Hadron Spectroscopy from GlueX to the EIC

Volker Credé

Florida State University, Tallahassee, FL*

The Spectroscopy Program at EIC and Future Accelerators

ECT* Workshop

Trento, Italy

12/19/2018

Outline

Introduction

- Non-Perturbative QCD
- Hadron Spectroscopy at Jefferson Lab
 First Results from GlueX
- Hyperon Spectroscopy
- 4 Spectroscopy from GlueX to EIC
 - Lattice Calculations: Ξ^* and Ω Spectrum
 - (Doubly-) Charmed Baryons

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-Perturbative QCD

Outline

ヘロト ヘワト ヘビト ヘビト

V. Credé Hadron Spectroscopy from GlueX to the EIC

Non-Perturbative QCD

QCD Phases and the Study of Baryon Resonances

RPP (*u*, *d*, *s*, *c*) baryons not sufficient to describe freeze-out behavior. (e.g. A. Bazavov *et al.*, PRL **113** (2014) 7, 072001)

Non-Perturbative QCD

Non-Perturbative QCD

How does QCD give rise to excited hadrons?

- What is the origin of confinement?
- How are confinement and chiral symmetry breaking connected?
- What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain quark confinement?

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(신문) (문)

Baryons: What are the fundamental degrees of freedom inside a nucleon? Constituent quarks? How do the degrees change with varying quark masses? Mesons: What are the properties of the predicted states beyond simple quarkantiquark systems (hybrid mesons, glueballs, tetraquarks, ...)?

→ Gluonic Excitations provide a measurement of the excited QCD potential. Hybrid baryons are also possible ...

First Results from GlueX

Outline

イロト イポト イヨト イヨト

First Results from GlueX

Double-Polarization Experiments

CLAS (6 GeV) at JLab 1998 - 2012

Photo-/electroproduction experiments in search for N^* states and measurement of the transition amplitudes.

← CLAS FROST

First Results from GlueX

Hadron Spectroscopy

- π + Nucleus
- γp Photoproduction
- e⁺e⁻
- pp

The GlueX Collaboration

- ~ 130 members, 28 institutions (USA, Chile, China, Armenia, Greece, Russia, UK)
- Production data-taking in full swing (Phase I)
- First physics published in 2017

ヘロト ヘワト ヘビト ヘビト

First Results from GlueX

イロト 不得 とくほ とくほとう

First Results from GlueX

Hall D

10.1 GeV achieved in Fall of 2014

- 2016: 10 pb⁻¹ (commissioning data)
- 2017: 45 pb⁻¹ (first physics data)

→ Used for most physics analyses

- 2018: 100 pb⁻¹ (Spring data)
 - → GlueX Phase-I completed this Fall

Jefferson Lab Upgrade to 12 GeV

・ロト ・ 同ト ・ ヨト・

First Results from GlueX

Spectroscopy and Amplitude Analysis

Courtesy of Sean Dobbs

First Results from GlueX

Spectroscopy and Amplitude Analysis

Courtesy of Sean Dobbs

First Results from GlueX

First GlueX "Physics:" Initial Analyses

H. Al Ghoul et al., PRC 95, 042201 (2017) Detector Understanding: $\gamma p \rightarrow p \pi^0$ $\gamma p \rightarrow p \eta$ → Beam Asymmetries $\gamma p \rightarrow p \rho$ Initial Exotic $\gamma p \rightarrow p \omega$ $\gamma p \rightarrow p \eta'$ Hybrid Searches $\gamma p \rightarrow p \phi$ $\gamma p \rightarrow \eta \pi (n, p)$ $\gamma p \rightarrow \eta' \pi (n, p)$ $\gamma p \rightarrow \rho \pi (n, p)$ $\gamma p \rightarrow \omega \pi (n, p)$ $\gamma p \rightarrow \omega \pi \pi (n, p)$ $\gamma p \rightarrow \eta \pi \pi (n, p)$

Strange Baryons: $\gamma p \rightarrow K^+ \Lambda, K \Sigma, KK \Xi$

Image: A matrix

▶ < ∃ >

First Results from GlueX

Measurement of Beam Asymmetries: $\gamma \rho \rightarrow \rho \pi^0$

Beam Asymmetry, Σ , yields information on production mechanism

$$\Sigma = \frac{|\omega + \rho| - |h + b|}{|\omega + \rho| + |h + b|}$$

V. Mathieu et al., Phys. Rev. D 92, no. 7, 074004 (2015)

< ∃→

First Results from GlueX

Measurement of Beam Asymmetries: $\gamma \rho \rightarrow \rho \pi^0$

Beam Asymmetry, Σ , yields information on production mechanism

V. Mathieu et al., Phys. Rev. D 92, no. 7, 074004 (2015)

ヘロア 人間 アメヨア 人口 ア

Measurement of Beam Asymmetries: $\gamma p \rightarrow p \pi^0 / \eta$

H. Al Ghoul et al., Phys. Rev. C 95, no. 4, 042201 (2017)

Significantly improved data quality

- First-time measurement of the η beam asymmetry for 8.4 < E_γ < 9.0 GeV.
- $\bullet~$ Beam asymmetry close to unity: $\Sigma\approx 1$
 - → Dominance of vector-meson exchange.
- Comparison with Regge calculations contributes to understanding of production mechanisms at high photon energies.
 - → Step toward search for exotic mesons.

ヘロト ヘワト ヘビト ヘビト

Measurement of Beam Asymmetries: $\gamma p \rightarrow p \pi^0 / \eta$

H. Al Ghoul *et al.*, Phys. Rev. C **95**, no. 4, 042201 (2017)

Significantly improved data quality

- First-time measurement of the η beam asymmetry for 8.4 < E_γ < 9.0 GeV.
- $\bullet~$ Beam asymmetry close to unity: $\Sigma\approx 1$
 - \rightarrow Dominance of vector-meson exchange.
- Comparison with Regge calculations contributes to understanding of production mechanisms at high photon energies.
 - → Step toward search for exotic mesons.
- Next in line: $\gamma p \rightarrow p \eta / \eta'$, $K\Sigma$, $K\Lambda(1520)$, $\pi^{-} \Delta^{++}$, ...

First Results from GlueX

Cross Sections & SDMEs for $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

At high energies and forward scattering, ω reaction dominated by *t*-channel exchanges:

 Spin density matrix elements (SDME) used to describe polarization of photoproduced meson.

• The two matrix elements
$$\rho_{1-1}^1$$
 and $\operatorname{Im} \rho_{1-1}^2$

particularly sensitive to exchange particle.

• P exchange surprisingly strong at low energies.

★ E → ★ E →

V. Credé Hadron Spectroscopy from GlueX to the EIC

First Results from GlueX

Cross Sections & SDMEs for $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

New cross section results in 10-MeV-wide *W* bins for

 $1.15 < E_{\gamma} < 5.40$ GeV, or 1.75 < W < 3.32 GeV

→ Need theory support to understand physics at these high energies!! Working with JPAC. (V. Mathieu *et al.*) (SDMEs under review)

→ Data of unprecedented quality

ヘロン ヘアン ヘビン ヘビン

Z. Akbar et al. [CLAS Collaboration], under review.

Outline

ヘロト ヘワト ヘビト ヘビト

V. Credé Hadron Spectroscopy from GlueX to the EIC

Possible Production Mechanisms

 $K^{+}(\Xi^{-}K^{+}), K^{+}(\Xi^{0}K^{0}), K^{0}(\Xi^{0}K^{+})$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)

At other facilities (for comparison):

$K^- ho ightarrow K^+ \Xi^{*-}$	J-PARC
${\it K}_L p ightarrow {\it K}^+ \Xi^{*0}$	Hall D?
$pp ightarrow \Xi^* X$	LHCb
$\overline{\rho} ho o \equiv^* \overline{\equiv}$	PANDA
$e^+ e^- ightarrow \Xi^* X$	Belle II, BES III

* W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

Possible Production Mechanisms

V. Credé Hadron Spectroscopy from GlueX to the EIC

Possible Production Mechanisms

Introduction Hadron Spectroscopy at Jefferson Lab Hyperon Spectroscopy

Spectroscopy from GlueX to EIC

CLAS g12: Total Cross Sections of $(\Xi^{-})^{*}$

J. T. Goetz *et al.* [CLAS Collaboration], arXiv:1809.00074 [nucl-ex].

No statistically significant structures beyond the 1530 MeV peak: different reaction (production) mechanism for Ξ^* states?

Introduction Hadron Spectroscopy at Jefferson Lab Hyperon Spectroscopy

Spectroscopy from GlueX to EIC

CLAS g12: Total Cross Sections of $(\Xi^{-})^{*}$

Upper Limits (integrated over all energies): (1) \equiv (1690): 0.75 nb (2) \equiv (1820): 1.01 nb

(3) Ξ(1950): 1.58 nb

Introduction Hadron Spectroscopy at Jefferson Lab Hyperon Spectroscopy

Spectroscopy from GlueX to EIC

Possible Production Mechanisms

V. Credé Hadron Spectroscopy from GlueX to the EIC

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

Outline

イロト イポト イヨト イヨト

V. Credé Hadron Spectroscopy from GlueX to the EIC

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

V.C. & W. Roberts, Rep. Prog. Phys. 76 (2013)

V. Credé

Hadron Spectroscopy from GlueX to the EIC

・ロト ・ 同ト ・ ヨト ・ ヨト

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

The impact of photoproduction on baryon resonances				ack: d: ue:	Decay modes of nucleon resonances PDG 2004 PDG 2018 BESIII resonances					**** *** *	Existence is certain. Existence is very likely. Evidence of existence is fair. Evidence of existence is poor.					
		overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$	$N_{1440}\pi$	$N_{1520}\pi$	$N_{1535}\pi$	$N_{1680}\pi$
N	$1/2^{+}$	****														
N(1440)	$1/2^{+}$	****	***	****	***	***										
N(1520)	$3/2^{-}$	****	****	****	****	**	****									
N(1535)	$1/2^{-}$	****	***	****	***	*	****									
N(1650)	$1/2^{-}$	****	***	****	***	*	****	***					*			
N(1675)	$5/2^{-}$	****	***	****	****	***	*	*	*	**				*		
N(1680)	$5/2^{+}$	****	****	****	****	***	*			****						
N(1700)	$3/2^{-}$	***	**	***	***	*	*	**	*	*						
N(1710)	$1/2^{+}$	***	***	****	**		***	**	*	*	*				*	
N(1720)	$3/2^+$	****	****	****	***	*	*	****	*	**	*					
N(1860)	$5/2^{+}$	**	*	**		*	*									
N(1875)	3/2	***	**	**	*	**	*	*	*	*	*	*	*			
N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**				*	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	*			
N(1900)	3/2+	****	****	**	**	*	*	**	**	*	*	**				
N(1990)	7/2+	**	* *	**	*	*	*	**	* *							
N(2000)	5/2	**	**	**	* *	*	*	*	*		*					
N(2040)	3/2 '	*		*												
N(2060)	$\frac{5}{2}$	***	***	**	*	*	*	*	*	*	*		*	*		*
N(2100)	1/2'	***	**	***	**	**	*	*		*	*	**			***	
N(2120)	3/2	***	***	***	**	**		**	*		*	*	*	*	*	
N(2190)	0/2	****	****	****	****	**	*	**	*	*	*					
N(2220)	9/2	****	**	***			*	*	*							
N(2250)	1/2+	***	**	***			*	*	*							
N(2570)	5/2-	1		1												
N(2600)	$\frac{0}{2}$			***				Т	Т		Т					
N(2700)	$\frac{11}{2}$	**		***												

Based on results at Jefferson Lab, ELSA, MAMI, ...

Cascade Resonances: Status as of 2018

— U. Loering, B. Ch. Metsch, H. R. Petry, Eur. Phys. J. A10 (2001) 447-486

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

The Ξ^* and Ω^* Spectrum from Lattice QCD

R. Edwards et al., Phys. Rev. D 87, no. 5, 054506 (2013)

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

→ Rich spectra predicted (narrow states):

 Ω^* spectrum beyond GlueX energy range.

≣⇒

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

Charmed and Bottom Baryons (as of 2018)

Lattice Calculations: Ξ^* and Ω Spectrum (Doubly-) Charmed Baryons

Charmed and Bottom Baryons (as of 2018)

 $\gamma p \rightarrow K^+ (K^+ \Xi^{-*}) \rightarrow K^+ (p \pi^- K^-) K^+$

24 known charmed baryons 9 known bottom baryons

→ No confimred doublycharmed states!

→ Ξ → < Ξ →</p>