Renormalization of the $0\nu\beta\beta$ operator within the realistic shell model

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

July 18th, 2019 ECT*, Trento

Acknowledgements

- A. Gargano (INFN-NA)
- N. Itaco (UNICAMPANIA and INFN-NA)
- R. Mancino (UNICAMPANIA and INFN-NA)
- F. Nowacki (IPHC Strasbourg and UNICAMPANIA)
- L. C. (INFN-NA)

Outline

- The calculation of the nuclear matrix element $M^{0\nu}$ of $0\nu\beta\beta$ decay
- The realistic nuclear shell model (RSM)
- Present work:
 - Testing the RSM: calculation of spectroscopic properties, GT strengths, and the nuclear matrix elements of $2\nu\beta\beta$ decay
 - RSM calculation of $0\nu\beta\beta$ nuclear matrix element $M^{0\nu}$ and comparison with other SM results
 - Perturbative properties of the $0\nu\beta\beta$ effective operator
 - Evaluation of the M^{0ν}
- Outlook

Candidates to the detection of the $0\nu\beta\beta$ -decay

- The main factors to locate the nuclei that are the best candidates to detect the $0\nu\beta\beta$ -decay are:
 - the Q-value;
 - the phase-space factor G^{0ν};
- $\beta \beta$ $\frac{4^{8}Ca}{9^{6}Zr}$ $\frac{1^{50}Nd}{1^{30}Te}$ $\frac{1^{30}Te}{1^{30}Cd}$ $\frac{1^{30}Te}{1^{30}Cd}$
- the isotopic abundance

- First group: ⁷⁶Ge, ¹³⁰Te, and ¹³⁶Xe.
- Second group: ⁸²Se,¹⁰⁰Mo, and ¹¹⁶Cd.
- Third group: ⁴⁸Ca, ⁹⁶Zr, and ¹⁵⁰Nd.

To describe the nuclear properties detected in the experiments, one needs to resort to nuclear structure models.

- Every model is characterized by a certain number of parameters.
- The calculated value of $M^{0\nu}$ may depend upon the chosen nuclear structure model.

All models may present advantages and/or shortcomings to calculate $M^{0\nu}$

Nuclear structure calculations

 The spread of nuclear structure calculations evidences inconsistencies among results obtained with different models

NFN

The renormalization of g_A, g_V

There are some arguments to employ g_A^{eff} , g_V^{eff} . Effective coupling constants are necessary to take into account:

- the degrees of freedom that have been excluded because of the truncation of the Hilbert space;
- the short-range correlations excluded to soften the *NN* force, when starting from realistic potentials;
- contributions to the free values of g_A, g_V from meson exchange currents.

In this study we tackle the first two issues deriving effective-decay operators by way of the many-body perturbation theory

- H. Q. Song, H. F. Wu, T. T. S. Kuo, Phys. Rev. C 40, 2260 (1989)
- A. Staudt, T. T. S. Kuo, H. V. Klapdor-Kleingrothaus, Phys. Rev. C 46, 871 (1992)
- J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013)

The shell-model hamiltonian has to take into account all the degrees of freedom not explicitly considered in an effective way

Two alternative approaches

- phenomenological
- microscopic

$$V_{NN}$$
 (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian. This may be provided by a similarity transformation Ω of the full Hilbert-space hamiltonian H

An example: ¹⁹F

- 9 protons & 10 neutrons interacting in the full Hilbert space
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- Penormalize its short range correlations
- Identify the model space better tailored to study the physics problem
- Derive the effective shell-model hamiltonian and consistently effective transition operators, by way of the many-body perturbation theory
- Calculate the observables (energies, e.m. transition probabilities, β-decay amplitudes...), using only theoretical SP energies, two-body matrix elements, and effective operators.

Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion ?

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$, our chosen cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$
 - SRG

Strong short-range repulsion

The shell-model effective hamiltonian

We start from the many-body hamiltonian H defined in the full Hilbert space:

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$
$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \xrightarrow{\mathcal{H} = \Omega^{-1} H\Omega} \begin{pmatrix} PHP & PHQ \\ \hline 0 & QHQ \end{pmatrix}$$

$$H_{\text{eff}} = P\mathcal{H}P$$

Suzuki & Lee $\Rightarrow \Omega = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q\omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

The perturbative approach to the shell-model H^{eff}

Exact calculation of the \hat{Q} -box is computationally prohibitive for manybody system \Rightarrow we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

Luigi Coraggio

Progress and Challenges in Neutrinoless Double Beta Decay

\hat{Q} -box perturbative expansion

\hat{Q} -box perturbative expansion

<u> Â-box:</u> 3rd-order 2-b diagrams

L.C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann. Phys. **327**, 2125-2151 (2012)

\hat{Q} -box perturbative expansion

L.C., A. Covello, A. Gargano, N. Itaco, and T. T. S. Kuo, Ann. Phys. **327** , 2125-2151 (2012)

Effective operators for decay amplitudes

- Ψ_α indicates eigenstates of the full hamiltonian *H* corresponding to eigenvalues *E*_α
- Φ_{α} indicates the eigenvectors obtained diagonalizing H_{eff} in the reduced model space *P* and corresponding to the same eigenvalues E_{α}

$$\Rightarrow \ket{\Phi_{lpha}} = P \ket{\Psi_{lpha}}$$

Obviously, for any decay-operator Θ :

 $\langle \Phi_{\alpha} | \Theta | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \Theta | \Psi_{\beta} \rangle$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{\mathrm{eff}} = \sum_{lphaeta} \ket{\Phi_lpha}ig\langle \Psi_lpha | \Theta | \Psi_etaig
angle ig\langle \Phi_eta |$$

Consequently, the matrix elements of Θ_{eff} are

$$\langle \Phi_{lpha} | \Theta_{
m eff} | \Phi_{eta}
angle = \langle \Psi_{lpha} | \Theta | \Psi_{eta}
angle$$

The shell-model effective operators

Any shell-model effective operator may be derived consistently with the \hat{Q} -box-plus-folded-diagram approach to H_{eff}

It has been demonstrated that, for any bare operator Θ , a non-Hermitian effective operator Θ_{eff} can be written in the following form:

$$\Theta_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

where

$$\hat{Q}_m = rac{1}{m!} rac{d^m \hat{Q}(\epsilon)}{d\epsilon^m} \Big|_{\epsilon=\epsilon_0} \; ,$$

 ϵ_0 being the model-space eigenvalue of the unperturbed hamiltonian H_0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The shell-model effective operators

The χ_n operators are defined as follows:

$$\begin{split} \chi_{0} &= (\hat{\Theta}_{0} + h.c.) + \Theta_{00} , \\ \chi_{1} &= (\hat{\Theta}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{01}\hat{Q} + h.c.) , \\ \chi_{2} &= (\hat{\Theta}_{1}\hat{Q}_{1}\hat{Q} + h.c.) + (\hat{\Theta}_{2}\hat{Q}\hat{Q} + h.c.) + \\ (\hat{\Theta}_{02}\hat{Q}\hat{Q} + h.c.) + \hat{Q}\hat{\Theta}_{11}\hat{Q} , \\ & \dots \end{split}$$

and

$$\hat{\Theta}(\epsilon) = P\Theta P + P\Theta Q \frac{1}{\epsilon - QHQ} QH_1 P$$
$$\hat{\Theta}(\epsilon_1; \epsilon_2) = PH_1 Q \frac{1}{\epsilon_1 - QHQ} \times Q\Theta Q \frac{1}{\epsilon_2 - QHQ} QH_1 P$$

$$\hat{\Theta}_{m} = \frac{1}{m!} \frac{d^{m}\hat{\Theta}(\epsilon)}{d\epsilon^{m}} \Big|_{\epsilon=\epsilon_{0}}$$
$$\hat{\Theta}_{nm} = \frac{1}{n!m!} \frac{d^{n}}{d\epsilon_{1}^{n}} \frac{d^{m}}{d\epsilon_{2}^{m}} \hat{\Theta}(\epsilon_{1};\epsilon_{2}) \Big|_{\epsilon_{1,2}=\epsilon_{0}}$$

Luigi Coraggio

Progress and Challenges in Neutrinoless Double Beta Decay

The shell-model effective operators

We arrest the χ series at χ_2 term, and then expand $\hat{\Theta}$ perturbatively:

- E. M. Krenciglowa and T. T. S. Kuo, Nucl. Phys. A 240, 195 (1975)
- I. S. Towner, Phys. Rep. 155, 263 (1987)
- H. Q. Song, H. F. Wu, T. T. S. Kuo, Phys. Rev. C 40, 2260 (1989)
- J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013).
- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017).

The choice of the cutoff $\Lambda = 2.6 \text{ fm}^{-1}$

Choosing a larger cutoff ("hard potential") corresponds to reduce the role of three-body forces

L. C., A. Gargano, and N. Itaco, JPS Conf. Proc. 6, 020046 (2015)

Nuclear models and predictive power

Progress and Challenges in Neutrinoless Double Beta Decay

Asica Nacirar

Model spaces

- ⁴⁸Ca: four proton and neutron orbitals outside doubly-closed ⁴⁰Ca 0f_{7/2}, 0f_{5/2}, 1p_{3/2}, 1p_{1/2}
- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside doubly-closed ⁵⁶Ni 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside doubly-closed ¹⁰⁰Sn
 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

Spectroscopic properties

Progress and Challenges in Neutrinoless Double Beta Decay

Luigi Coraggio

Properties of effective spin-dependent M1 operator

Nucleus	$J_i ightarrow J_f$	$B(M1)_{Expt}$	bare	effective	
48Ca					
- Oa	$3^+_1 \rightarrow 2^+_1$	0.023 ± 0.004	1 0.051	0.046	
⁷⁶ Ge					
	$\mathbf{2^+_2} \rightarrow \mathbf{2^+_1}$	$0.003\substack{+0.002\\-0.003}$	0.006	0.005	
	$4^+_2 \to 3^+_1$	0.02 ± 0.01	0.06	0.03	
100	$4^+_2 \rightarrow 4^+_1$	$0.03^{+0.02}_{-0.03}$	0.07	0.03	
¹³⁰ Te	a+ a+	o o o − +0 08			
	$2^+_3 ightarrow 2^+_1$	$0.097^{+0.00}_{-0.11}$	0.057	0.077	
Nucleu	s J	μ_{Expt}	bare	effective	
⁴⁸ Ті					
	2 ⁺	$+0.78\pm0.04$	+0.37	+0.54	
	4 ⁺ ₁	$+2.2\pm0.5$	+1.2	+1.5	
⁷⁶ Ge					
	2+	$+0.64\pm0.02$	+0.53	+0.84	
	2 ₂ +	$+0.78\pm0.10$	+0.93	+1.09	
760	4 ₁ +	$+0.96\pm0.68$	+0.58	+1.36	
/°Se	2^+	0.81 ± 0.05	0.27	0.59	
	$\frac{2}{2^{+}}$	0.01 ± 0.03	+0.37	+0.30	
	22 4+	0.70 ± 0.12 26 ± 0.4	+0.04 +0.3	+0.79	
	- 1	2.0 ± 0.4	10.0	10.0	

Properties of effective spin-dependent M1 operator

Nucleus	$J_i ightarrow J_f$	$B(M1)_{Expt}$	bare	effective
¹³⁶ Ba				
	$2^+_2 ightarrow 2^+_1$	0.02 ± 0.1	0.07	0.06
	$2^{+}_{3} \rightarrow 2^{+}_{1}$	0.002 ± 0.002	2 0.006	0.001
	$4^+_2 \rightarrow 4^+_1$	$0.06\substack{+0.08\\-0.05}$	0.15	0.09
Nucleu	s J	μ_{Expt}	bare	effective
⁸² Se				
	2 ⁺	$+0.99\pm0.06$	+0.72	+1.05
⁸² Kr	4 <mark>1</mark>	$\textbf{2.3} \pm \textbf{1.5}$	+1.2	+1.9
ι N	2 ₁ +	$+0.80\pm0.04$	+0.50	+0.83
¹³⁰ Te	4 ₁ +	$+1.2\pm0.8$	+0.5	+1.3
120.4	2 ₁ ⁺	$\textbf{0.58} \pm \textbf{0.10}$	+0.52	+0.71
¹³⁰ Xe	2 ⁺	$\textbf{0.57} \pm \textbf{0.14}$	+0.50	+0.66
¹³⁶ Xe				
	2 ⁺	1.53 ± 0.09	+1.05	+1.14
¹³⁶ Ba	4 ₁ +	3.2 ± 0.6	+2.02	+2.22
	2 ₁ ⁺	$\textbf{0.69} \pm \textbf{0.10}$	+0.48	+0.59

Perturbative properties of the GT effective operator

Convergence with respect the number of intermediate states

Selection rules of the GT operator make the convergence of the effective one with respect to N_{max} very fast.

The third decimal digit value of $M_{GT}^{2\nu}$, calculated with effective operator at third order, does not change from $N_{max} = 12$ on.

Blocking (Pauli) effect: the filling of the model-space orbitals by the valence nucleons affects the calculation of the effective GT operator:

Many-body correlations need to be taken into account: we calculate two-body correlations diagram and sum over one of the incoming/outcoming nucleons

We then obtain a density-dependent one-body GT effective operator The calculated $M_{GT}^{2\nu}$ are affected less than 5%

GT⁻ running sums

Dashed lines: calculations accounting for the blocking effect

$2\nu\beta\beta$ nuclear matrix elements

Red dots: bare GT operator

Decay	Expt.	Bare				
$^{48}Ca \rightarrow ^{48}Ti$	0.038 ± 0.003	0.030				
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.113 ± 0.006	0.304				
82 Se \rightarrow 82 Kr	0.083 ± 0.004	0.347				
130 Te \rightarrow 130 Xe	0.031 ± 0.004	0.131				
136 Xe \rightarrow 136 Ba	0.0181 ± 0.0007	0.0910				
Experimental data from A. S. Barabash, Nucl. Phys. A 935, 52 (2015)						

$2\nu\beta\beta$ nuclear matrix elements

- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C 95, 064324 (2017).
- L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco (2019), arXiv:1812.04292v2[nucl-th], in press in Phys. Rev. C.

The calculation of $M^{0\nu}$

The matrix elements $M^{0\nu}_{\alpha}$ are defined as follows:

$$M_{\alpha}^{0\nu} = \sum_{k} \sum_{j_{p} j_{p'} j_{n} j_{n'} J_{\pi}} \langle f | a_{p}^{\dagger} a_{n} | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle \langle j_{n} j_{n'}; J^{\pi} | \tau_{1}^{-} \tau_{2}^{-} O_{12}^{\alpha} | j_{p} j_{p'}; J^{\pi} \rangle$$

with $\alpha = (GT, F, T)$

$$\begin{array}{rcl}
O_{12}^{GT} &=& \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} H_{GT}(r) \\
O_{12}^{F} &=& H_{F}(r) \\
O_{12}^{T} &=& [3 \left(\vec{\sigma}_{1} \cdot \hat{r} \right) \left(\vec{\sigma}_{1} \cdot \hat{r} \right) \\
&& - \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}] H_{T}(r)
\end{array}$$

 H_{α} depends on the energy of the initial, final, and intermediate states:

$$H_{\alpha}(r) = \frac{2R}{\pi} \int_0^{\infty} \frac{j_{\alpha}(qr)h_{\alpha}(q^2)qdq}{q + E_k - (E_i + E_f)/2}$$

Actually, because of the computational complexity, the energies of the intermediate states are replaced by an average value:

$$E_{k} - (E_{i} + E_{f})/2 \rightarrow \langle E \rangle$$
$$\sum_{k} \langle f | a_{p}^{\dagger} a_{n} | k \rangle \langle k | a_{p'}^{\dagger} a_{n'} | i \rangle = \langle f | a_{p}^{\dagger} a_{n} a_{p'}^{\dagger} a_{n'} | i \rangle$$

The closure approximation

Consequently, the expression of the neutrino potentials becomes:

$$H_lpha(r) = rac{2R}{\pi} \int_0^\infty rac{j_lpha(qr)h_lpha(q^2)qdq}{q+ < E >}$$

The matrix elements $M_{\alpha}^{0\nu}$ are then defined, within the closure approximation, as follows:

$$M_{\alpha}^{0\nu} = \sum_{j_{n}j_{n'}j_{p}j_{p'}J_{\pi}} TBTD(j_{n}j_{n'}, j_{p}j_{p'}; J_{i}J_{f}) \langle j_{n}j_{n'}; J^{\pi} \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{p}j_{p'}; J^{\pi} \rangle$$

The *TBTD* are the two-body transition-density matrix elements, and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators:

The closure approximation works since $q \approx 100-200$ MeV, while model-space excitation energies $E_{exc} \approx 10$ MeV

Sen'kov and Horoi (Phys. Rev. C **88**, 064312 (2013)) have evaluated the non-closure *vs* closure approximation within 10%

Shell model calculations of $M^{0\nu}$

 Blue dots: Madrid-Strasbourg group, bare 0νββ operator

- Red dots: Horoi *et al.*, bare $0\nu\beta\beta$ operator
- Black dots: RSM, bare 0νββ operator

$0\nu\beta\beta$ decay: short-range correlations

The issue of the SRC for the calculation of $M^{0\nu}$ is framed within the approach of the renormalization of the *NN* potential

 $V_{\text{low}-k}$: the configurations of $V_{NN}(k, k')$ are restricted to those with $k, k' < k_{\text{cutoff}} = \Lambda$

The V_{low-k} is obtained *via* a unitary transformation Ω

 $\mathcal{H}_{\text{low}-k} = T + V_{\text{low}-k}(k,k') = \Omega^{-1} H_{NN}(k,k') \Omega = T + \Omega^{-1} V_{NN}(k,k') \Omega$

Consistently, we transform the $0\nu\beta\beta$ operator by way of the same similarity transformation Ω

 $O_{\text{low}-k} = \Omega^{-1} O(k, k') \Omega$

The SRC affects less than 5%.

For ⁷⁶Ge: $M_{\text{bare}}^{0\nu} = 3.41 \rightarrow M_{\text{low}-k}^{0\nu} = 3.29$

Perturbative properties of the 00ν effective operator

Convergence with respect the number of intermediate states

Order-by-order convergence

The perturbative behavior is not satisfactory as for the single- β decay operator: third-order contribution is rather large compared to the second order one

Blocking (Pauli) effect: as for the one-body operators, the filling of the model-space orbitals by the valence nucleons affects the effective $0\nu\beta\beta$ operator:

Present shell model codes cannot manage the contributions of these three-body correlations diagrams to the effective $0\nu\beta\beta$ -decay operator

Many-body correlations are then taken into account by calculating three-body correlations diagrams and summing over one of the incoming/outcoming nucleons

$$\langle (j_{a}j_{b})_{J}|O^{\alpha}|(j_{c}j_{d})_{J}\rangle = \sum_{m,J'}\rho_{m}\frac{\hat{J}'^{2}}{\hat{J}^{2}}\langle [(j_{a}j_{b})_{J},j_{m}]_{J'}|O^{A}|[(j_{c}j_{d})_{J},j_{m}]_{J'}\rangle$$

Gamow-Teller two-body matrix elements						
Decay	$j_a j_b j_c j_d; J=0^+$	ladder	3b (a)	3p-1h	3b (b)	
$^{48}Ca \rightarrow ^{48}$ Ti						
$^{76}Ge \rightarrow ^{76}Se$	$0f_{7/2}0f_{7/2}0f_{7/2}0f_{7/2}$	-0.334	0.004	0.260	-0.017	
	$0g_{9/2}0g_{9/2}0f_{5/2}0f_{5/2}$	0.154	-0.241	-1.078	0.234	
82 Se \rightarrow 82 Kr	$0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.185	-0.246	-0.214	0.048	
	0g _{9/2} 0g _{9/2} 0f _{5/2} 0f _{5/2}	0.157	-0.337	-1.096	0.335	
$130_{\mathrm{Te}} \rightarrow 130_{\mathrm{Xe}}$	$0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.189	-0.263	-0.219	0.058	
136 y 136 p	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.171	-0.202	-0.948	0.297	
Ae → 100 Ba	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.178	-0.264	-0.997	0.381	

As we expect:

- 3-body (a) diagram reduces the contribution of the 2-body ladder diagram
- 3-body (b) diagram reduces the contribution of the 2-body 3p-1h (core polarization) diagram

NFN

The calculation of $M^{0\nu}$: results

Decay	$M_{\rm bare}^{0\nu}$	$M_{ m src}^{0 u}$	$M_{ m eff}^{0 u}$	$M_{\rm eff+3b}^{0 u}$	
⁴⁸ C₂ → ⁴⁸ Ti					
	0.53	0.53	0.30	0.30	-40%
$r^{\circ}Ge \rightarrow r^{\circ}Se$	3.41	3.29	3.02	2.66	-20%
82 Se \rightarrow 82 Kr	3.30	3.25	2.95	2.73	-20%
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	3.19	3.14	2.97	3.19	0%
$^{136}\mathrm{Xe} ightarrow ^{136}\mathrm{Ba}$	00	0		0110	• • • •
	2.30	2.30	2.17	2.34	+2%

The role of the blocking effect is relevant and, as it should be expected, the final results depend on the number of valence nucleons involved in the shell-model calculation.

Without the blocking effect there is a suppression about 10% with respect the results with the bare operator

- Calculation of the effective 0νββ beyond the closure approximation
- Derivation of H_{eff} from chiral two- and three-body potentials
- Evaluation of the effects of chiral two-body currents (for both 2νββ and 0νββ decays)

