number to change too much when we do.

The method is applicable to other deformed open-shell
nuclei, even those with shape coexistence. 76Ge is next!

That’s all. Thanks very much
for your kind attention!
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