

Probing BSM Physics with Non-Standard $0\nu\beta\beta$

Lukas Graf

Max-Planck-Institut für Kernphysik

with Frank Deppisch, Francesco lachello and Jenni Kotila (1806.06058 + follow-up - to appear soon)

Progress and Challenges in $0\nu\beta\beta$, Trento, 2019

- non-standard neutrinoless double beta decay $(0\nu\beta\beta)$ mechanisms - effectively description at low energy
- microscopic description of $0\nu\beta\beta$ nuclear matrix elements (NMEs), nucleon form factors (NFFs) and phase-space factors (PSFs)
- \to formulae for $0\nu\beta\beta$ half-life + energy distribution & angular correlation of the outgoing electrons
- standard + non-standard mechanisms constraints on neutrino mass & new-physics couplings
- conclusions & outlook

• $\mathcal{L}_{0\nu\beta\beta} = \mathcal{L}_{LR} + \mathcal{L}_{SR}$, general Lagrangian in terms of effective couplings ϵ corresponding to the pointlike vertices at low energies

F. F. Deppisch, M. Hirsch, H. Päs: J. Phys. G 39 (2012), 124007

General Lagrangian for $0\nu\beta\beta$

- long-range part: $\mathcal{L}_{LR} = \frac{G_F}{\sqrt{2}} \left[J_{V-A_{\mu}}^{\dagger} j_{V-A}^{\mu} + \tilde{\sum_{\alpha,\beta}} \epsilon_{\alpha}^{\beta} J_{\alpha}^{\dagger} j_{\beta} \right]$, where $J_{\alpha}^{\dagger} = \bar{u}O_{\alpha}d, \ j_{\beta} = \bar{e}\mathcal{O}_{\beta}\nu$ dand $\mathcal{O}_{V\pm A} = \gamma^{\mu}(1\pm\gamma_5)$, ϵ_{LR} $\mathcal{O}_{S+P} = (1 \pm \gamma_5),$ $\mathcal{O}_{T_{P,I}} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}] (1 \pm \gamma_5)$
- short range part:

u

u

 $\mathcal{L}_{SR} = \frac{G_F^2}{2m_n} \left[\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu} \right],$ d

with
$$J = \bar{u}(1 \pm \gamma_5)d$$
,
 $J^{\mu} = \bar{u}\gamma^{\mu}(1 \pm \gamma_5)d$,
 $J^{\mu\nu} = \bar{u}\frac{i}{2}[\gamma^{\mu}, \gamma_{\nu}](1 \pm \gamma_5)d$
 $j = \bar{e}(1 \pm \gamma_5)e^C$
 $j^{\mu} = \bar{e}\gamma^{\mu}(1 \pm \gamma_5)e^C$
 d

H. Päs et. al.: Phys.Lett. B453 (1999) 194-198 and B498 (2001) 35-39

- connection to the experimental half-life if only a single ϵ is considered to be non-zero at a time: $T_{1/2}^{-1} = |\epsilon|^2 G_i |M_i|^2$
- $\implies 0\nu\beta\beta$ half-life sets constraints on effective couplings
- accurate calculation of nuclear matrix elements (NMEs) and phase-space factors (PSFs) is crucial for this estimation
- main focus here: short-range $0\nu\beta\beta$ decay mechanisms & their interference with the standard mechanism

• standard mass mechanism:

$$\Gamma^{0\nu\beta\beta}_{m_{\nu}} \sim m_{\nu}^2 G_F^4 m_F^2 Q_{\beta\beta}^5 \sim \left(\frac{m_{\nu}}{0.1 \ {\rm eV}}\right)^2 (10^{26} \ {\rm y})^{-1}$$

non-standard long-range mechanisms:

 $\Gamma_{\rm LR}^{0\nu\beta\beta} \sim v^2 \Lambda_{O7}^{-6} G_F^2 m_F^4 Q_{\beta\beta}^5 \sim \left(\frac{10^5 {\rm ~GeV}}{\Lambda_{O7}}\right)^6 (10^{26} {\rm ~y})^{-1}$

• non-standard short-range mechanisms:

 $\Gamma_{\rm SR}^{0\nu\beta\beta} \sim \Lambda_{O9}^{-10} m_F^6 Q_{\beta\beta}^5 \sim \left(\frac{5 \, {\rm TeV}}{\Lambda_{O9}}\right)^{10} (10^{26} \, {\rm y})^{-1}$

• standard mass mechanism:

$$\Gamma^{0\nu\beta\beta}_{m\nu} \sim m_{\nu}^2 G_F^4 m_F^2 Q_{\beta\beta}^5 \sim \left(\frac{m_{\nu}}{0.1 \ {\rm eV}}\right)^2 (10^{26} \ {\rm y})^{-1}$$

- non-standard long-range mechanisms: $\Gamma_{LR}^{0\nu\beta\beta} \sim v^2 \Lambda_{O_7}^{-6} G_F^2 m_F^4 Q_{\beta\beta}^5 \sim \left(\frac{10^5 \text{ GeV}}{\Lambda_{O_7}}\right)^6 (10^{26} \text{ y})^{-1}$
- non-standard short-range mechanisms: $\Gamma_{SR}^{0\nu\beta\beta} \sim \Lambda_{O_{Q}}^{-10} m_{F}^{6} Q_{\beta\beta}^{5} \sim \left(\frac{5 \text{ TeV}}{\Lambda_{O_{Q}}}\right)^{10} (10^{26} \text{ y})^{-1}$
- due to the intrinsic helicity flip, non-standard long-range mechanisms in typical scenarios suppressed indirectly by neutrino mass
- e.g. L-R symmetric models: small $y_{\nu} (y_{\nu}v = \sqrt{m_{\nu}M_N})$ $\implies 0\nu\beta\beta$ rate scales as $\Gamma_{LR}^{0\nu\beta\beta} \sim \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{5 \text{ TeV}}{\Lambda_{LR}}\right)^5 (10^{26} \text{ y})^{-1}$

J. C. Helo, M. Hirsch and T. Ota, JHEP 06, 006 (2016), [1602.03362]

Lukas Graf (MPIK)

Non-Standard Short-Range $0\nu\beta\beta$ Revisited

•
$$\mathcal{L}_{SR} = \frac{G_F^2}{2m_p} \left[\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu} \right]$$

- first: Is this formula complete?
- combination of left- and right-handed tensor currents = 0
- total number of independent low-energy $0\nu\beta\beta$ effective operators of dim. 9?
- Hilbert Series \implies 24

L. Lehman, A. Martin: 1503.07537, B. Henning, X. Lu, T. Melia, and H. Murayama: 1512.03433

• + linear algebra \implies indeed, \mathcal{L}_{SR} contains 24 independent effective 9D operators triggering $0\nu\beta\beta$, in agreement with other literature (e.g. M. L. Graesser: 1606.04549)

Lukas Graf (MPIK)

Short-Range $0\nu\beta\beta$ Rate

- differential rate of $0\nu\beta\beta$ decay reads

$$d\Gamma = 2\pi \overline{|\mathcal{R}|^2} \delta(E_1 + E_2 + E_F - E_I) \frac{d^3 \mathbf{p}_1}{(2\pi)^3} \frac{d^3 \mathbf{p}_2}{(2\pi)^3},$$

with the full matrix element given symbolically as

$$\mathcal{R} = \frac{G_F^2}{2m_p} \sum_{K,\Xi} \epsilon_K \left\langle e_{\mathbf{p}_1 s_1} \right| j_K^{\Xi} \left| e_{\mathbf{p}_2 s_2}^c \right\rangle \left\langle \mathcal{O}_F^+ \right| J_K^{\Xi} J_K^{'\Xi} \left| \mathcal{O}_I^+ \right\rangle$$

- fully differential rate for $0^+ \rightarrow 0^+ \; 0\nu\beta\beta$ decay

$$\begin{split} &\frac{d^2\Gamma}{dE_1d\cos\theta}=C\,w(E_1)\left(a(E_1)+b(E_1)\cos\theta\right),\\ &\text{where } C=\frac{G_F^4\,m_c^2}{16\pi^5},\;w(E_1)=E_1E_2p_1p_2 \end{split}$$

• quantites of interest: $a(E_1)$, $b(E_1)$

Lukas Graf (MPIK)

Nucleon Current Approximation

- considering nucleon isodoublet $\mathcal{N} = \binom{P}{N}$, the nucleon matrix elements of the quark currents are

$$\begin{split} \langle P(p) | \, \bar{u}(1 \pm \gamma_5) d | N(p') \rangle &= \bar{N}(p) \tau^+ \left[F_S^{(3)}(q^2) \pm F_P^{(3)}(q^2) \gamma_5 \right] \mathcal{N}(n), \\ \langle P(p) | \, \bar{u} \gamma^\mu (1 \pm \gamma_5) d | N(p') \rangle &= \bar{N}(p) \tau^+ \left[F_V^{(3)}(q^2) \gamma^\mu - i F_W^{(3)}(q^2) \sigma^{\mu\nu} q_\nu \right] \mathcal{N}(n) \\ &\pm \bar{\mathcal{N}}(p) \tau^+ \left[F_A^{(3)}(q^2) \gamma^\mu \gamma_5 - F_P^{(3)}(q^2) \gamma_5 q^\mu \right] \mathcal{N}(n), \\ P(p) | \, \bar{u} \sigma^{\mu\nu} (1 \pm \gamma_5) d | N(p') \rangle &= \bar{N}(p) \tau^+ \left[J^{\mu\nu} \pm \frac{i}{2} \varepsilon^{\mu\nu\rho\sigma} J_{\rho\sigma} \right] \mathcal{N}(n), \end{split}$$

where we have defined:

$$J^{\mu\nu} = T_q^{(3)}(q^2)\sigma^{\mu\nu} + T_2^{(3)}(q^2)\frac{i}{m_p}(\gamma^{\mu}q^{\nu} - \gamma^{\nu}q^{\mu}) + T_3^{(3)}(q^2)\frac{1}{m_p^2}(\sigma^{\mu\rho}q_{\rho}q^{\nu} - \sigma^{\nu\rho}q_{\rho}q^{\mu}).$$

 form factors - from experiment or theoretical calculation (old: MIT bag model, new: LQCD)

NR Expansion of the Nucleon Currents

• non-relativistic limit then gives the resulting approximated nuclear bilinears

$$\begin{split} J_{S\pm P} &= \sum_{a} \tau^{a}_{+} \delta\left(\mathbf{x} - \mathbf{r}_{a}\right) \left(F_{S}^{(3)} \pm F_{PS}^{(3)} \frac{1}{2m_{p}} (\boldsymbol{\sigma}_{a} \cdot \mathbf{q})\right), \\ J_{V\pm A}^{\mu} &= \sum_{a} \tau^{a}_{+} \delta\left(\mathbf{x} - \mathbf{r}_{a}\right) \left\{g^{\mu 0} \left[F_{V}I_{a} \pm \frac{F_{A}}{2m_{p}} \left(\boldsymbol{\sigma}_{a} \cdot \mathbf{Q} - \frac{F_{P}}{F_{A}} q^{0} \mathbf{Q} \cdot \boldsymbol{\sigma}_{a}\right)\right] \right. \\ &+ g^{\mu i} \left[\mp F_{A}(\boldsymbol{\sigma}_{a})_{i} - \frac{F_{V}}{2m_{p}} \left(\mathbf{Q}I_{a} - \left(1 - 2m_{p}\frac{F_{W}}{F_{V}}\right)i\boldsymbol{\sigma}_{a} \times \mathbf{q}\right)_{i}\right]\right\}, \\ J_{T\pm T_{5}}^{\mu\nu} &= \sum_{a} \tau^{a}_{+} \delta\left(\mathbf{x} - \mathbf{r}_{a}\right)T_{1}^{(3)} \left[(g^{\mu i}g^{\nu 0} - g^{\mu 0}g^{\nu i})T_{a}^{i} + g^{\mu j}g^{\nu k}\varepsilon^{ijk}\sigma^{ai} \\ &\pm \frac{i}{2}\varepsilon^{\mu\nu\rho\sigma}(g_{\mu i}g_{\nu 0} - g_{\mu 0}g_{\nu i})T_{ai} + g_{\mu m}g_{\nu n}\varepsilon_{mni}\sigma_{ai}\right], \end{split}$$

where we have defined:

$$T_a^i = \frac{i}{2m_p} \left[\left(1 - 2\frac{T_2^{(3)}}{T_1^{(3)}} \right) q^i I_a + \left(\boldsymbol{\sigma}_a \times \mathbf{Q}\right)^i \right].$$

Lukas Graf (MPIK)

Nucleon Form Factors

- we consider the following $q^2\ {\rm dependence}\ {\rm of}\ {\rm the}\ {\rm NFFs}$

$$\begin{split} F_{S}(q^{2}) &= \frac{g_{S}}{\left(1 + q^{2}/m_{V}^{2}\right)^{2}}, \qquad g_{S} = 1.0 \\ F_{PS}(q^{2}) &= \frac{g_{PS}}{\left(1 + q^{2}/m_{V}^{2}\right)^{2}} \frac{1}{1 + q^{2}/m_{\pi}^{2}}, \qquad g_{PS} = 349 \\ F_{V}(q^{2}) &= \frac{g_{V}}{\left(1 + q^{2}/m_{V}^{2}\right)^{2}}, \qquad g_{V} = 1.0, \\ F_{W}(q^{2}) &= \frac{g_{W}}{\left(1 + q^{2}/m_{V}^{2}\right)^{2}}, \qquad g_{W} = 3.7, \\ F_{A}(q^{2}) &= \frac{g_{A}}{\left(1 + q^{2}/m_{A}^{2}\right)^{2}}, \qquad g_{A} = 1.27 \\ F_{P}(q^{2}) &= \frac{g_{P}}{\left(1 + q^{2}/m_{A}^{2}\right)^{2}} \frac{1}{1 + q^{2}/m_{\pi}^{2}} \qquad g_{P} = 4g_{A}\frac{m_{P}^{2}}{m_{\pi}^{2}} \left(1 - \frac{m_{\pi}^{2}}{m_{A}^{2}}\right) = 231 \\ F_{T_{i}}(q^{2}) &= \frac{g_{T_{i}}}{\left(1 + q^{2}/m_{V}^{2}\right)^{2}}, \qquad g_{T_{1,2,3}} = 1.0, -3.3, 1.34 \end{split}$$

 $(m_V = 0.84 \text{ GeV}, m_A = 1.09 \text{ GeV}, m_\pi = 0.138 \text{ GeV})$

Lukas Graf (MPIK)

Nuclear Matrix Elements

•
$$F_{PS}(q^2) = \frac{g_{PS}}{(1+q^2/m_{PS}^2)^2} \frac{1}{1+q^2/m_{\pi}^2}$$

 $g_{PS} = 349$
M. Gonzalez-Alonso, O. Naviliat-Cuncic
and N. Severijns, Prog. Part. Nucl.
Phys. 104, 165 (2019), [1803.08732].

•
$$F_P(q^2) = \frac{g_A}{(1+q^2/m_A^2)^2} \frac{1}{1+q^2/m_\pi^2} \times \frac{4m_P^2}{m_\pi^2} \left(1 - \frac{m_\pi^2}{m_A^2}\right)$$

 $g_P = 231$

F. Simkovic, G. Pantis, J. D. Vergados and A. Faessler, Phys. Rev. C60, 055502 (1999), [hep-ph/9905509] V. Bernard, L. Elouadrhiri, U.-G. Meissner, J. Phys. G28, R1 (2002), [hep-ph/0107088]

 enhanced values of pseudoscalar form factors
 ⇒ additional NMEs taken into account

$$\begin{split} \mathcal{M}_{1} &= g_{S}^{2} \mathcal{M}_{F} \\ & (+ + -) \; \frac{g_{PS}^{2}}{12} \left(\mathcal{M}_{GT}^{'PP} - \mathcal{M}_{T}^{'PP} \right), \\ \mathcal{M}_{2} &= -2g_{T_{1}}^{2} \mathcal{M}_{GT}, \\ \mathcal{M}_{3} &= g_{V}^{2} \mathcal{M}_{F} \\ & (- - +) \; g_{A}^{2} \mathcal{M}_{GT}^{AA} \\ & (+ + -) \; \frac{g_{A}g_{P}}{6} \left(\mathcal{M}_{GT}^{'AP} - \mathcal{M}_{T}^{'AP} \right) \\ & + \; \frac{(g_{V} + g_{W})^{2}}{12} \left(\mathcal{M}_{GT}^{'P} - \mathcal{M}_{T}^{'PP} \right), \\ & (- - +) \; \frac{g_{P}^{2}}{48} \left(\mathcal{M}_{GT}^{'PP} - \mathcal{M}_{T}^{'PP} \right), \\ \mathcal{M}_{4}^{\mu} &= (- - + +) \; ig^{\mu 0} \; g_{A}g_{T_{1}} \mathcal{M}_{GT} \\ & (+ + - -) \; ig^{\mu 0} \; \frac{gPgT_{1}}{12} \left(\mathcal{M}_{GT}^{'P} - \mathcal{M}_{T}^{'P} \right), \\ \mathcal{M}_{5}^{\mu} &= \; g^{\mu 0}g_{S}g_{V} \mathcal{M}_{F} \\ & (+ + - -) \; g^{\mu 0} \; \frac{gAgPS}{12} \left(\tilde{\mathcal{M}}_{GT}^{AP} - \tilde{\mathcal{M}}_{T}^{AP} \right) \\ & (- - + +) \; g^{\mu 0} \; \frac{gPgPg_{S}}{24} \left(\mathcal{M}_{GT}^{'q_{0}PP} - \mathcal{M}_{T}^{'q_{0}PP} \right) \end{split}$$

Lukas Graf (MPIK)

Nuclear Matrix Elements

- selection of the relevant NMEs involved in the non-standard short-range mechanisms
- pseudoscalar enhancement \implies additional NMEs
- for \mathcal{M}_3 ('heavy neutrino exchange'):

$$\begin{split} & \mathsf{NME} & \tilde{h}_{o}(q^{2}) \\ & \mathcal{M}_{GT}^{\prime WW} = \left\langle \frac{\mathbf{q}^{2}}{m_{p}^{2}} h_{XX}(q^{2})(\boldsymbol{\sigma}_{a}\cdot\boldsymbol{\sigma}_{b}) \right\rangle & \tilde{h}_{XX}(q^{2}) \\ & \mathcal{M}_{T}^{\prime WW} = \left\langle \frac{\mathbf{q}^{2}}{m_{p}^{2}} h_{XX}(q^{2}) \mathbf{S}_{ab} \right\rangle & \tilde{h}_{XX}(q^{2}) \\ & \mathcal{M}_{GT}^{\prime AP} = \left\langle h_{AA}(q^{2})(\boldsymbol{\sigma}_{a}\cdot\boldsymbol{\sigma}_{b}) \right\rangle & \tilde{h}_{AA}(q^{2}) = \frac{1}{\left(1+q^{2}/m_{A}^{2}\right)^{4}} \\ & \mathcal{M}_{GT}^{\prime AP} = \left\langle \frac{\mathbf{q}^{2}}{m_{p}^{2}} h_{AP}(q^{2})(\boldsymbol{\sigma}_{a}\cdot\boldsymbol{\sigma}_{b}) \right\rangle & \tilde{h}_{AP}(q^{2}) = \frac{1}{\left(1+q^{2}/m_{A}^{2}\right)^{4}} \frac{1}{1+q^{2}/m_{\pi}^{2}} \\ & \mathcal{M}_{T}^{\prime AP} = \left\langle \frac{\mathbf{q}^{2}}{m_{p}^{2}} h_{AP}(q^{2}) \mathbf{S}_{ab} \right\rangle & \tilde{h}_{AP}(q^{2}) \\ & \mathcal{M}_{T}^{\prime PP} = \left\langle \frac{\mathbf{q}^{4}}{m_{p}^{4}} h_{PP}(q^{2})(\boldsymbol{\sigma}_{a}\cdot\boldsymbol{\sigma}_{b}) \right\rangle & \tilde{h}_{PP}(q^{2}) \\ & \mathcal{M}_{T}^{\prime PP} = \left\langle \frac{\mathbf{q}^{4}}{m_{p}^{4}} h_{PP}(q^{2}) \mathbf{S}_{ab} \right\rangle & \tilde{h}_{PP}(q^{2}) \end{split}$$

Nuclear Matrix Elements

	NME	$ ilde{h}_{\circ}(q^2)$
	$\mathcal{M}_F = \langle h_{XX}(q^2) \rangle$	$\tilde{h}_{XX}(q^2) = \frac{1}{\left(1+q^2/m_V^2\right)^4}$
\mathcal{M}_1	$\mathcal{M}_{GT}^{'PP} = \left\langle rac{\mathbf{q}^2}{m_p^2} h_{PP}(q^2) (oldsymbol{\sigma}_a \cdot oldsymbol{\sigma}_b) ight angle$	$\tilde{h}_{PP}(q^2) = \frac{1}{\left(1+q^2/m_A^2\right)^4} \frac{1}{\left(1+q^2/m_\pi^2\right)^2}$
	$\mathcal{M}_{T}^{\prime PP}=\left\langle rac{\mathbf{q}^{2}}{m_{p}^{2}}h_{PP}(q^{2})\mathbf{S}_{ab} ight angle$	$\tilde{h}_{PP}(q^2)$
\mathcal{M}_2	$\mathcal{M}_{GT}^{T_1T_1} = \langle h_{XX}(q^2)(\boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b) \rangle$	$\tilde{h}_{XX}(q^2)$
	$\mathcal{M}_{GT}^{AT_1} = \langle h_{AX}(q^2)(\boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b) angle$	$\tilde{h}_{AX}(q^2) = \frac{1}{\left(1+q^2/m_V^2\right)^2} \frac{1}{\left(1+q^2/m_A^2\right)^2}$
\mathcal{M}_4	$\mathcal{M}_{GT}^{\prime PT_1} = \left\langle rac{\mathbf{q}^2}{m_p^2} h_{XP}(q^2) (oldsymbol{\sigma}_a \cdot oldsymbol{\sigma}_b) ight angle$	$\tilde{h}_{XP}(q^2) = \frac{1}{\left(1+q^2/m_V^2\right)^2} \frac{1}{\left(1+q^2/m_A^2\right)^2} \frac{1}{1+q^2/m_\pi^2}$
	$\mathcal{M}_T^{\prime PT_1} = \left\langle rac{\mathbf{q}^2}{m_p^2} h_{XP}(q^2) \mathbf{S}_{ab} ight angle$	$\tilde{h}_{XP}(q^2)$
	$\widetilde{\mathcal{M}}_{GT}^{AP} = \left\langle \frac{\mathbf{Q} \cdot \mathbf{q}}{m_p^2} h_{AP}(q^2) (\boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b) \right\rangle \qquad \approx \mathcal{M}_{GT}^{\prime AP}$	${ ilde h}_{AP}(q^2)$
11-	$\tilde{\mathcal{M}}_{T}^{AP} = \left\langle \frac{\mathbf{Q} \cdot \mathbf{q}}{m_{p}^{2}} h_{AP}(q^{2}) \mathbf{S}_{ab} \right\rangle \qquad \approx \mathcal{M}_{T}^{'AP}$	$\tilde{h}_{AP}(q^2)$
JV15	$\mathcal{M}_{GT}^{\prime q_0 PP} = \left\langle \frac{q_0 \mathbf{q}^2}{m_p^3} h_{PP}(q^2) (\boldsymbol{\sigma}_a \cdot \boldsymbol{\sigma}_b) \right\rangle \approx 10^{-2} \mathcal{M}_{GT}^{\prime PP}$	$\tilde{h}_{PP}(q^2)$
	$\mathcal{M}_T^{\prime q_0 PP} = \left\langle \frac{q_0 \mathbf{q}^2}{m_p^3} h_{PP}(q^2) \mathbf{S}_{ab} \right\rangle \qquad \approx 10^{-2} \mathcal{M}_T^{\prime PP}$	$\tilde{h}_{PP}(q^2)$

Nuclear Model: IBM-2

- IBM-2 the very large shell model space truncated to states built from pairs of nucleons with J=0,2
- these pairs bosons are then assumed to be collective
- Hamiltonian constructed phenomenologically, two- and four valence-nucleon states generated by a schematic interaction
- fermion operators mapped onto a boson space
- matrix elements of the mapped operators evaluated with realistic wave functions
 - J. Barea and F. lachello, Phys. Rev. C79, 044301 (2009)

Nuclear Model: IBM-2

(figure from Jenni Kotila)

NMEs - Numerical Results

Isotope	\mathcal{M}_F	\mathcal{M}_{GT}^{VV}	\mathcal{M}_{GT}^{AA}	\mathcal{M}_{GT}^{A}	$\mathcal{M}_{GT}^{\prime WW}$	$\mathcal{M}_T^{\prime WW}$	$\mathcal{M}_{GT}^{'AP}$	$\mathcal{M}_T^{'AP} \ \mathcal{N}$	$\Lambda_{GT}^{'P}$	$\mathcal{M}_T^{'P}$	$\mathcal{M}_{GT}^{'PP}$	$\mathcal{M}_T^{'PP}$	$\mathcal{M}_{GT}^{''PP}$	$\mathcal{M}_T^{''PP}$	$\mathcal{M}_{GT}^{'q_0PP}$	$\mathcal{M}_{T}^{'q_{0}PP}$
76 Ge	-48.89	173.5	170.0	174.3	-2.945	-6.541	2.110	-1.310 2.	.255	-1.183	0.798	-0.271	0.028	-0.022	0.008	-0.003
^{82}Se	-41.22	143.6	140.7	144.3	-2.456	-6.206	1.758	-1.249 1.	.878	-1.183	0.660	-0.259	0.024	-0.021	0.007	-0.003
$^{100}{\rm Mo}$	-51.96	188.6	181.9	188.1	-4.590	8.055	2.273	1.590 2.	.464	1.128	0.910	0.317	0.029	0.027	0.009	0.003
$^{128}\mathrm{Te}$	-41.82	134.1	131.7	134.9	-2.439	-4.519	1.667	-0.890 1.	.776	-1.433	0.617	-0.178	0.023	-0.015	0.006	-0.002
$^{130}\mathrm{Te}$	-38.05	121.9	119.7	122.6	-1.951	-4.105	1.514	-0.807 1.	.613	-0.726	0.561	-0.160	0.021	-0.014	0.006	-0.002
$^{134}{\sf Xe}$	-39.45	127.2	124.7	127.8	-2.111	-4.191	1.564	-0.823 1.	.669	-0.741	0.585	-0.163	0.021	-0.014	0.006	-0.002
$^{136}{\sf Xe}$	-29.83	96.1	94.18	96.56	-1.625	-3.158	1.177	-0.620 1.	.257	-0.558	0.442	-0.123	0.016	-0.011	0.004	-0.001
^{150}Nd	-30.18	103.1	100.0	103.2	-2.230	2.955	1.292	0.581 1.	.392	0.523	0.497	0.116	0.017	0.010	0.005	0.001
$^{154}\mathrm{Sm}$	-31.83	110.9	107.1	110.7	-2.618	3.397	1.356	0.668 1.	.467	0.601	0.536	0.135	0.018	0.012	0.005	0.001
^{148}Nd	-31.71	105.8	103.0	106.0	-2.145	2.557	1.346	0.510 1.	.445	0.460	0.508	0.104	0.018	0.009	0.005	0.001
⁹⁶ Zr	-35.31	128.8	124.3	128.5	-3.116	5.436	1.523	1.090 1.	.652	0.984	0.613	0.228	0.020	0.019	0.006	0.002
^{110}Pd	-43.52	157.0	151.2	156.5	-3.945	6.816	1.892	1.356 2.	.055	1.223	0.762	0.271	0.024	0.023	0.008	0.003
^{116}Cd	-32.45	115.2	110.5	114.6	-3.069	4.222	1.374	0.843 1.	.497	0.760	0.565	0.169	0.017	0.015	0.006	0.002
^{124}Sn	-33.19	106.1	104.2	106.7	-1.701	-3.655	1.321	-0.723 1.	.407	-0.651	0.489	-0.146	0.018	-0.012	0.005	-0.001
¹⁹⁸ Pt	-31.87	109.0	104.4	108.4	-2.992	3.172	1.334	0.626 1.	.454	0.564	0.546	0.119	0.017	0.011	0.005	0.001
^{160}Gd	-41.43	148.6	142.9	148.0	-3.808	5.231	1.776	1.023 1.	.931	0.920	0.722	0.205	0.023	0.018	0.007	0.002
^{232}Th	-44.04	160.3	154.2	159.7	-4.116	6.146	1.900	1.185 2.	.067	1.063	0.783	0.230	0.024	0.021	0.008	0.002
238 U	-52.48	190.5	183.1	189.7	-4.981	7.206	2.255	1.393 2.	.456	1.251	0.932	0.272	0.029	0.024	0.009	0.003

NMEs - Numerical Results

Leptonic Matrix Elements

- the key ingredient for the phase space factors (PSFs): the electron wave functions
- position-dependent wavefunction of each electron can be expanded in terms of spherical waves

$$e_{{\bf p}s}({\bf r})=e_{{\bf p}s}^{S_1/2}({\bf r})+e_{{\bf p}s}^{P_1/2}({\bf r})+\ldots$$

(**p** is the asymptotic momentum of the electron at long distance and s denotes its spin projection)

$$e_{\mathbf{p}s}^{S_1/2}(\mathbf{r}) = \begin{pmatrix} g_{-1}(E,r)\chi_s\\ f_1(E,r)(\boldsymbol{\sigma}\cdot\hat{\mathbf{p}})\chi_s \end{pmatrix}, \quad e_{\mathbf{p}s}^{P_1/2}(\mathbf{r}) = i \begin{pmatrix} g_1(E,r)(\boldsymbol{\sigma}\cdot\hat{\mathbf{r}})(\boldsymbol{\sigma}\cdot\hat{\mathbf{p}})\chi_s\\ -f_{-1}(E,r)(\boldsymbol{\sigma}\cdot\hat{\mathbf{r}})\chi_s \end{pmatrix},$$

- $g_{\kappa}(E,r)$ and $f_{\kappa}(E,r)$ are the radial wavefunctions of the 'large' and 'small' components

Leptonic Matrix Elements

• realistical calculation: radial functions satisfying the Dirac equation with potential taking into account the finite nuclear size and the electron screening

J. Kotila and F. lachello, Phys. Rev. C85, 034316 (2012), [1209.5722]

• approximation: electron wavefunctions evaluated at the nuclear radius $r=R_A$ - nucleons decay largely at the surface due to Pauli-blocking of inner states

$$f_{\pm}(E) \equiv f_{\pm}(E, R_A), \ g_{\pm}(E) \equiv g_{\pm}(E, R_A)$$

• 8 different leptonic matrix elements (6 independent ones)

$$\begin{split} f_{11\pm}^{(0)} &= \pm |f^{-1-1}|^2 \pm |f_{11}|^2 + |f^{-1}_1|^2 + |f_1^{-1}|^2 \\ f_{11\pm}^{(1)} &= -2 \left[f^{-1}_1 f_1^{-1} \pm f^{-1-1} f_{11} \right] & f^{-1-1} = g_{-1}(E_1)g_{-1}(E_2) \\ f_{16}^{(0)} &= 4 \left[|f_{11}|^2 - |f^{-1-1}|^2 \right] & f_{11} = f_1(E_1)f_1(E_2) \\ f_{66}^{(0)} &= 16 \left[|f^{-1-1}|^2 + |f_{11}|^2 \right] & f^{-1}_1 = g_{-1}(E_1)f_1(E_2) \\ f_{66}^{(1)} &= 32 \left[f^{-1-1}f_{11} \right] & f_1^{-1} = f_1(E_1)g_{-1}(E_2) \\ f_{16}^{(1)} &= 0 \end{split}$$

Resulting Coefficients $a(E_1)$ and $b(E_1)$

• considering \mathcal{L}_{SR} + the mass mechanism $\rightarrow a(E_1)$ and $b(E_1)$ entering the fully differential rate for $0^+ \rightarrow 0^+ 0\nu\beta\beta$ decay:

$$\begin{split} a(E_1) &= 2f_{11+}^{(0)} \left| \sum_{I=1}^3 \epsilon_I^L \mathcal{M}_I + \epsilon_{\nu} \mathcal{M}_{\nu} \right|^2 + 2f_{11+}^{(0)} \left| \sum_{I=1}^3 \epsilon_I^R \mathcal{M}_I \right|^2 \\ &+ 2f_{11-}^{(0)} 2 \mathrm{Re} \left[\left(\sum_{I=1}^3 \epsilon_I^L \mathcal{M}_I + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=1}^3 \epsilon_I^R \mathcal{M}_I \right)^* \right] \\ &+ \frac{1}{8} f_{66}^{(0)} \left| \sum_{I=4}^5 \epsilon_I \mathcal{M}_I \right|^2 + \frac{1}{2} f_{16}^{(0)} 2 \mathrm{Re} \left[\left(\sum_{I=1}^3 \epsilon_I^L \mathcal{M}_I + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=4}^5 \epsilon_I \mathcal{M}_I \right)^* \right] \\ &- \frac{1}{2} f_{16}^{(0)} 2 \mathrm{Re} \left[\left(\sum_{I=1}^3 \epsilon_I^R \mathcal{M}_I \right) \left(\sum_{I=4}^5 \epsilon_I \mathcal{M}_I \right)^* \right] , \\ b(E_1) &= 2 f_{11+}^{(1)} \left| \sum_{I=1}^3 \epsilon_I^L \mathcal{M}_I + \epsilon_{\nu} \mathcal{M}_{\nu} \right|^2 + 2 f_{11+}^{(1)} \left| \sum_{I=1}^3 \epsilon_I^R \mathcal{M}_I \right|^2 + \frac{1}{8} f_{66}^{(1)} \left| \sum_{I=4}^5 \epsilon_I \mathcal{M}_I \right|^2 \end{split}$$

Energy Distribution

Angular Correlation

Integrated Phase-Space Factors

PSFs obtained by integration of the above leptonic matrix elements

$$G_{ij}^{(a)} = \frac{2C}{\ln 2} \frac{g_{ij}^{(a)}}{4R_A^2} \int_{m_e}^{Q_{\beta\beta}+m_e} dE_1 w(E_1) f_{ij}^{(a)}(E_1, Q_{\beta\beta}+2m_e-E_1),$$

which enters the half-life

 $T_{1/2}^{-1} = \left| \frac{m_{\beta\beta}}{m_e} \right|^2 G_{\nu} |\mathcal{M}_{\nu}|^2$

- both distributions and integrated PSFs calculated for a wide range of isotopes
- results consistent with previous calculations

A	$G_{11}^{(0)}$	$G_{11-}^{(0)}$	$G_{66}^{(0)}$	$G_{16}^{(0)}$	$G_{11}^{(1)}$	$G_{66}^{(1)}$
⁷⁶ Ge	4.720	-0.561	2.640	1.739	-3.908	1.954
⁸² Se	20.37	-1.425	10.90	5.849	-18.16	9.079
⁹⁶ Zr	41.16	-2.379	21.76	10.81	-43.23	18.67
¹⁰⁰ Mo	31.82	-2.105	16.96	8.913	-28.50	14.25
¹¹⁰ Pd	9.614	-1.083	5.348	3.460	-8.028	4.014
¹¹⁶ Cd	33.38	-2.375	17.88	9.685	-38.74	14.83
^{124}Sn	18.06	-1.685	9.870	5.953	-15.52	7.760
¹²⁸ Te	1.170	-0.312	0.741	0.626	-0.780	0.390
¹³⁰ Te	28.40	-2.284	15.34	8.733	-24.89	12.45
¹³⁴ Xe	1.193	-0.327	0.760	0.646	-0.788	0.394
¹³⁶ Xe	29.11	-2.395	15.75	9.048	-25.44	12.72
148 Nd	20.15	-2.168	11.16	7.096	-28.38	8.493
150 Nd	126.0	-6.250	66.11	30.88	-115.7	57.83
154 Sm	6.010	-1.078	3.544	2.677	-4.582	2.291
160 Gd	19.05	-2.258	10.64	7.012	-15.83	7.917
¹⁹⁸ Pt	15.03	-2.610	8.818	6.555	-11.69	5.845
232 Th	27.74	-4.839	16.29	12.04	-21.83	10.91
²³⁸ U	66.89	-8.353	37.62	24.92	-56.03	28.01

General Half-Life Formula

- considering $\mathcal{L}_{\mathit{SR}}$ + the mass mechanism
- \implies general formula for half-life of $0\nu\beta\beta$ decay induced by the short-range mechanisms + the standard mechanism and their mutual interference:

$$\begin{split} T_{1/2}^{-1} &= G_{11+}^{(0)} \left| \sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right|^{2} + G_{11+}^{(0)} \left| \sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right|^{2} \\ &+ G_{11-}^{(0)} 2 \mathsf{Re} \left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right)^{*} \right] \\ &+ G_{66}^{(0)} \left| \sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right|^{2} + G_{16}^{(0)} 2 \mathsf{Re} \left[\left(\sum_{I=1}^{3} \epsilon_{I}^{L} \mathcal{M}_{I} + \epsilon_{\nu} \mathcal{M}_{\nu} \right) \left(\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right)^{*} \right] \\ &- G_{16}^{(0)} 2 \mathsf{Re} \left[\left(\sum_{I=1}^{3} \epsilon_{I}^{R} \mathcal{M}_{I} \right) \left(\sum_{I=4}^{5} \epsilon_{I} \mathcal{M}_{I} \right)^{*} \right] \end{split}$$

Limits on Couplings

- new NMEs + new PSFs + current exp. bounds on $T_{1/2}^{0\nu\beta\beta}$ \implies new limits on effective neutrino mass $\langle m_{\nu} \rangle$ and new-physics couplings ϵ_I (all ϵ limits $\times 10^{-10}$)

$$\langle m_{\nu} \rangle = \sum U_{ei}^2 m_{\nu_i}$$

$$\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu}$$

	$T^{\rm exp}_{1/2} \ [y]$	$\langle m_{\nu} \rangle ~[{\rm eV}]$		$T_{1/2}^{\exp}[y]$	$ \epsilon_1^{XX} $	$ \epsilon_1^{LR} $	$ \epsilon_2^{XX} $	$ \epsilon_3^{XX} $	$ \epsilon_3^{LR} $	$ \epsilon_4^{XX,LR} $	$ \epsilon_5^{XX} $	$ \epsilon_5^{RL,LR} $
$^{76}\mathrm{Ge}$	8×10^{25}	0.093	^{76}G	$e = 8 \times 10^{25}$	1.88	1.86	93.8	56.2	88.8	126	39.3	33.3
$^{82}\mathrm{Se}$	2.4×10^{24}	0.32	⁸² S	e 2.4×10^{24}	6.24	6.17	315	188	299	435	131	111
$^{96}\mathrm{Zr}$	9.2×10^{21}	4.2	^{96}Z	r 9.2×10^{21}	90.7	89.5	3990	2370	3660	5220	2520	2000
$^{100}\mathrm{Mo}$	1.1×10^{24}	0.34	100 N	fo 1.1×10^{24}	6.32	6.24	283	169	263	371	174	139
$^{116}\mathrm{Cd}$	2.2×10^{23}	1.3	¹¹⁶ C	d 2.2×10^{23}	22.0	21.7	1010	606	961	1330	619	493
$^{130}\mathrm{Te}$	1.5×10^{24}	1.9	130 T	1.5×10^{24}	36.1	35.6	1780	1040	1720	2250	696	581
$^{130}\mathrm{Te}$	1.5×10^{25}	0.13	130 T	1.5×10^{25}	2.54	2.51	126	73.6	121	172	53.0	44.3
$^{136}\mathrm{Xe}$	1.07×10^{26}	0.059	¹³⁶ X	${\rm Ke}~1.07\times10^{26}$	6 1.20	1.18	59.0	34.7	57.2	80.3	25.4	21.8
$^{150}\mathrm{Nd}$	2.0×10^{22}	1.9	^{150}N	Id 2.0×10^{22}	41.9	41.4	1930	1140	1820	2580	1060	1856
	1 G^2											
con	strain	ing the	e scale	e: 🕂	= -	<u>~ F</u>	ϵ_{I}				く、	

• constraining the scale:
$$\frac{1}{\Lambda_{NP}^5} = \frac{G_F^2}{2m_p} \epsilon_I$$

Lukas Graf (MPIK)

Limits on Couplings

- above: effective couplings at $\Lambda_{\rm QCD}\approx 1~{\rm GeV}$
- more correctly: new-physics scale $\Lambda_{\rm NP}\approx 1~{\rm TeV}$
- $\bullet \implies \mathsf{QCD} \text{ running taken into account}$

M. González, M. Hirsch and S. G. Kovalenko, Phys. Rev. D93, 013017 (2016), [1511.03945]

$c_1 J J j + c_2 J^{\mu\nu} J_{\mu\nu} j$	$+ c_3 J^{\mu} J_{\mu} j + c_4$	$_4 J^\mu J_{\mu\nu} j^\nu$	$+ c_5 J^{\mu} J j_{\mu}$
---	---------------------------------	-----------------------------	---------------------------

	$T_{1/2}^{\exp}$ [y]	$ c_1^{XX} $	$ c_1^{LR} $	$ c_2^{XX} $	$ c_3^{XX} $	$ c_3^{LR} $	$ c_4^{XX} $	$ c_4^{LR} $	$ c_5^{XX} $	$ c_5^{RL,LR} $
$^{76}\mathrm{Ge}$	8×10^{25}	0.762	0.445	145	80.2	106	315	203	16.3	8.07
$^{82}\mathrm{Se}$	2.4×10^{24}	2.53	1.48	478	268	356	1080	702	54.4	26.9
$^{96}\mathrm{Zr}$	9.2×10^{21}	36.6	21.4	7530	3380	4360	14000	8410	1030	485
^{100}Mo	1.1×10^{24}	2.55	1.49	518	242	313	995	598	71.5	33.6
$^{116}\mathrm{Cd}$	2.2×10^{23}	8.88	5.19	1770	866	1140	3570	2150	255	119
$^{130}\mathrm{Te}$	1.5×10^{24}	14.6	8.53	2800	1490	2050	5620	3620	289	141
$^{130}\mathrm{Te}$	1.5×10^{25}	1.03	0.602	197	105	144	429	277	22.0	1020
$^{136}\mathrm{Xe}$	1.07×10^{26}	0.485	0.283	93.0	49.5	68.1	202	129	10.5	B :12
$^{150}\mathrm{Nd}$	2.0×10^{22}	17.0	9.91	3380	1630	2170	6810	4170	æ.	207
								2	~	

Interference with Mass Mechanism

Lukas Graf (MPIK)

Probing BSM Physics with Non-Standard $0\nu\beta\beta$

28 / 33

Interference with Mass Mechanism

Probing BSM Physics with Non-Standard $0\nu\beta\beta$

29 / 33

Interference with Mass Mechanism

Non-Standard Long-Range Mechanisms

- more complicated, nontrivial neutrino potential (from the neutrino propagator)
- terms proportional to neutrino mass, energy and momentum come with different neutrino potentials

$$v_m = \frac{1}{k_0 + A_1} + \frac{1}{k_0 + A_2}, \ v_{k_0} = \frac{k_0(E_1 - E_2)}{(k_0 + A_1)(k_0 + A_2)}, \ v_{\mathbf{k}} = \mathbf{k} \left(\frac{1}{k_0 + A_1} + \frac{1}{k_0 + A_2}\right)$$

- more combinations contributing to $0^+ \rightarrow 0^+$ \implies possibly additional/new relevant (non-negligible) terms, electron p-wave important
- additional PSFs entering the half-life formula

Discrimination of $0\nu\beta\beta$ Decay Mechanism

- analysis of angular correlation between the emitted electrons
- in certain cases the operators correspond to a final state of opposite electron chiralities => can be distinguished by SuperNEMO from the purely left-handed current interaction via the measurement of the decay distribution

R. Arnold et al. (NEMO-3): Phys. Rev. D98 (2007), 232501

- some operators can be probed at the LHC
- comparison with related processes (capture or $0\nu\beta^+\beta^+$)
- another way: comparing ratios of half life measurements for different isotopes
 - F. Deppisch, H. Päs: Phys. Rev. Lett. 89 (2014), 111101

- a number of different non-standard mechanisms can contribute to $0\nu\beta\beta$
- we provide a detailed description of the short-range scenarios
 ↔ variety of NMEs calculated using IBM-2, combined with accurate PSFs, analysis of limits on BSM physics
- observation of $0\nu\beta\beta \rightarrow$ hint for the scale of the BSM physics
- outlook: revisiting long-range; comparison/connection with $\chi {\rm EFT?}$, 'new' contributions?

- a number of different non-standard mechanisms can contribute to $0\nu\beta\beta$
- we provide a detailed description of the short-range scenarios
 ↔ variety of NMEs calculated using IBM-2, combined with accurate PSFs, analysis of limits on BSM physics
- observation of $0\nu\beta\beta \rightarrow$ hint for the scale of the BSM physics \rightarrow see also Frank's talk!
- outlook: revisiting long-range; comparison/connection with $\chi {\rm EFT?},$ 'new' contributions?

Thank You for attention!