Neutrinoless Double Beta Decay: Matrix Elements and Atomic Effects

Mihai Horoi
Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

>Support from DOE grant DE-SC0015376 is acknowledged

Classical Double Beta Decay Problem

$$
T_{1 / 2}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}\right)\left[M^{0 v}\left(0^{+}\right)\right]^{2}\left(\frac{<m_{\beta \beta}>}{m_{e}}\right)^{2}
$$

$$
\nu_{e}(x)=\sum_{i} U_{e i} v_{i}(x)
$$

$$
\left|v_{e}\right\rangle=\sum_{i} U_{e i}^{*}\left|v_{i}\right\rangle
$$

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

Bari group:
arxiv.org/1804.09678 Prog. Part. Nucl. Phys.
102, 48 (2018)
1806.11051 review: Normal ordering favored at 3.5σ !!

Neutrino $\beta \beta$ effective mass

KamLAND - Zen, PRL 117, 082503 (2016) : ${ }^{136} \mathrm{Xe}$

$\left|m_{\beta \beta}\right|=\left|\sum_{k=1}^{3} m_{k} U_{e k}^{2}\right|=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right|$

$$
\phi_{2}=\alpha_{2}-\alpha_{1} \quad \phi_{3}=-\alpha_{1}-2 \delta
$$

Trento July 17, 2019
M. Horoi CMU

$$
\begin{gathered}
\leftarrow T_{12}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}\right)\left(M^{0 v}\left(0^{+}\right)\right)^{2}\left(\eta_{0 v}\right)^{2} \\
\eta_{0 v}=\frac{\left|m_{\beta \beta}\right|}{m_{e}}
\end{gathered}
$$

$0 \nu \beta \beta$ decay mass mechanism

3 neutrino flavors

$$
\begin{array}{r}
\left|m_{\beta \beta}\right|=\left|\sum_{k=1}^{3} m_{k} U_{e k}^{2}\right|=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} s_{12}^{2} m_{2} e^{i \phi_{2}}+s_{13}^{2} m_{3} e^{i \phi_{3}}\right| \\
\phi_{2}=\alpha_{2}-\alpha_{1} \quad \begin{array}{l}
\phi_{3}=-\alpha_{1}-2 \delta \\
\text { Trento July 17, } 2019
\end{array} \quad \text { M. Horoi CMU }
\end{array}
$$

$3+1$ (sterile) neutrino flavors

$\Leftarrow T_{1 / 2}^{-1}(0 v)=G^{0 v}\left(Q_{\beta \beta}\right) M^{0_{v}}\left(0^{+}\right) D^{2}\left(\eta_{0 v}\right)^{2}$
$\eta_{0 v}=\frac{\left|m_{\beta \beta}\right|}{m_{e}}$

More about the mixing matrix

IceCube: PRD 99, 032007 (2019)

	Analysis $\mathcal{A}, \mathrm{NC}+\mathrm{CC}$ Best-Fit 68\%, 90\% Analysis $\mathcal{B}, \mathrm{NC}+\mathrm{CC}$ Best-Fit 68\%, 90\%
	Analysis \mathcal{A}, CC Best-Fit 68\%, 90\% Analysis \mathcal{B}, CC Best-Fit 68\%, 90\%
SuperK 2017, CC 68\% arXiv:1711.09436	

Stephen Parke ${ }^{1}$ and Mark Ross-Lonergan ${ }^{2}$

OPERA 2018, CC 68\% arXiv:1804.04912			
0.0	0.5	1.0	1.5

$$
\left|U_{\tau 1}\right|^{2}+\left|U_{\tau 2}\right|^{2}+\left|U_{\tau 3}\right|^{2}=? 1
$$

$$
U_{\text {PMNS }}^{\text {Extended }}=\left(\begin{array}{ccc}
\overbrace{\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)}^{U_{\text {PMNN }}^{3 \times 3}} & \cdots & U_{e n} \\
\cdots & U_{\mu n} \\
\vdots & \vdots & \vdots \\
U_{s_{n} 1} & U_{s_{n} 2} & U_{s_{n} 3}
\end{array} \begin{array}{ccc}
& \cdots & U_{\tau n} \\
s_{n} n
\end{array}\right)
$$

Trento July 17, 2019
M. F

The Black Box Theorems

Black box I (electron neutrino)
J. Schechter and J.W.F Valle, PRD 25, 2951 (1982)
E. Takasugi, PLB 149, 372 (1984)
J.F. Nieves, PLB 145, 375 (1984)
(i) Lepton number conservation is
$0 v \beta \beta$ observed $\Leftrightarrow \quad$ violated by 2 units.
(ii) Electron neutrinos are Majorana fermions (with $\mathrm{m}>0$).

However:
M. Duerr et al, JHEP 06 (2011) 91

$$
\left(\delta m_{v_{c}}\right)_{B B} \sim 10^{-24} \mathrm{eV} \ll \sqrt{\left|\Delta m_{32}^{2}\right|} \approx 0.05 \mathrm{eV}
$$

Black box II (all flavors + oscillations)
M. Hirsch, S. Kovalenko, I. Schmidt, PLB 646, 106 (2006)
(i) Lepton number conservation is
$0 \vee \beta \beta$ observed $\quad \Leftrightarrow \quad$ violated by 2 units.
Regardless of the dominant $0 \vee \beta \beta$ mechanism!
(ii) Neutrinos are Majorana fermions.

$$
(i i i)\left\langle m_{\beta \beta}\right\rangle=\left|\sum_{k=1}^{3} m_{k} U_{e k}^{2}\right|=\left|c_{12}^{2} c_{13}^{2} m_{1}+c_{13}^{2} S_{12}^{2} m_{2} e^{i \phi_{2}}+S_{13}^{2} m_{3} e^{i \phi_{3}}\right|>0
$$

Other models: Left-Right symmetric model and SUSY R-parity violation

(a)

(b)

Gluino exchange

Squark
exchange
(e)
M. Horoi, A. Neacsu, PRD 93, 113014 (2016)

Trento July 17, 2019
M. Horoi CMU

Effective Hamiltonians for Large N $\hbar \omega$ Excitation Model Spaces

Renormalization methods:

- G-matrix: Physics Reports 261, 125 (1995)
- Lee-Suzuki (NCSM): PRC 61, 044001 (2000)
- $\mathrm{V}_{\text {low } \mathrm{k}}$: PRC 65, 051301(R) (2002)
- Unitary Correlation Operator: PRC 72, 034002 (2004)
- Similarity Renormalization Group (SRG): PRL 103, 082501 (2009)
"Bare" Nucleon-Nucleon Potentials:
- Argonne V18: PRC 56, 1720 (1997)
- CD-Bonn 2000: PRC 63, 024001 (2000)

- ${ }^{3}$ LO: PRC 68, 041001 (2003)
- INOY: PRC 69, 054001 (2004)

$$
H_{\text {valence }} \Psi=E_{n} \Psi
$$

Trento July 17, 2019
$g_{A} \sigma \tau \xrightarrow{\text { quenched }} g_{A} 0.77 \sigma \tau$
\qquad empty valence frozen core $H_{\text {valence }}=H_{2-\text { body }}$ can describe most correlations around the Fermi surface!

NME for the light-neutrino exchange mechanism

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013) \rightarrow IBM-2 PRC 91, 034304 (2015)
QRPA-En M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
QRPA-Jy J. Suhonen, O. Civitarese, Phys. NPA 847 207-232 (2010).
QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077
ISM-Men J. Menéndez, A. Poves, E. Caurier, F. Nowacki, NPA 818 139-151 (2009).
SM M. Horoi et. al. PRC 88, 064312 (2013), PRC 89, 045502 (2014), PRC 89, 054304 (2014), PRC 90, 051301(R) (2014), PRC
91, 024309 (2015), PRL 110, 222502 (2013), PRL 113, 262501(2014).
Trento July 17, 2019 M. Horoi CMU

Heavy neutrino-exchange NME

IBA-2 J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87, 014315 (2013).
QRPA-Tu A. Faessler, M. Gonzalez, S. Kovalenko, and F. Simkovic, arXiv:1408.6077.
QRPA-Jy J. Hivarynen and J. Suhonen, PRC 91, 024613 (2015), ISM-StMa J. Menendez, private communication.
ISM-CMU M. Horoi et. al. PRC 88, 064312 (2013), PRC 90, PRC 89, 054304 (2014), PRC 91, 024309 (2015), PRL 110, 222502 (2013).

$$
O_{\lambda}=U_{\lambda} O_{\lambda=\infty} U_{\lambda}^{+}
$$

${ }^{76} \mathrm{Ge}$

light neutrino-exchange NME

$$
O_{\lambda}=U_{\lambda} O_{\lambda=x} U_{\lambda}^{+}
$$

${ }^{76} \mathrm{Ge}$

Effective field theory approach

(a) The generic $0 \nu \beta \beta$ decay diagram at the quark-level.

(b) Light left-handed neutrino exchange diagram.

Effective field theory after hadronization

(a) The generic $0 \nu \beta \beta$ decay process nucleon-level diagram.

(b) Light left-handed neutrino exchange diagram.

(e) The pion-neutrino long-range diagram.

(c) The The nucleon-nucleon long-range \mathcal{L}_{6} mode.

(d) The nucleon-nucleon short-range part of the $0 \nu \beta \beta$ diagram.

(f) The one-pion long-range diagram.

(g) The two-pion long-range diagram.
$\left[T_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{4}\left[\sum_{i}\left|\mathcal{E}_{i}\right|^{2} \mathcal{M}_{i}^{2}+\operatorname{Re}\left[\sum_{i \neq j} \mathcal{E}_{i} \mathcal{E}_{j} \mathcal{M}_{i j}\right]\right]$

$$
\mathcal{E}_{2-7}=\left\{\begin{array}{llllll}
\epsilon_{V-A}^{V+A}, & \epsilon_{V+A}^{V+A}, & \epsilon_{S \pm P}^{S+P}, & \epsilon_{T L}^{T R}, & \epsilon_{T R}^{\widetilde{T R}}, & \left.\eta_{\pi \nu}\right\}
\end{array}\right.
$$

$$
\mathcal{E}_{8-15}=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}^{L L z(R R z)}, \varepsilon_{3}^{L R z(R L z)}, \varepsilon_{4}, \varepsilon_{6}, \eta_{1 \pi}, \eta_{2 \pi}\right\}
$$

Trento July 17, 2019
M. Horoi CMU

One coupling dominance

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{4}\left[\sum_{i}\left|\mathcal{E}_{i}\right|^{2} \mathcal{M}_{i}^{2}+\operatorname{Re}\left[\sum_{i \neq j} \hat{\hat{v}} \hat{.}, \mathcal{M}_{i j}\right]\right]
$$

$$
\mathcal{E}_{2-7}=\left\{\epsilon_{V-A}^{V+A}, \quad \epsilon_{V+A}^{V+A}, \quad \epsilon_{S \pm P}^{S+P}, \quad \epsilon_{T . L}^{T R}, \quad \epsilon_{T R}^{T R}, \quad \eta_{\pi \nu}\right\} \quad \mathcal{E}_{8-15}=\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}^{L L z(R R z)}, \varepsilon_{3}^{L R z(R L z)}, \varepsilon_{4}, \varepsilon_{6}, \eta_{1 \pi}, \eta_{2 \pi}\right\}
$$

Trento July 17, 2019
M. Horoi CMU

$$
T_{1 / 2}^{0 v}\left({ }^{76} \mathrm{Ge}\right)>5.3 \times 10^{25} \text { years } \quad T_{1 / 2}^{0 v}\left({ }^{136} \mathrm{Xe}\right)>1.1 \times 10^{26} \text { years }
$$

Small interference effects

Interference between mass mechanism and heavy neutrino mechanism: F. Ahmed, A. Neacsu, and M. Horoi, Phys. Lett. B 769, 299 (2017).

In LRSM:

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 v}\right]^{-1}=\left|\mathcal{M}_{G T}^{0 v}\right|^{2}[} & C_{m}\left|\eta_{m}\right|^{2}+C_{N}\left|\eta_{N}\right|^{2}+C_{\lambda}\left|\eta_{\lambda}\right|^{2}+C_{\eta}\left|\eta_{\eta}\right|^{2} \\
& +C_{m N}\left|\eta_{m}\right|\left|\eta_{N}\right| \cos \left(\phi_{m}-\phi_{N}\right)+C_{m \lambda}\left|\eta_{m}\right|\left|\eta_{\lambda}\right| \cos \left(\phi_{m}-\phi_{\lambda}\right) \\
& +C_{m \eta}\left|\eta_{m}\right| \eta_{\eta}\left|\cos \left(\phi_{m}-\phi_{\eta}\right)+C_{N \lambda}\right| \eta_{N}\left|\eta_{\lambda}\right| \cos \left(\phi_{N}-\phi_{\lambda}\right) \\
& \left.+C_{N \eta}\left|\eta_{N}\right|\left|\eta_{\eta}\right| \cos \left(\phi_{N}-\phi_{\eta}\right)+C_{\lambda \eta}\left|\eta_{\lambda}\right|\left|\eta_{\eta}\right| \cos \left(\phi_{\lambda}-\phi_{\eta}\right)\right]
\end{aligned}
$$

$\Delta C_{m_{v} \lambda}(1 / 4)$

- $C_{m_{v} \lambda}(1 / 2)$
$-C_{m_{v} \lambda}(3 / 4)$
* $C_{m_{v} \lambda}(1)$
- $C_{m_{v} \lambda}(4 / 3)$
${ }_{\nabla} C_{m_{v} \lambda}(2)$
$\diamond C_{m_{v} \lambda}(4)$
- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

$$
\mathcal{L}_{D}=\frac{g}{\Lambda_{D}^{D-4}} \mathcal{O}_{D}
$$

(a)

(c)

(b)

$$
\begin{array}{ll}
m_{e} \bar{\epsilon}_{5}=\frac{g^{2} v^{2}}{\Lambda_{5}}, & \frac{G_{F} \bar{\epsilon}_{7}}{\sqrt{2}}=\frac{g^{3} v}{2 \Lambda_{7}^{3}}, \\
\frac{G_{F}^{2} \bar{\epsilon}_{9}}{2 m_{p}}=\frac{g^{4}}{\Lambda_{9}^{5}}, & \frac{G_{F}^{2} \bar{\epsilon}_{11}}{2 m_{p}}=\frac{g^{6} v^{2}}{\Lambda_{11}^{7}}
\end{array}
$$

$g \approx 1 \quad v=174 \mathrm{GeV}$ (Higgs expectation value)

\mathcal{O}_{D}	$\bar{\epsilon}_{D}$	$\Lambda_{D}(\mathrm{GeV})$
\mathcal{O}_{5}	2.8×10^{-7}	2.12×10^{14}
\mathcal{O}_{7}	2.0×10^{-7}	3.75×10^{4}
\mathcal{O}_{9}	1.5×10^{-7}	2.48×10^{3}
\mathcal{O}_{11}	1.5×10^{-7}	1.16×10^{3}

Consequences: - scales for new physics

- baryogenesis via leptogenesis

PHYSICAL REVIEW D 92, 036005 (2015)

$$
\mathcal{L}_{D}=\frac{g}{\left(\Lambda_{D}\right)^{D-4}} \mathcal{O}_{D}
$$

(a)

(c)

(b)

$$
\begin{array}{ll}
m_{e} \bar{\epsilon}_{5}=\frac{g^{2}(y v)^{2}}{\Lambda_{5}}, & \frac{G_{F} \bar{\epsilon}_{7}}{\sqrt{2}}=\frac{g^{3}(y v)}{2\left(\Lambda_{7}\right)^{3}}, \\
\frac{G_{F}^{2} \bar{\epsilon}_{9}}{2 m_{p}}=\frac{g^{4}}{\left(\Lambda_{9}\right)^{5}}, & \frac{G_{F}^{2} \bar{\epsilon}_{11}}{2 m_{p}}=\frac{g^{6}(y v)^{2}}{\left(\Lambda_{11}\right)^{7}}
\end{array}
$$

(d)

$$
\eta_{N} \propto \frac{1}{m_{W_{R}}^{4} m_{N}}
$$

One coupling dominance: which one?

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{s}\left[\left.\sum_{i}| |_{i}\right|^{2} \mathcal{M}_{i}^{2}+\operatorname{Re}\left[\sum_{i \neq j} \hat{\mathcal{N}} \mathcal{M}_{i j}\right]\right]
$$

$\mathrm{T}\left[{ }^{76} \mathrm{Ge}\right] / \mathrm{T}\left[{ }^{\mathrm{A}} \mathrm{Z}\right]$

Trento July 17, 2019
CMU Hamiltonians
M. Horoi CMU

PRC 98, 035502 (2018)

One coupling dominance: which one?
$\mathrm{T}\left[{ }^{76} \mathrm{Ge}\right] / \mathrm{T}\left[{ }^{\mathrm{A}} \mathrm{Z}\right]$

$$
\left[T_{1 / 2}^{0 \nu}\right]^{-1}=g_{A}^{4}\left[\sum_{i}\left|\mathcal{E}_{i}\right|^{2} \mathcal{M}_{i}^{2}+\operatorname{Re}\left[\sum_{i \neq j} \widehat{V} \mathcal{U}_{i j}\right]\right]
$$

Strasbourg-Madrid Hamiltonians

Other BSM Physics Contributions

Neutrino Propagation in Nuclear Medium and Neutrinoless Double- β Decay

S. Kovalenko, ${ }^{1}$ M. I. Krivoruchenko, ${ }^{2,3}$ and F. Šimkovic ${ }^{4,5,6}$

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}= \frac{1}{\Lambda_{\mathrm{LNV}}^{2}} \sum_{i, j, q}\left(q_{i j}^{q} \bar{\nu}_{L_{L i}} \nu_{L j} \cdot \bar{q} q+\text { H.c. }\right) \\
&+\frac{1}{\Lambda^{3}} \sum_{i, j, q} h_{i j}^{q}{\overline{L_{L i}}} \gamma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \nu_{L j} \cdot \bar{q} q, \\
& \mathcal{L}_{\text {eff }}=\frac{\langle\bar{q} q\rangle}{\Lambda_{\mathrm{LNV}}^{2}}\left(\overline{\nu_{L i}^{C}} g_{i j} \nu_{L j}+\text { H.c. }\right) \\
&+\frac{\langle\bar{q} q\rangle}{\Lambda^{3}} \overline{\nu_{L i}} h_{i j} i \gamma^{\mu} \stackrel{\leftrightarrow}{\partial}_{\mu} \nu_{L j}, \\
& m_{\beta \beta}= \sum_{i=1}^{n}\left(V_{e i}^{L}\right)^{2} \xi_{i} \frac{\left|m_{i}-\langle\bar{q} q\rangle g\right|}{(1-\langle\bar{q} q\rangle h)^{2}} .
\end{aligned}
$$

How about some other contributions from SM? E.g. high density atomic electrons.

Neutrinos in atomic nuclei

Atomic nucleus is a high electron density medium:
Consider 2 electrons in the lowest s-orbital of an
Si_{2} dimer Hydrogen-like atom

Electron density near nucleus:
$N_{e}(r) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3} e^{-2 r Z / a_{B}}$
Electron density inside nucleus:

$$
\begin{aligned}
& N_{e}(0) \approx \frac{2}{\pi}\left(\frac{Z}{a_{B}}\right)^{3} \\
& \rho_{\text {Suncore }} \approx 150 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Equivalent matter density: $\rho=m_{N} N_{e}=1.67 \times 10^{6} \frac{2}{\pi}\left(\frac{Z}{53}\right)^{3}$ in $\mathrm{g} / \mathrm{cm}^{2} \gg \rho_{\text {Sun }}$

$$
\begin{array}{r}
H=\frac{1}{2 E}\left[U_{v a c}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right) U_{v a c}^{+}+\left(\begin{array}{ccc}
2 E V & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right] \\
V(e V)= \pm 7.6 \times 10^{-14} m_{p}(g) N_{e}\left(\mathrm{~cm}^{-3}\right)
\end{array}
$$

Time (space) dependent flavor amplitudes evolution:

$$
i \frac{d}{d t}\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=H\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)
$$

Local in-matter mass eigenstates approach:

$$
\begin{aligned}
& H=\frac{1}{2 E} U_{m}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta M_{21}^{2} & 0 \\
0 & 0 & \Delta M_{31}^{2}
\end{array}\right) U_{m}^{+} \\
& v_{f}=U_{m} v_{m}
\end{aligned}
$$

(Anti)neutrinos are "emitted" in dense matter in the local (lowest)highest "mass eigenstates".

Time dependence of $v_{m}: \quad i \dot{\nu}_{m}=U_{m}^{\dagger}\left(H_{0}+V\right) U_{m} \nu_{m}-i U_{m}^{\dagger} \dot{U}_{m} \nu_{m}$

$$
i \frac{\Delta \nu_{f}}{\Delta t} \approx 0
$$

Neutrinoless double beta decay in vacuum

$$
\begin{array}{cc}
A_{0 \beta \beta} \propto N P=\langle 0| T\left[\psi_{e L}\left(x_{1}\right) \psi_{e L}^{T}\left(x_{2}\right)\right]|0\rangle & \psi_{e}(x)=\sum_{a=1}^{N(3)} U_{e a} \psi_{a}(x) \\
N P=\sum_{a=1}^{3} U_{e a}^{2}\langle 0| T\left[\psi_{a L}\left(x_{1}\right) \psi_{a L}^{T}\left(x_{2}\right)\right]|0\rangle & \\
=\sum_{a=1}^{3} U_{e a}^{2}\left[-i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{m_{a} e^{-i p\left(x_{1}-x_{2}\right)}}{p^{2}-m_{a}^{2}+i \epsilon} P_{L} \mathcal{C}\right] & \\
P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) & \hat{\psi}(x)=C \psi^{*}(x)
\end{array}
$$

$P_{L} C$ product is further used to process the electron current, and one finally gets:

$$
\frac{1}{T_{1 / 2}}=G(Z, Q)\left|M_{0 \nu}\right|^{2}\left|\sum_{a=1}^{3} U_{e a}^{2} m_{a}\right|^{2} / m_{e}^{2}
$$

Neutrinoless double beta decay of atomic nuclei
Details are rather complex and can be found in arXiv:1803.06332
Conclusions: - the in-matter propagator still contains the vacuum PMNS matrix and masses!

- The formalism allows the extension of this result if sterile neutrinos are present ($a=1 \ldots 4,(5)$)
- The propagators for long range $0 \nu \beta \beta$ diagrams seem to remain unchanged (work not finished yet)

$$
\langle 0| T\left[\Phi_{e}^{W}\left(x_{1}\right)\left(\Phi_{e}^{W}\left(x_{2}\right)\right)^{T}\right]|0\rangle=-i \sum_{a} U_{e a}^{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{m_{a} e^{-i p\left(x_{1}-x_{2}\right)}}{p^{2}-m_{a}^{2}+i \epsilon}\left(i \sigma^{2}\right)
$$

In atomic nuclei $N P=$ In vacuum $N P$

$$
P_{L} C=\left(\begin{array}{cc}
0 & 0 \\
0 & i \sigma^{2}
\end{array}\right)
$$

Vacuum result stands : $m_{\beta \beta}=\left|\sum_{a=1}^{3} U_{e a}^{2} m_{a}\right|$

Are there any effects of the spikes in the electron density?

Answer 1: potentially for Majoron decay!

PHYSICAL REVIEW D
VOLUME 45, NUMBER 5
1 MARCH 1992

Majoron decay of neutrinos in matter
C. Giunti, C. W. Kim, and U. W. Lee

Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218
W. P. Lam
with production of any massless pseudoscalar boson. In particular, we discuss the two-generation case and show that in matter the helicity-flipping decays are dominant over the helicity-conserving decays. The implications of the Majoron decay for the neutrinos from astrophysical objects are also briefly discussed.

Are there any effects of the spikes in the electron density?

Answer 2: matter effects in neutrino oscillations?
DFT calculations of SiO_{2} electron density (all atomic units)

Average flat density used in matter effects

Are there any effects of the spikes in the electron density?

Answer 2: yes for matter effects in neutrino oscillations!

Are there any effects of the spikes in the electron density?

Answer 2: yes for matter effects in neutrino oscillations!

> M. Horoi CMU
> CERN -> Sanford
> (C) ENERGY

Matter density model

Trento July 17, 2019
M. Horoi CMU

- Different spike shapes produce the same result
- The 3D topology of atoms can be simulated in 1D with random spikes
- Actual density is a mixture:
$\rho_{\text {mixed_spikes }}=0.6 \rho_{\text {spikes }}+0.4 \rho_{\text {flat }}$
- $\rho_{\mathrm{ave}}=\rho_{\text {flat }}=3.8 \mathrm{~g} / \mathrm{cm}^{3}$ (PREM)

Energy distribution

NUMI beam

Dependence on δ_{CP}

$$
P_{\text {mixed_spikes }}-P_{f l a t}
$$

$$
E_{v_{\mu}}=0.75 \mathrm{GeV}
$$

Dependence on δ_{CP}

Office of Science

Summary

- Neutrinoless DBD $(0 \nu \beta \beta)$, if observed, will represent a big step forward in our understanding of the neutrinos, and of the physics beyond Standard Model.
- Ratios of half-lives for several isotopes are essential to account for alternative $0 \nu \beta \beta$ decay mechanisms.
- The effects of the high electron densities in atomic nuclei were investigated and they do not change the neutrino emission or detection, nor the $0 v \beta \beta$ outcome.
- The effects of the high electron densities around atomic nuclei may be observed in Majoron decay and in (very) long baseline neutrino oscillations experiments.

Dependence on δ_{CP}

$E_{v_{\mu}}=0.75 \mathrm{GeV}$
$E_{v_{\mu}}=0.5 \mathrm{GeV}$

3-neutrino oscillations

3-neutrino oscillations

