II. WORKING GROUP 1: MULTIQUARK STATES

A. Physics Motivation

(1/2pg)

B. Processes accessible at EIC

(1 pg)

Processes (with order of magnitude estimates for cross sections?):

- Virtual photon, real photon, polarization measurements to have more probes to the internal structure and quantum numbers of exotic candidates
- Processes for hidden-flavor pentaquarks: $\gamma p \to P_c \to J/\psi p, \Lambda_c \bar{D}, \gamma p \to P_b \to \Upsilon p, \Lambda_b \bar{B}$
- Processes for the XYZ states: $\gamma p \to (X,Y,Z)N \to NJ/\psi$ +pions. It should be better to study the $\gamma p \to Z_c + N$ process with high W values rather than in the near-threshold region.

The leading order NRQCD estimate for the inclusive production of the X(3872) at $\sqrt{s} = 100$ GeV: $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) \sigma(X(3872), Q^2 > 1$ GeV) ≈ 2.6 pb, which amounts to $\mathcal{O}(2000)$ events per day with a luminosity of $10^{34} \text{cm}^{-2} s^{-1}$.

The COMPASS $\tilde{X}(3860)$ with quantum numbers 1⁺⁻ decaying into the $J/\psi\pi^+\pi^-$. If the quantum numbers are correct, then it should be closely related to all the puzzling X states around 3.9 GeV, and can also decay into $J/\psi\eta$ in an S-wave.

XYZ above 3.9 GeV and bottomonium analogues of the XYZ states.

- As a factory of heavy baryons: $\gamma p \to \mathcal{B}_c \bar{D}$, $\gamma p \to \mathcal{B}_b \bar{B}$, where \mathcal{B}_Q is used to denote a heavy baryon.
- Production of the doubly-heavy hadrons. Theoretical estimates of the production rate of doubly heavy baryons exist: $\mathcal{O}(10^7)$ events/year for Ξ_{cc} and $\mathcal{O}(10^5)$ events/year for Ξ_{bc} with a luminosity of $10^{34} \text{cm}^{-2} s^{-1}$.

C. Connections and complementarity with other experiments

(1/2 pg)

Comparisons with GlueX, COMPASS, and HERA:

- kinematics photon energy and q^2 ranges
- luminosities
- comparison of rates for J/ψ production (as a benchmark)

Comparison with LHCb:

- Source of XYZ states at LHCb are mainly from B decays, which limits the mass range up to around $m_B m_K \approx 4.8$ GeV.
- Different kinematics, useful to disentangle triangle singularities from resonances.

D. Requirements and implication for the experimental setup

(beam, detector, ...) (1/2 pg) General requirements:

- 4π coverage detector for angular analyses
- ability to reconstruct lower-momentum tracks (e.g. for $\psi(2S) \to \pi^+\pi^- J/\psi$)
- photon energy resolution (e.g. for $\chi_{cJ} \to \gamma J/\psi$)
- reconstruction of many-particle final states (e.g. for $\eta_c \to 6\pi$, etc.)

Define a list of benchmark reactions for efficiency, resolution, and particle-ID studies:

•
$$\gamma p \to (J/\psi, \psi(2S), \chi_{cJ}, \eta_c) + (n\pi, nK) + p$$