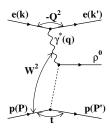
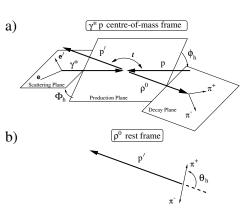
Diffractive virtual photoproduction of ρ mesons -what can diffraction teach us about meson structure?

Wolfgang Schäfer 1


¹Institute of Nuclear Physics, PAN, Kraków

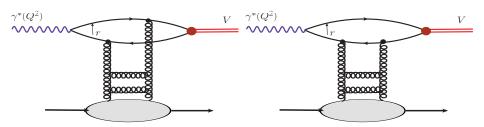
The spectroscopy program at EIC and future accelerators ECT*, Trento, Italy 18.-21. Dec. 2018

Outline


- (Exclusive) diffractive production has few-body final states and presents a rather clean environment to study the produced system.
- "Spectroscopy" and reaction mechanisms should be considered together to get the complete picture of structure & interactions of hadrons
- ullet This discussion contribution is a personal and biased choice of some examples from the literature on how some striking phenomena appear in diffractive electroproduction of ho mesons. Relevant for EIC & dependent on meson structure.

Diffractive electroproduction

- large γ^*p -cms energy (or large rapidity gap): Pomeron dominance.
- large Q^2 (or large m_V^2): soft to hard (pQCD) transition ($Q^2 + m_V^2$ -scaling !)
- *t*-dependence: the typical diffractive cone at small *t*. Helicity flip-terms at larger *t*.
- very large t: short distance structure of the Pomeron. ("off-forward" BFKL for $|t| \ll W^2$)
- yet another dimension: nuclear target, A-dependence...


Diffractive electroproduction

$$\begin{split} &W(\cos\theta_h,\,\phi_h,\,\Phi_h) \\ &= & \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\theta_h \right. \\ &- \sqrt{2}\,\operatorname{Re}\{r_{10}^{04}\}\sin2\theta_h\cos\phi_h - r_{1-1}^{04}\sin^2\theta_h\cos2\phi_h \\ &- \epsilon\cos2\Phi_h(r_{11}^1\sin^2\theta_h + r_{00}^1\cos^2\theta_h \\ &- \sqrt{2}\,\operatorname{Re}\{r_{10}^1\}\sin2\theta_h\cos\phi_h - r_{1-1}^1\sin^2\theta_h\cos2\phi_h) + \dots \right] \end{split}$$

- angular distributions allow to study helicity structure of the diffractive production amplitude
- 15 coefficients of spin-density matrix, dependence on W, Q², t...

Color dipole/ k_{\perp} -factorization approach

Color dipole representation of forward amplitude:

$$A(\gamma^*(Q^2)p \to Vp; W, t = 0) = i \int_0^1 dz \int d^2r \Psi_V(z, r) \Psi_{\gamma^*}(z, r, Q^2) \sigma(x, r)$$
$$\sigma(x, r) = \frac{4\pi}{3} \alpha_S \int \frac{d^2\kappa}{\kappa^4} \frac{\partial G(x, \kappa^2)}{\partial \log(\kappa^2)} \left[1 - e^{i\kappa r} \right], x = (M_V^2 + Q^2)/W^2$$

- quark & antiquark share the lightcone-momentum in fractions z, 1-z.
- sum over the (conserved) quark & antiquark helicities is implied
- ullet in forward direction, also at the $\gamma o V$ -level s-channel helicity is conserved.

off the forward direction: finite transverse momentum transfer Δ :

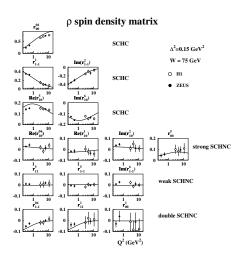
$$\mathcal{A}_{fi}(x, \mathbf{\Delta}) = i \int_0^1 dz \int d^2 \mathbf{r} \sigma(\mathbf{r}, \mathbf{\Delta}) \exp\left[\frac{i}{2}(1 - 2z)(\mathbf{r}\mathbf{\Delta})\right] I_{fi}(z, \mathbf{r}, Q^2)$$

$$I_{LL} = 4Qz^{2}(1-z)^{2}K_{0}(\varepsilon r)\psi_{L}(z,r)$$

$$I_{TT} = m_{f}^{2}K_{0}(\varepsilon r)\psi_{T}(z,r) - [z^{2} + (1-z)^{2}]\varepsilon K_{1}(\varepsilon r)\psi_{T}'(z,r)$$

$$I_{LT} = -i2z(1-z)(1-2z)\psi_{L}(z,r)\varepsilon K_{1}(\varepsilon r)\frac{(er)}{r}$$

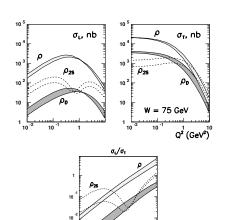
$$I_{TL} = -i2Qz(1-z)(1-2z)K_{0}(\varepsilon r)\psi_{T}'(z,r)\frac{(V^{*}r)}{r}$$


$$I_{TT'} = 4z(1-z)\varepsilon K_{1}(\varepsilon r)\psi_{T}'(z,r)\frac{(er)^{2}}{r^{2}}$$

- $I_{fi} = \Psi_{V,f}(z,r)\Psi_{\gamma^*,i}(z,r,Q^2)$, ψ_T,ψ_L appropriate radial WF's. e,V transverse pol. of γ,ν .
- five independent amplitudes
- after integration over r: amplitudes $\propto |\mathbf{\Delta}|^{|\lambda_f \lambda_i|}$.

I. Ivanov, Nikolaev, WS (2004), earlier in mom.-space: Kuraev et al. (1998), D. Ivanov & Kirschner (1998)

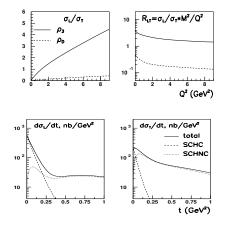
ρ -meson density matrix elements: Q^2 -dependence


Momentum space (k_T -factorization) calculation by I. Ivanov (2005).

Some common quark model assignments of ρ and ω mesons

$n^{2s+1}L_J$	JPC	I=1, G=+1	I=0, G=-1
$1^{3}S_{1}$	1	$\rho(770)$	$\omega(782)$
$1^{3}D_{1}$	1	ρ (1700)	$\omega(1650)$
$2^{3}S_{1}$	1	$\rho(1450)$	$\omega(1420)$
1^3D_3	3	ρ (1690)	$\omega(1670)$

- nb: even for the ground state the substantial S/D mixing is not excluded.
- properties of wave functions that affect the $\psi_{\gamma^*}\psi_V$ -overlap: a node in the WF of the radial excitation, vanishing wave function at the origin for the orbital (D-wave) excitation.
- In e⁺e⁻-annihilation photon doesn't couple to J=3 state, but in diffractive dissociation $J\neq J_{\gamma}$ is possible!
- diffractive amplitudes for D-wave vectors: I. Ivanov & N.Nikolaev (1999) and J=3 mesons: I. Ivanov & F. Caporale (2005).


σ_L vs. σ_T for ground-state ρ , $\rho(2S)$ and D-wave ρ_D

Q² (GeV²)

- Calculation by I. Ivanov & F. Caporale (Phys. Lett. B 662 (2005))
- the simplest "helicity observable".
- $\rho(2S)$ vs. ρ has been discussed by Nemchik et al. ('94,'98), Kulzinger, Dosch, Pirner ('99)
- D-wave excitation suppressed wrt. ρ , but no extra smallness vs. $\rho(2S)$
- uncertainties reflect knowledge of leptonic decay width

The two *D* wave mesons: ρ_3 vs ρ_D

- I. Ivanov & F. Caporale, Eur. Phys. J C44 (2005).
- spin/angular decomposition predicts strong suppresion of σ_L for D-wave vector, enhancement for J=3 state.
- Huge s-channel helicity non-conserving pieces in the J = 3 case. Very untypical (for diffraction) t-dependence of the cross section, especially for transverse photons!

Conclusions

- Diffractive electroproduction is a powerful tool to disentangle e.g. hard to soft QCD, helicity properties of diffraction etc.
- Meson internal structure manifests itself through striking phenomena in the helicity structure/t-dependence of diffractive processes.
- unexplored(?): multiquark states, hybrids...