

Photoproduction of charmonium: COMPASS experience

COMPAS

Alexey Guskov Joint Institute for Nuclear Research (Dubna) avg@jinr.ru on behalf of the COMPASS collaboration

The spectroscopy program at EIC and future accelerators, Trento, 20.12.2018

Exotic charmonia

cusp

direct production in e+e-

direct production in hadron collisions;

P J/ψ X(3872) as D⁰D⁰*-molecule

Exotic charmonia: photoproduction

Bing An Li Is X(3872) a possible candidate of hybrid meson // Phys. Lett. B. 2005. V. 605. P. 306-310. $\gamma p \rightarrow X(3872)p \qquad \gamma p \rightarrow X(3872)n\pi^+$

Liu X.-H. Qiang Zhao, Frank E. Close. Search for tetraquark candidate Z(4430) in meson photoproduction // Phys. Rev. D. 2008. V. 77. P. 094005

$$\gamma p \to Z_c^+(4430)n \to \psi(2S)\pi^+n$$

He J., Liu X. Discovery potential for charmonium-like state Y(3940) by the meson photoproduction // Phys. Rev. D. 2009. V. 80. P. 114007

$$\gamma p \to Y(3940)p$$

Lin Q.-Y., Liu X., Xu H.-S. Charged charmoniumlike state $Z_c^{\pm}(3900)$ via meson photoproduction // Phys. Rev. D. 2013. V. 88. P. 114009 $\gamma p \rightarrow Z_c^+(3900)n$

Lin Q.-Y., Liu X., Xu H.-S. Probing charmoniumlike state X(3915) through meson photoproduction // Phys. Rev. D. 2014. V. 89. P. 034016

 $\gamma p \to X(3915)p \to J/\psi \omega p$

Wang X.-Y., Chen X.-R., Guskov A. Photoproduction of the charged charmoniumlike $Z_c^+(4200)$ // Phys. Rev. D. 2015. V. 92. P. 094017

 $\gamma p \to Z_c^+(4360)n$

The COMPASS experiment

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy)

is a fixed target experiment on a secondary beam of Super Proton Synchrotron at CERN

13 countries, 24 institutions, ~220 physicists

1996 - Proposal 2002-now - Physical data taking

Alexey Guskov, Joint Institute for Nuclear Research

The COMPASS setup

Configuration of the beam and target region depends on the particular physics programme

Muoproduction at COMPASS

Effective **y***N statistics accumulated by COMPASS is equivalent to about L=14 pb⁻¹ of the integrated luminosity, when considering a real-photon beam of about 100 GeV incident energy scattering off free nucleons

$\gamma^*N \rightarrow (J/\psi\pi^+\pi^-)\pi^+N'$

 $\mathbf{f}(\mathbf{m}) = \mathbf{Gauss}(\mathbf{N}_{J/\psi(2\mathbf{S})}, \mathbf{M}_{\psi(2\mathbf{S})}, \sigma_{\mathbf{M}}) + \mathbf{Gauss}(\mathbf{N}_{\widetilde{\mathbf{X}}(3872)}, \mathbf{M}_{\widetilde{\mathbf{X}}(3872)}, \sigma_{\mathbf{M}}) + \mathbf{c}_{1}(\mathbf{m} - \mathbf{m}_{0})^{\mathbf{c}_{2}}\mathbf{e}^{-\mathbf{c}_{3}\mathbf{m}}$

*σ*_M=(22.8±6.9) MeV/*c*²

N_(x̃3872)=(13.2±5.2) events

More kinematics

Alexey Guskov, Joint Institute for Nuclear Research

8

COMPAS

$\gamma^* N \rightarrow (J/\psi T^+ T^-) N$

No statistically significant evidence of a peak at 3872 MeV/*c*²

Production kinematics

It seems, $\tilde{X}(3872)\pi^{\pm}$ and $\psi(2S)$ are produced via different mechanisms

Alexey Guskov, Joint Institute for Nuclear Research

T-T mass spectrum

The shape of the m-mass spectrum observed by COMPASS for $\psi(2S)$ is in agreement with previous results while our result for $\tilde{X}(3872)$ is in tension with

Alexey Guskov, Joint Institute for Nuclear Research

COMPAS

Consistency checks

We investigated many possible reactions which could imitate the observed $\tilde{X}(3872)$ signal:

$$\begin{split} & \gamma^* N \rightarrow \psi(2S) \pi^{\pm} N' \rightarrow (J/\psi \pi^{+} \pi^{-}) \pi^{\pm} N' \\ & \gamma^* N \rightarrow \psi(2S) N^* \rightarrow (J/\psi \pi^{+} \pi^{-}) (\pi^{\pm} N') \\ & \gamma^* N \rightarrow X (3872) \pi^{\pm} N' \rightarrow (J/\psi \omega) \pi^{\pm} N' \rightarrow (J/\psi \pi^{+} \pi^{-} \pi^{0}) \pi^{\pm} N' \\ & \gamma^* N \rightarrow \chi_{cJ} \pi^{\pm} N' \rightarrow (J/\psi \gamma) \pi^{\pm} N' \rightarrow (J/\psi e^{+} e^{-}) \pi^{\pm} N' \\ & \gamma^* N \rightarrow J/\psi \pi^{+} \pi^{-} \pi^{+} \pi^{-} N' \\ & (J/\psi \eta), (J/\psi \eta' (958)), (J/\psi \varphi) \text{ subsystems in the final state} \\ & \text{were also considered.} \end{split}$$

But all the hypotheses were disproved.

 $m_{\tilde{X}(3872)} = (3860.0 \pm 10.4) MeV/c^2$ $\Gamma_{\tilde{X}(3872)} < 51 MeV/c^2 (CL=90\%)$ Significance (including systematics) is 4.1 σ C=-1 (?)

Absolute production rate

COMPAS

Discussion

The X(3872) state, whose mass is close to the X(3872) mass could be treated within the tetraquark model that predicts

L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D71 (2005) 014028.L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D89 (2014) 114010.

 $X_u = [cu][\bar{c}\,\bar{u}]; \qquad X_d = [cd][\bar{c}\,\bar{d}];$ $J_{\Psi^{\rho}} M(X_h) - M(X_l) = 2(m_d - m_u)/\cos(2\theta) = (7 \pm 2)/\cos(2\theta) \text{ MeV}$

X(3872) → J/ψ ρ → J/ψ π⁺π⁻ : C=+1 \widetilde{X} (3872) → J/ψ σ → J/ψ π⁺π⁻ : C=-1

$\gamma N \rightarrow (J/\psi T^{\pm})N'$

Model-dependent result

Assuming : Λ_{π} =0.6 GeV/c, Γ_{tot} =46 MeV we obtained $\Gamma_{J/\psi\pi}$ <2.4 MeV that is in agreement with the fact that $Z_c(3900) \rightarrow J/\psi\pi$ is not a dominant decay channel

Phys.Lett. B742 (2015) 330-334

Photoproduction results for exotic charmonia

COMPASS run 2016-2017: new opportunities

Years	P, GeV/c	Target	
2002	µ⁺,160	⁶ LiD	
2003	µ⁺,160	⁶ LiD	
2004	µ⁺,160	⁶ LiD	C
2006	µ⁺,160	⁶ LiD	
2007	µ⁺,160	NH ₃	
2010	µ⁺,160	NH ₃	
2011	µ⁺,200	NH₃	
2016	μ±,160	LH ₂	
2017	μ±,160	LH_2	CC
2021	µ⁺,160	⁶ LiD	

COMPASS

COMPASS 🗹

COMPASS++ / AMBER (Apparatus for Meson and Baryon Experimental Research) Hard reactions with muon beam, proton radius, charmonia spectroscopy with lowenergy antiproton beam, physics with RFseparated kaon beam etc...

Data presently used

Possibility to search for and study of XYZ hadrons decaying to final states with photons like $J/\psi\pi^0$, $J/\psi\eta$, $J/\psi\omega$, $\chi_{c0,1,2}$ etc.

- 2.5 *m* long liquid hydrogen target transparent for photons (0.27X₀) surrounded by a recoil proton detector;
- *3 electromagnetic calorimeters covering a large aperture.*

COMPASS is able to increase statistics of photoproduced charmonia to 30-50% only

Alexey Guskov, Joint Institute for Nuclear Research

Possibilities at other exps.

SUMMARY

Indeed exclusive photoproduction of exotic charmonia off a nuclear target is a new opportunity to clarify nature of the XYZ states.

Basing on 7 years of data taking with muon beam COMPASS performed:

- first observation of exclusive photoproduction of the X(3872)
- first search for exclusive photoproduction of the Z_c(3900)^{±.}

New results from runs 2016-2017 for reactions with photons in the final state are expected.

The next step in study of exotic charmonia photoproduction could be performed using ultraperipheral hadron collisions at LHC (especially at LHC-b) and electron-ion collisions at EIC.