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The low energy frontier: the QCD phase
diagram at high baryon potential u,

Early universe

» Largely unexplored:
m— RHIC BES Vsy,=3-200 GeV o Existence of critical point and first

e N CA Vs, =3-11GeV

mm— CERN SPS 1s...<6-17GeV order phase transition put forward
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» First order phase transition:

o Measurement would provide first
direct evidence (in
thermodynamic sense) of a phase
transition to the QGP
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» Additional chiral phase transition:
o Exploration of changes in the
hadron spectrum



NA60+: hard and electromagnetic probes in a beam energy
scan (BES) at the CERN SPS in the interval Vs=6-17 GeV

Physics goals

» First order phase transition with thermal dimuons:
o caloric curve T vs energy density

» Chiral symmetry restoration with thermal dimuons:
o p-a, chiral mixing

» Probe high u; medium with heavy flavors:
o Dissociation of ground (J/y) and excited charmonium states

((2S), x.)

o Charm hadro-chemistry and in-medium modifications



NA60+: hard and electromagnetic probes in a beam energy
scan (BES) at the CERN SPS in the interval Vs=6-17 GeV

Experimental observables

» Comprehensive measurement of full dilepton spectrum:
o Thermal dimuons from threshold up to 3 GeV
o Charmonium: J/y, y(2S), x.

» Hadronic measurements:
o Charmed mesons and baryons (D%D%, D, A)
o Strangeness (additionally)



Requirements: statistics and beams

» Statistics goal at each energy of BES:
o ~5-10’ reconstructed pairs from thermal dimuons (factor =100 over NA60)
o ~3-10%reconstructed J/y

o ~10’ reconstructed D°

» The physics program of NA60+ includes, in terms of beams:

- ~4 week periods/year with Pb beams
BES example (p,,,): 20, 30, 40, 80, 120, 160 GeV/nucleon

- corresponding periods of proton beams (reference),
scan could be coarser

» To get the necessary integrated luminosity with 10% interaction probability, beam
intensities of:

- ~107ions/s are mandatory (assuming ~5 s bursts)
- ~5x108p/s



Experimental set-up

» NA60+ layout close to NA60:
o precision muon measurement with tracking before and after hadron absorber

Muon spectrometer Muon wall

3T dipole P | graphite
field along x 160-180 cm

240cm

: Trigger:
stations
> il

Muon Tracking —""

stations




Scalable spectrometer for a BES

570 cm

/ ‘

iz e

High energy setup (Vs=17 GeV,
E.,=160 GeV)

Low energy setup (Vs=6-8 GeV,

E(.,=20-40 GeV) Scaling in terms
of:
// _ o absorber
/l/ _ , ‘ thickness
I \I\ ‘ o longitudinal
\\ positions of
detectors

240 cm
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The vertex spectrometer

3 T dipole
field along x

» angular coverage down to 1.6<n<4

» 5 silicon pixel stations at 7<z<40 cm

» Demading requirements from interaction rate

of 1-2 MHz:
o Particle flux =50 MHz/cm? in first station




MAPS vs hybrid pixels

sensor and frontend electronics in separate

Sensor and frontend electronics in the same
chips silicon wafer

bump-bonding:

NO Bump-bonding:

* limits pixel size (pitch: 50 pm, thickness: * (pixel pitch: 30 um, thickness down to 50
>150 um—> multiple scattering) um)
* expensive * charge collection drift/diffusion=>Vbias 0a 10V
charge collection by drift > Vbias 10to 100V * low power consumption~ 3mW/mm?
high power consumption ~30mW/mm? « radiation toleratn technology
radiation hard technology  more limited frontend electronics

NMOS DIODE

epi-layer

particle

CMS, ATLAS HL-LHC ALICE 9



MAPS state of the art: ALICE ALPIDE

Pixel chip developed
for the ITS Upgrade

Outer Barrel ALPIDE

Silicon thickness S0um 100um

Spatial resolution oum 10um ~ Sum
Chip dimension 15mm x 30mm v
Power density < 300mW/cm? < 100mW/cm? < 40mW/cm?

Event-time < 30us ~ 2Us
resolution

Detection efficiency > 99% v
Fake-hit rate * < 10%/event/pixel <<< 10%/event/pixel

NIEL radiation 1.7x10"3 1MeV ng/em? 1072 1MeV ng,/cm? v
tolerance **

TID radiation 2.7Mrad 100krad tested at 350krad
tolerance **

* revised numbers w.r.t. TDR
** including a safety factor of 10, revised numbers w.rt. TDR

* Max particle rate ~ 100MHz /cm? (pile-up)

* Max readout rate ~ 10 MHz/cm? (bandwidth)




Large area sensors with stitching

CMOS photolithographic process

defines wafer reticles size % % % % % % % %

= Typical field of view O(2 x 2 cm?) |_) T — )_J mask

Reticle is stepped across the wafers {9 {{
to create multiple identical images wafer
of the circuit(s)

photoresist '

. staves built by tiling several sensors k g | Stitching allows fabrication of sensors larger than the reticle size




Stitching PALPIDE

Pixel Matrix
(5000 x 512 pixels)
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' ! ! data bus to periphery ! ! ’

14 cm

1.5x14 cm? sensor: same column length as in ALPIDE (PE readout)

data are transmitted from the bottom of the columns along one long side of the
sensor to the periphery

periphery: contains the control logic to steer the priority encoders, the interfaces for
the configuration of the chip and serial data transmitters
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Massless silicon tracker with wafer scale sensors

Wafer-scale sensor (5000 x 5000 pixels)
obtained replicating this sensor chip
several times along the periphery side

14cm

ad

Pixel Matrix
(5000 x 512 pixels)
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Mechanical support structures and
(505512 colling only on the borders outside from

acceptance
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piel Mt Material budget for tracking stations of
(5000 x 512 pixels) ¢
about 0.005-0.1 % X,

N,

Pixel Matrix
(5000 x 512 pixels)

nnuR
|esaydu

Pixel Matrix
(5000 x 512 pixels)

|esayduag

NI

Pixel Matrix
(5000 x 512 pixels) ¢ JOsSusag

NP
jesayduag

d

Pixel Matrix
(5000 x 512 pixels)

unIp
esaydua

Sensor 4
Pixel Matrix

(5000 x 512 pixels)

unR
|esayduag

Hole allowing beam passage

Sensor peripheral circuit




ALICE ITS super-upgrade after LS3

Shutdown/Technical stop

)
p-p 4'—D Pb-Pb Protons physics

Commissioning
lons

2021 2022 2023 2026 2028 2029 I 2030
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Expression of interest: Study of an almost “massless” ITS Inner Barrel based on the
stiched sensors (upgrade foreseen during LS3)

r=16mm, AR =0.5mm
LO:r=18mm, L1:r=24mm. L2:r =30 mm

~14CcM

Beam pipe inner/outer radius (mm) 16.0/16.5

i 2

Beamp|pe IB Layer parameters Layer 0 Layer 1 Layer 2
IR 16 mm Radial position (mm) 18.0 24.0 30.0

AR 0.5mm Length (sensitive area) (mm) 2 270
Pseudo-rapidity coverage® » +2.3

Active area (cmz) 5 408
Beam pipe thickness: 500um (0.14% X,) Pixel sensors dimensions (mm?) 140x56.5 140x75.5 140x94

Sensor thickness: 20 - 40um (003 -0.05% XU) Number of pixel sensors / layer 4

14

Pixel size (um?) 0(30 x 30)

L. Musa (CERN) — ALICE Week, 17 July 2017



GEM (Gas Electron Multiplier)

GEM foil

* Thin polyimide foil (Kapton®) ~50 um
e Cu-clad on both sides ~5 um

* Photolithography: ~10* holes/cm?

Typical GEM geometry:
* Inner/Outer hole diameter: 50/70 um

"=+ Pitch: 140 um

Position resolution < 100 pm Dritt Gap
Timing resolution < 10 ns EEEseEEEEE. ... GEM
. ey 2mm i 1\ Transfer Ga L
High rate capabilities of O(1 MHz/cm?) gl CRURRNRAR  ef |
L ... .
Radiation hardness 2mm ' N ' \ ‘ Transfer Gap '
Can be stacked easily: EEaES eSS == GEM

Induction Gap

— Higher gains (up to 10°)
— Improved stability against electrical discharges
— Further reduction of ion backflow Readout

Electronics
Used successfully in COMPASS, LHCb, TOTEM
Baseline solution for CMS Muon Endcap Upgrade, ALICE TPC Upgrade 15




NA60+ GEM tracker

Apparatus layout

Vs=6.3 GeV (E,,,=20 GeV) setup

4 stations, behind the absorber, total area of 116 m?

Double 3-GEM modules with strip readout per station > foan magne
Single module: 50 x 100 cm? - 50 x 150 cm?

310 - 464 chambers = 1000 - 1500 GEMs (with spares)

NS2 system (like CMS) for faster chamber assembly (no Vertekspectiometer S etons

2-3 T dipole field

gl u i ng) stations of MAPS Muon Tracking: —

of RPCs, ...

4 stations of GEMs

Gas: Ar-CO, or Ar-CO,-CF,
— No flammable
— No ageing effects observed

1-2 M electronic channels (1D or 2D). Readout options:
VFAT-3, VMM-3 chips
Significant effort necessitates in a collaboration of

several production institutes and highly optimized
workflow

Production time: 2-3 years
Total cost: O(10 MCHF)

Piotr Gasik (TUM) - NA60+ GEM muon tracker



Thermal radiation



Phase transitions and caloric curves

» Caloric curve and phase diagram of water

Normal Normal
Heating of /freezmg point boiling point_ /p
) water vapor
Heat used to vaporize
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» Caloric curve for liquid-hadron gas phase transition in nuclear matter (Pochodzalla et al., Phys.
Rev. Lett. 75 (1995), D’Agostonio et al., Nucl. Phys. A749 (2005) 55-64)
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Thermal dilepton rate and the measurement of T

e.m. spectral
dN function
——ee o e (B T)xim M, (M T)
0’ Iql MB;
vacuum

—— 3-loop pQCD et E]

Naive quark model > <
_ . H } e q

. Sum of exclusive .. Inclusive .
non-perturbative " measurements Vs=M [GeV]  measurements perturbative
in-medium "

hadron-parton
: : duality (flat SF)
ImIT,_~ImD_ +. ImIL,,~ N, >(e,)’ |

Flat spectral function for M>1.5 GeV =»mass spectrum after integration over momenta and
emission 4-volume:

spectral functlon(s)

T: average temperature which tracks initial temperature

AN | dM o< M3 x(exp(—M/T)) (dominant contribution from early stages)

i Robust theoretical result

Fit of mass spectrum for M>1.5 GeV - thermometer! 1



NA60 measurement of T at Vs=17.3 GeV (E_,=160 GeV):
evidence of deconfinement

[Eur. Phys. J. C 59 (2009) 607] = CERN Courier 11/ 2009, 31 _A” physics background sources subtr. and
Chiral 2010, AIP Conf.Proc. 1322 (2010) 1 integrated over p;

Correction for acceptance and normalization to
In-In dN_/dn>30 dN_ /dn

effective statistics highest of all
experiments, past and present (by

a factor of nearly 1000)

¥ thermal dimuons
¥ Renk/Ruppert
® Hees/Rapp

>t Dusling/Zahed M<1 GeV

p dominates, ‘melts’ close to T,

ch

M>1 GeV

~ exponential fall-off 2 ’Planck-like’
fitto dN/dM o« M>? xexp(-M /T)
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range 1.1-2.0 GeV: T=205x12 MeV
1.1-2.4 GeV: T=230£10 MeV

T>T.=160-170 MeV: partons dominate
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Caloric curve: precision of the measurement

Theoretical estimates from Rapp, van Hees PLB 753 (2016) 586

» First order hadron gas-QGP
phase transition:

Central Pb-Pb collisions o energy range below

Vs=10 GeV appears to

be well suited to map

out this transition

regime (as suggested by

this theoretical model)

» Experimental caloric curve
with dilepton thermometer
* T_(M=1.5-2.5GeV) (T,):

T o Fit of dilepton spectra
CERN SPS for 1.5<M<2.5 GeV
with
dN/dM=M*2exp(-M/ )

» l|dentifying a flattening requires measuring T with very high precision
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Thermal dilepton excitation function: fireball lifetime

Precise thermal dilepton measurement of thermal yield in 0.3<M<0.7 GeV sensitive to the

fireball lifetime
Hees, Rapp, Phys. Lett. B 753 (2016) 586

Eur. Phys. J. C61 (2009) 711 hadronic 0.3GeV <M < 0.7GeV

0.2<M<1.0 GeV

sum

ple=1.0

Yield ratios

continuum/p |

- peak/p i

Low-mass dileptons:
o excellent tool to detect anomalous
variations in the fireball lifetime due, for
instance, to the presence of a soft mixed

phase
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peak: R=C-1/2(L+V)
continuum: 3/2(L+U)



Chiral symmetry breaking and the hadron spectrum

Hadron spectrum
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Vector-Axial vector splitting (also
pseudoscalar-scalar) in the physical
vacuum due to spontaneous
breaking of chiral symmetry
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Chiral symmetry restoration

[Fodor et al “ 10]
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Towards chiral restoration: p melting

PRL 96 (2006) 162302; AIP Conf.Proc. 1322 (2010) 1

In-In SemiCentral Rapp/Wambach

Brown/Rho > NA6O In‘ln 160 AGEV - data
Vacuump before acceptance correction

cockt. p (dashed)
DD (dashed)

all p_
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» Comparison to theoretical
models:
o Brown/Rho - dropping
mass scenario
o Rapp/Wambach — only
broadening

Strong broadening of p observed (no mass shift) = ‘hadrons melt’
(indirect) evidence of chiral symmetry restoration

On chiral restoration and p melting: P.M.Hohler and R. Rapp, PLB 731 (2014) 103



a, spectral function in the medium

Hohler, Rapp, PLB 731 (2014) 103
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a, and dileptons : vacuum vs medium

Axial states don’t couple to

vacuum .
virtual photons

3-loop pQCD
Naive quark model
In vacuum (left) dip the region
M=1-1.5 GeV: significant
depletion

Sum of exclusive " Inclusive
measurements Vs=M [GeV] measurements
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In the medium: chiral mixing
To lowest order in T pion induced mixing of vector and axial-vector correlators:

I1,(T) = (1- &), (T = 0) +¢I1, (T =0) ¢ = /617,

The admixture of the a, resonance, via the axial-vector correlator, thus entails an
enhancement of the dilepton rate for M ~ 1 - 1.4 GeV 27



Dileptons and the dip

In medium p + w + QGP — no chiral-mixing (¢ = 0)

Pb-Pb 0-5%
Vs = 8.8 GeV (p,,,=40 GeV)
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Dileptons and chiral mixing

In medium p + w + QGP + maximal chiral mixing (¢ = 1/2)

20-30% effect in yield for 1<M<1.5 GeV

Pb-Pb 0-5%

Vs = 8.8 GeV (p,,,=40 GeV) Maximal effect: € = 1/2 all over fireball

evolution (refinement of theory
calculation needed)
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— NO Mixing

— p-a, chiral mixing
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Dileptons and chiral mixing: measurement

In medium p + w + QGP + maximal chiral mixing (¢ = 1/2)

20-30% effect in yield for 1<M<1.5 GeV

Pb-Pb 0-5%

Vs = 8.8 GeV (p,,,=40 GeV) Maximal effect: € = 1/2 all over fireball

evolution (refinement of theory
calculation needed)
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Experiment:
o Delicate measurement

— no mixing o Low energy: probe matter close to
— p-a, chiral mixing . phase boundary (knowledge from T
) measurement) to disentangle from
QGP

o Low energy: DDbar negligible

o Drell-Yan: reference measurements
. 30
in pA



Performance study for thermal radiation Pb+Pb 0-5% central
collisions at VsNN=6.3, 8.8, 17.3 GeV: dilepton generators

» Thermal radiation generator based on calculation

Hees, Rapp PLB 753 (2016) 586 :
22 ( ) provided by R. Rapp, H. Hees:

o dileptons from hadronic phase based on the

Vs=8.8 GeV . ,
in-medium p+w

Central PbPb
o IMR with/without chiral mixing

o dileptons from QGP phase based on lattice
QCD constrained rate
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Thermal yield from g . » Hadronic cocktail generator (physics background):

hadronic ph i is usi isti
adronic phase o derived from NA60 Genesis using statistical

Thermal yield from QGP model (Becattini et al.); dN_/dn=270

» Drell-Yan and open charm (physics background)
o estimated with Pythia

N.B.: sensitivity to chiral mixing: comparison of performance mass spectra with theoretical
expectation assuming full chiral mixing 31



Simulation of combinatorial background

Keep this distance as small as possible ~40 cm

dipole field

Muon wall (not to scale)

<

_through

onday hadron punch-through

el

Beam Tracker

muons from primary hadrons

uons frg
Vertex Detector ™M Secongary, hadrong
Hadron absorber

(not to scale)

» Combinatorial background:
o The most important aspect to consider to assess the physics performances

» Fluka simulations:
o Full hadronic shower development in absorber
o Punch-through of primary and secondary hadrons (p, K, m)
o Muons from secondary hadrons

32



Performance for thermal dimuons in Pb+Pb: data samples

Yields based on thermal dimuon estimate from Rapp-Hees PLB 753 (2016) 586, DDbar
and Drell-Yan from Pythia, statistical model for low mass resonances

10" =
> _ > >
Che Vs=17.3 GeV | 2447 Vs=8.8 GeV 2. ] Vs=6.3 GeV
310 Central PbPb 3 . Central PbPb | o Central PbPb
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10* - o
10" - 1073
3
10° 4 10" 3 10° <
2 L, 102 _ LEH K 2
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) decreasing energy (Elab=160>20 GeV)

»> 2 -107 reconstructed signal pairs in > Statistics collected in a ~4 weeks
0-5% central events run at each energy with 1 MHz

- ~5.107 events in 0-100% interaction rate
—> factor 100 over NA60O




NA60+ performance for thermal radiation in central Pb+Pb :
data sample size and quality (Vs=8.8 GeV; E, =40 GeV)

Pb-Pb vs=8.8 GeV NA60+

. 7 . . _
0-5% central collisions » 210’ reconstructed signal pairs

factor 100 over NA60O

S=2.10’

<5/B>=1/12 > Combinatorial background: u from t,K
. dN,/dn=270 or hadron puch-through - B/S similar as
A in NA60O

dN/dM per 20 MeV

—
o
'

» Fake matches: signal u matched to
wrong track in pixel telescope - much

better than NA60

—r
o
w

opposite sign pairs -:;EE:;:. .
combinatorial background i:: . » Mass resolution 10-15 MeV - factor =2

fake matches ---- i better than NA60

signal pairs

3

—
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15 2 25
M [GeV/c?]
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Signal mass spectra vs Vs
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I decreasing energy

» From full SPS energy towards low energy:
o Significant reduction of Drell-Yan

o Open charm becomes negligible

o Decrease of QGP




Signal mass spectrum: example for central Pb+Pb at Vs=8.8 GeV

dN/dM per 50 MeV

0

0,~10 MeV/c?

\
u‘ o
v "Gy
\
\

.

0.5

1

1.5 2

2.5

Pb-Pb Vs=8.8 GeV NA60+
0-5% central collisions
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» Signal spectrum after
subtraction of:

o comb. bkg (0.5%
precision)
o fake matches

» Dilepton sources M<1 GeV:
Thermal radiation p+w
Thermal radiation QGP

Freeze-out hadron
cocktail (n, o, ¢) (M<1
GeV)

» Dilepton sources M>1 GeV:
o Thermal radiation 4x
Thermal radiation QGP

O
o Drell-Yan
O

Open charm




(dN/dMdy)/(dNch/dy) (50 MeV)

p-a, chiral mixing and temperature from thermal spectra

&

—
o

&

—
o

2

—
o

1
(oo}

—
o

1
©

—
o o 3

o 1

—
o

1
—
—

—
(\}

.‘

M,

%
M*ﬁ\& ‘
3

Acceptance corrected spectra:
Vs=17.3 GeV (x100) (E,,,=160 GeV)

Vs=8.8 GeV (x10) (E

Vs=6.3 GeV (x1) (E.,=20 GeV)

Dashed lines: theoretical
estimate (PLB 753 (2016) 586)

Black lines 1-1.5 GeV: Fit with
dN/dM=M 3/2 exp(-M/T,)

=40 GeV)
i,

o

0.5 1

15 2 25
M [GeV/c ‘]

Thermal spectra: acceptance
corrected spectra after
subraction of:

o Freeze-out cocktail
o Open charm

o Drell-Yan

Temperature:
o 1.5<M<2.5 GeV fitto

dN/dM=M 3/2exp(-M/T )

o Systematic uncertainty:
vary bkg subtraction by
0.5% before fitting



A precise measurement of a caloric curve in high-energy
nuclear collisions: NA60+ performance

Theoretical estimates from Rapp, van Hees PLB 753 (2016) 586

» First order hadron gas-QGP
phase transition:

o energy range below
Vs=10 GeV important to
map out this transition
regime (as suggested by
this theoretical model)

» Black points: NA60+
measurement of | from fit
of thermal spectra for
1.5<M<2.5 with

e theor. T (M=1.5-2.5 GeV)
S
e theor. T

CERN SPS * NA60+ TI (M=1.5-2.5 GeV) dN/dM M3/29Xp( M/ )
s = B

» High precision: at low energy T measurement with errors at MeV level (% level)

- strong sensitivity to possible flattening 38



Prospects for measuring p-a, mix: NA60+ performance

Black line: expected yield
assuming chiral mixing

(Rapp)

Pb-Pb Vs=8.8 GeV
0-5% central collisions

NAG60+: Experimental

performance assuming
no chiral mixing

02 04 06 08 1 1.2 1.4
M [GeV/c 7]

Chiral mixing: yield enhancement
in 1<M<1.5 GeV

Measurement challenging, but
sensitivity to enhancement!

Sensitivity might improve further

at Vs=6.3 GeV (needed
theoretical input)
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Dilepton excitation function and fireball lifetime: NA60O+
performance

Uncertainty dominated by combinatorial bkg subtraction (0.5% uncertainty)

____ hadronic 0.3 GeV <M< 0.7 GeV
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Dilepton excitation function and fireball lifetime: NA60O+
performance

Uncertainty dominated by combinatorial bkg subtraction (0.35% uncertainty)

____ hadronic 0.3 GeV <M< 0.7 GeV

41



Charm and quarkonia



Open charm: physics motivations

» Characterize the QCD medium with open heavy flavours
o Test models which predict strongest in-medium interactions in the vicinity of
the quark-hadron transition [1]
o Sensitivity to the role of hadronic interactions [1]
o Enhancement of charm production at chiral restoration where the threshold
for production of a D-Dbar pair may be reduced [2]

> Charm cross section as reference for charmonia

» Can be addressed via measurements of:
o D-meson yield and elliptic flow in A-A collisions
m New energy domain
o “Charm hadrochemistry” in p-A and A-A collisions
m Baryon-to-meson ratios via A /D°
e Interesting also in p-A since A/DC% in pp (p-Pb) at LHC is higher than
in efe
m Strangeness production via D./D

[1] R. Rapp, private discussion
[2] B. Friman et al. Lect. Notes Phys. 814 (2011) pp. 980 43



Charm diffusion coefficient

Phys. Rev. C96 (2017) 044905

IQCD [Kaczmarek (2014)]
IQCD [Banerjee et al.]
AdS/CFT

1 D-meson[Ozvenchuk et al.]
+ D-meson [TAMU]
QPM (Catania) - BM
QPM (Catania) - LV

— —
—
——

l ~ 3.5 fm/C

T

ih

Ty~ 1.5 fm/c

* Charm diffusion coefficient predicted larger in the hadronic phase for T2 Tc than in
QGP for T>Tc

* low energy: higher sensitivity to diffusion coefficient in hadronic phase (important
input also at collider energies) a4



Charm cross section in pp/p-A

Total charm cross section at Vs<20 GeV experimentally poorly known

PYTHIA LO cross sections scaled with MNR calculations with m_=1.2 GeV and
appropriate K-factor U=2m,
T LI LI LI LI LI
iy | | s 1
= s PP — €T _ 103 —
510 E all x. ’\._(G?\.I\“"f ‘ :_____:..»—&'Ici E ﬁ E
t; W ':______«--""'“- ;“SG\HC'A B N
4 0
5 = 107 =
3 CTEQSL (2002) o - i
m = 1.7 Gevic® /l\ : :
| |
o) 10l =
m. = 1.5 GeV/c? o¥ =
\b/ X E743 ¢ expts before 88 .
B E653 X ISR expts ]
e X NA37 .
i ] m. = 1.3 GeV/c? + NA25
:f o8 , , , ' 100 |- O NA32 -
50 100 150 \E[%;oeoV] :| 1 | L1 | L1 | L1 | 111 | I | .
I|III|III|III]III|III|III[IIIlIIIlIIIlIII
20 40 60 80 100 120 140 160 180 200 20 30 40 20 60 70
\s [GeV] Vs [GeV]

C. Lourenco, H. Wohri, arXiv:hep-ph/0609101 R. Vogt, arXiv:hep-ph/0111271 45




Elliptic flow

e Measurements of HF-decay electron v, at Vs=39 and 62 GeV/c

from RHIC BES

o Smaller v, than at Vs=200 GeV
o Not conclusive on v,>0

0.2 LI B B I I I B I I B 0.3r T T T T T ]
- B V,{2}. \s\N—”OO GeV (b) . C 7
- (2}, V=624 GeV . - E
i : 2 {,} tx—@ Ge’\e . 0-25: 20<Centrality<40% o 10 ]
= .- He et al. 200 GeV T 0 oF & (or ) p_1.3-2.5 GeV/c v heavy flavor e*
— 0.1 _Heetal 624 GeV E il m &f : -
) i 7 P "ﬁ' -7 ~ C o ° .
= i A 1 > 0.15: ° =
= [ — ] - Y ]
SR Y‘ 0.1:— % E
S 1 %% E
-0- 60% c.entrahty - S ]
0 ]O | I R R A A | | PR 2
07 04 06 08 1 1.2 14 16 18 2 s (GeV
P, [GeV/c] ISy (GEV)

STAR, PRC 95 (2017) 034907 PHENIX, PRC 91 (2015) 044907




Performance studies for NA60O+

DO—>Km as benchmark
o Studies on 3-prong decays of D,
D" and A_ will follow

K and it reconstructed in the vertex
spectrometer

Fast simulation of track reconstruction
performance

Background reduction with selections
on displaced decay vertex topology

Estimate S/B, significance

Two beam energies considered

Epearn (AGEV) Vs, (GeV)
o0 s
47




Signal simulation

® Decay DK simulated
o p;andy shapes from POWHEG-BOX+ PYTHIA6

® Fast simulation of detector response
o Pixel efficiency assumed to be 100%

o Underlying event simulated - reasonable detector occupancy
o Two configurations for 5 layers of pixels
m Hybrid
e Point resolution: 10 um
e Material budget per layer: 400 um Si, 1000 um C

m Monolithic
e Point resolution: 5 um
e Material budget per layer: 100 um Si

® Decay vertex reconstruction from the DCA points of the daughter tracks
o Track covariance matrix elements used as weights

48



Signal vs. background

® Number of D°->Km decays per event
Ngignai= Occ * Tan * BR(DO>Km) * f(c->D%) * 2
B BR=3.89% ; f(c->D°)=0.55
B For 0-5% centrality: T,, = 26.9 mb!
m ForE,,,,=160GeV:o_, =5pub
\ ~ 0.006

signal

® Background tracks:

O Abundances and p; and y distributions of 7, K and p from parameterisation
based on NA49 results

O About 1200 particles per event -> produce about 350k candidates per event,
out of which about 8k are in the D° invariant mass range

® =» S/B before selections is ~0.006/8000~7-107!
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Candidate selection

e Candidate selection needed to reduce the background
e Based on displaced decay vertex topology

e Cut variables:
o Decay-track p;
o Cosine of O*
m Angle between the K momentum in the D° rest frame and the D°
flight line
Decay-track impact parameter (DCA to primary vertex)
DCA between decay (K and m) tracks

Product of decay-track impact parameters
Decay length (distance primary-secondary vertex)

O O O O O

Cosine of pointing angle
m Angle between D® momentum and flight line

50



Selection

Checked significance [S/V(S+B)] signal-over-background [S/B] and D° efficiency
with 400 different sets of cuts

O  Without binning in candidate p;

For each efficiency “bin” keep the set of cuts with maximal significance

— Hybrid 10um
— MAPS, 5um

02 03 04 05 06 0.7 08 09 1 : 1 02 03 04 05 06 07 08 09 1
Fraction of kept signal Fraction of kept signal




Significance and S/B

Performance with MAPS
strikingly better than hybrids
due to better resolution on:

o decay track momentum
—t— o decay vertex position
(10-15 wm vs 30-40 um in

Hybrid 10 um
the transverse plane)

25 3
P, (GeVic)

o mass resolution (10 MeV
vs 24 MeV)

MAPS 5 pm

25 3 X . 2 25 3
P, (GeVic) P, (GeVic)
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Invariant mass (Hybrid 10 um setup)

Pb-Pb, ys=17.3 GeV, centrality 0-5%

1e+11 MB events

D° - Kr, pT>O

o, =5ub
S =853104 + 4994

B (30) = 15870751+ 2707
S/B = (36) 0.0538

Signif (36) = 208.6 + 1.2

1.9 1.95 2
Inv. mass Kn (GeV/c?)

® Projections for Pb-Pb at Vs ,=17.3 GeV, 0-5% centrality

® Assuming 10! MB collisions (1 month at 150 kHz):
O ~800k total reconstructed D°

Assuming:
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Invariant mass (MAPS 5 um setup)

Pb-Pb, ys=17.3 GeV, centrality 0-5%

1e+11 MB events

D° - K, pT>O

Assuming:
o, =5ub

S = 3367545 + 3330
B (36) = 6759192 + 941

S/B = (30) 0.4982
Signif (3c) = 1058.2 + 0.9

1.9 1.95 2
Inv. mass Kn (GeV/c?)

Projections for Pb-Pb at Vs,,=17.3 GeV, 0-5% centrality

Assuming 10! MB collisions (1 month at 150 kHz):
O ~3-10° total reconstructed D°

O Allow for differential studies of yield and v, vs. p;, centrality
Performance for D*, D.* and A_ to be studied



Low-SPS energy charmonium production

» Extract information of the fundamental in-medium QCD force in the region of
finite ugz and at energy densities smaller than in the collider energy range

» Possible observables [1]:

o Top SPS energy: J/1 suppression compatible
with feed-down effects from x_and y(2S)
—> do direct J/3 continue to survive at high
baryon density ?

-
w

158 AGeV

—
[N}

o Can a sequential suppression be established
(similarly to what done at LHC for the Y) ?

-
-

-

o Study the interaction of charmonia in
confined matter via p-A collisions

S
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— separate hot and cold matter effects

&
N

NA50 Pb-Pb

- investigate inelastic reaction rates in ®¢1 NA60 In-In

hadronic matter (small for J/, O58 50 160 150 200 250 300 350 00
possibly significant for x_and y(2S)) NAG0, NPAS30 (2009) 345c P

[1] R. Rapp, private discussion ==



Charmonium production rates

R.Nelson et al., PRC 87, 014908

» Few elementary collision data exist for
Vs < 20 GeV

» Evaluate production cross sections via
Color Evaporation Model or empirical
parameterizations

o)
£
S 102
A
=]
X
b

[
(=]
—

[
[=]
[=]

Pb-Pb

—E,..,.=50 GeV
» Expected PbPb statistics vs integrated —E,_=150GeV 3x10% I/
luminosity
o 10*J/y atE,.,,=50 A GeV
L. ~25nb?
» Assume:

o Ny scaling

o |y|<0.5, |cosO|<0.5
o Axe=0.15
o 1/3 suppression factor Luminosity (n5')
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SPS beam requirements

lons/s to collect 3x10% J/y in 30 days
5s burst, 3 burst/minute

— PbPb
target: 4mm, Acc=15%, J/y suppression=0.33

100 120 140 160 180 200
Beam Energy (GeV)

Background levels negligible!

NA60O (In-In, E,_. = 158 A GeV)
- J/y/(DY+DDbar+comb.)<5%

Same order of magnitude expected
when moving to E, ..., = 50 A GeV

Interaction rate

» Assume 30 days beam time

» Beam intensity ~0.8x10’ Pb ions/s
o 3x10%reconstructed J/1 for Pb-Pb

collisions at E,_,,= 50 AGeV

R. Arnaldi et al. (NA60), PRL99 (2007) 132302

m,, (GeV/c?)



p-A collisions: performance

Measurement of J/1 production in p-A collisions essential for
two main reasons

1) Evaluate o /%, needed for R,, evaluation, via simple and
robust extrapolations (direct use of H, target more complicate
in fixed-target environment)

N = Jp pa
Opa Opp A

=
n

2) Evaluate shadowing/break-up
effects in cold nuclear matter,
which were shown (NA60) to
become important when
collision energy decreases

pA 400 GeV
pA 158 GeV

—
—

—

Jiy Jiy
(GVIA) 1 (52VIA )

ot
w0

NA60, PLB 706 (2012) 263




p-A collisions: NA60+ performance

Measurement with 7 1 mm thick nuclear targets

Simultaneously exposed to the beam, as done in NA60 (Be, Al, Cu, In, W, Pb, U)
Assume a J/1p absorption cross section in CNM o, /%= 4.3 mb

=15 days of proton beam time, 1=3 108 s'! (with SPS burst structure) and E= 50 GeV

NABO+, Jly — p*u’
PA, E,o.m = 50 GeV
15 days, /.., = 38 p/s

Use this plot to

1) Extrapolate to o, /¥

2) Estimate the uncertainty on
Oabsj/w
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Physics performance : R,,

Assumption on observed J/1 suppression:
o due to CNM effectsup to N, ~ 50
o Then anomalous suppression giving a 20% extra suppression

30 days Pb beam time at LA
| = 8.5 106 Pb/s (4mm Pb tgt)  PbPbE,, =50GeV

beam

AND ' 30 days, /., = 8.5€6 ions/s
cold nuclear matter effects

a pA data taking like the one
detailed before

Even at low SPS energy an
accurate estimate of R,, can
be carried out and an
anomalous suppression

be detected




Installation site, timeline

» Required beam intensity: installation possible only in ECN3 underground

» Project under discussion together with NA62/KLever and Dirac+ proposals after
LS3 for run4 within CERN Physics Beyond Colliders
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Timeline

Timeline table of different proposal discussed within Physics Beyond Colliders (QCD working
group)

LS2 LS3 LS5
LHC onty LHC & SPS
MUonE]| .
g
COMPASS++ § conventional beams
§ (no simultaneous running)
COMPASS++ g RF-separated beams
®
LHC-FT % unpolarized polarized & unpolarized
8
LHC-Crystals| g
4
o
DIRAC++ g
NAB1++| °
NAG0++
future
facilities

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035



Competitiveness of NA60+/CERN SPS in the landscape of
existing or future facilities

Early universe

: large ug coverage -high

s— R H|C BES Vs,,=3-200 GeV interaction rates (>1 MHz)
s NI CA Vs, =3-11GeV

I CERN SPS vs\,~6-17GeV

n

GSI SIS100 : complementary ug region -high
interaction rates (>1 MHz)

>
%
=
0)_
—
-]
-
T
—
b}
Q
£
b
-

Collider facilities ( , ): large u,

coverage - interaction rates lower by 2-3
orders of magnitude
Baryon chemical potential Also RHIC fixed target program not
competitive for high precision dilepton
measurements

o Optimal combination of wide ug coverage of phase diagram and large
interaction rates 63



Outlook

» Project discussed within Physics Beyond Colliders

o Expected to produce a document by the end of this year to serve
as an input for the European Particle Physics Strategy

» Working group from several institutions working on the preparation
of a Letter of Intent to be finalized by end of the year:

o Cagliari (INFN), Kolkata (Saha institute), Lyon (IPNL), Munich
(TUM), Padova (INFN), Rice University, Stony Brook University,
Tohoku University (Japan), Torino (INFN)

» We invite interested people to contact us (na60-plus@cern.ch)
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Detectors for silicon tracker

» State of the art monolithic pixels with stitching > possible sinergy with ALICE
upgrade after LS3. Meet requirements in terms of:

o very large area (wafer size), material budget (0.1% X,), resolution (5 um)

o rate/cm? (max 50-100 MHz/cm?) but optimization of readout band-width
required

Example of pixel
plane with just 4

Z losuasg ~20%x20 cm?
sensors with total
material budget of
Sensor 4 0.1% XO!

/ Hole allowing beam passage

Sensor peripheral circuit

» State of the art hybrid pixels: >CMS/ATLAS development for HL-LHC after LS3
might be also a very good option. Compared to monolithic pixels:

o very fast, very high radiation resistant

. c . o 66
o worse material budget and space resolution, more complex integration



The STAR BES at RHIC for comparison

STAR - QM2017

oo e : S.taﬁStiCS ranging from Collision Energy | BES-Il Proposed BES-I
400*10° mbias events (Vs = 19.6 GeV) (GeV) Events Goal (M) | Events (M)
to 100%10° mbias events (Vs = 7.7 GeV)

- energy range to be

extended further down to Vs = 3 GeV

Statistics goal: 10° mbias events/energy -

os  Jawo s

(same sensitivity as BES-I1)

In 2003 NA60 at Vs=17.3 GeV collected >200*10° triggered muon pairs.
This means that BESII will not be able to reach even the precision of the
former NA60 in dilepton measurements
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Detection Efficiency (%)

100

Detection efficiency and fake hit rate

LI

Efficiency Fake-hit Rate @ V__=3V
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Position resolution and pixel cluster size
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High rate operation (int rate > 1 MHz)

c|n|
230 aF

PIX_IN

Collection Hit Storage
diode Latch

Return to

baseline
~10us

Continuous mode: readout of pixel hits sampled during periodically repeating strobing intervals,
with a duration equal to the interval between two consecutive ones.

Framing intervals should be few hundred ns: strobe duration O(100 ns), strobe gaps O(100 ns)

Issue: chip prioritises newly received frame requests over data that are already stored within

the matrix 70
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CcC Ccross-sec

Charm cross section in pp/p-A

Measurements in the SPS energy domain vs. pQCD

PYTHIA LO cross sections scaled with

appropriate K-factor
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C. Lourenco, H. Wohri, arXiv:hep-ph/0609101

o(pp——>cc)[ub]

10°

10l

100

MNR calculations with m_=1.2 GeV and

U=2m,
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Charm cross section in pp/p-A

Measurements in the SPS energy domain vs. PYTHIA
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C. Lourenco, H. Wohri, arXiv:hep-ph/0609101




hits/cm °s per 1 MHz int rate

Flux is radially inhomogeneous, being strongest close to R=0

Flux reaches =50 MHz/cm? in the first pixel planes,
decreasing to =5 MHZ in the last

hits/cm °s per 1 MHz int rate

hits/cm °s per 1 MHz int rate o

9000

8000

7000 Z=38 cm

hits/cm °s per 1 MHz int rate

20 -15 -10 -5 0 5



MAPS state of the art: ALICE ALPIDE

NMOS PMOS
TRANSISTOR/ TRANSISTOR

PWELL

Epitaxial Layer P-

CMOS Pixel Sensor - Towerdazz 0.18um CMOS Imaging Process

— High-resistivity (> 1kW cm) p-type epitaxial layer (25um) on p-type
substrate

— Small n-well diode (2 um diameter), ~100 times smaller than pixel => low
capacitance (~fF)

— Reverse bias voltage (-6V < Vgg < 0V) to substrate (contact from the top)
to increase depletion zone around NWELL collection diode

— Deep PWELL shields NWELL of PMOS transistors (full CMOS circuitry
within active area)




Detectors for muon tracking and trigger

» Gem detectors meet fully the requirements for the muon tracking:
o Fine patterning realized with PCB
photolithography techniques

position resolution (~100-200 um)
Good timing resolution (<10 ns )
rate capability (max 10 KHz/cm?)
Excellent radiation hardness

O O O O O

Use components that can be mass
produced by industry

\ 4 ....

» RPC detectors similar to ALICE meet fully the requirements for the muon trigger in
terms of:

o Ageing
o Rate capability (max 100 Hz/cm?) 75



High-mass background at low SPS energy

FromE, =150 to 50 GeV

J/p (Vs parameterization) ~7.2

Drell-Yan (Pythia, LO), |y|< 0.5, 2.9<m,, <3.3

GeV/c? >
~10?2
DD = uu (as o0..2)
Combinatorial background ~4
(pion, kaon decays) (as AN, /dn?)
Conclusion

1) All expected sources decrease by the same order of magnitude

2) DD likely to become negligible e



Study of J/ acceptance

Acceptance studies
Follow the shift of center-of-mass rapidity vs collision energy

E =150 GeV

beam

Eieam = 50 GeV

beam

HIGH ENERGY SETUP LOW ENERGY SETUP

— generated J/y — generated J/y
[_] reconstructed Jiy [ reconstructed J/y

HIGH ENERGY SETUP LOW ENERGY SETUP
—— generated J/y —— generated J/v
[ ] reconstructed Jiy [] reconstructed J/y

With the two “default” set-ups the coverage is optimized
(by definition!) at the two edges of the energy scan
What about “intermediate” energies ?
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Study of J/ acceptance

Acceptance studies
Follow the shift of center-of-mass rapidity vs collision energy

Epearm = 90 GeV Epean = 110 GeV IL

HIGH ENERGY SETUP LOW ENERGY SETUP HIGH ENERGY SETUP [ LOW ENERGY SETUP

generated J/y —— generated J/y —— generated J/vy | —— generated J/y
[ ] reconstructed J/vy [ ] reconstructed J/y | reconstructed J/y ' [] reconstructed J/y

Coverage still reasonable in 1 unit of rapidity around y=0
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Study of J/1 acceptance

HIGH ENERGY SETUP
MS+VT, MS res= 200um, VT res=10um
MS+VT, MS res= 100um, VT res= 10um
MS+VT, MS res= 200um, VT res= 5um
MS+VT, MS res=100um, VT res= 5um
MS, MS res= 200um
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LOW ENERGY SETUP

60 80 100

MS+VT, MS res= 200um, VT res= 10um
MS+VT, MS res=100um, VT res= 10um
MS+VT, MS res= 200um, VT res= 5um
MS+VT, MS res= 100um, VT res= 5um
MS, MS res= 200um

120 140 160 180
Egeam (G€V)

In the fiducial region |y|<0.5, acceptances between 15 and 20%,
using the appropriate set-up (low or high energy)
Modest dependence (as expected) on detector resolutions
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Signal simulation: efficiency

e DC- acceptance x reconstruction efficiency
o Similar for the two pixel configuration

« generated
4+ reconstructed
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DO simulation: mass resolution

® DPinvariant mass resolution

— Hybrid 10um
— MAPS, 5um

|

1.85

\

1.84

L1 1 1 I L1 1 1 | L1 11 | L1 11 | L1 1 1 [ L1 1 1 L1 1 1 I L1 1 1 | L1 11 | L1 11 | L1 1 1 [ L1 1 1
1.83; 05 i 15 2 25 3 % 05 i 15 2 25 3
P, (GeVric) p, (GeVrc)




Cut variables (MAPS 5 um set

hsp projection Inv. mass (GeV/c*) hsp projection p_ (GeVic) hsp projection Dec Len {cm) hsp projection cos(6,)
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Extrapolation of CNM effects

At SPS energies CNM effects were shown to scale in such a way that
OpAJ/w = Qppj/w exp(_p Oabsj/w L)

L = thickness of nuclear matter crossed by the ccbar pair (calculated via
Glauber model)

L calculated for Pb-Pb collisions as
a function of centrality (Glauber)
and the size of CNM effects

are evalauted




