

Filled and missing pieces in direct photon measurements in heavy ion collisions

Takao Sakaguchi Brookhaven National Laboratory

Preface

- I will mainly talk about EM radiation, specifically on (virtual) photons
- Prejudice and speculation are apparently existing
- Apology in advance if your theoretical/experimental works are not mentioned
 - I appreciate for all the work related to EM radiation in HI physics, because they are not easy to get at all.

Why photons?

- Photons are emitted from all the stages throughout the heavy ion collisions
- Photons escape the systems unscathed by strong interaction
- Therefore, photons carry out information about the states they are emitted

Photon production and rate

- Photon production rate can be written by photon self energy and Bose distribution
- At higher p_T (E>>T), the slope of the distribution tells the temperature of the system
 - When including hard component, one may have to use Tsallis function instead of Bose (McLerran and Schenke, 1504.07223)
- Absolute yield is dependent on production processes included
 - Self energy is weakly dependent on E/T

$$E\frac{dR_{\gamma}}{d^{3}p} = -\frac{\alpha_{em}}{\pi^{2}} \operatorname{Im}\Pi_{em}(\omega, k) \frac{1}{e^{E/T} - 1}$$

 Π_{em} : photon self energy

$$\operatorname{Im}\Pi_{em}(\omega,k) \approx \ln \left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^2}\right)$$

QGP case:

Kapusta, Lichard, Seibert, PRD47, 4171 (1991) Baier, Nakkagawa, Niegawa, Redlich, PRD45, 4323 (1992)

Photon production in a nutshell

Various sources proposed

 More differential measurements would be needed to disentangle the photon production sources

Sources	p _T	V ₂	V ₃	v _n t-dep.
Hadron-gas	Low p _T	Positive and sizable	Positive and sizable	→
QGP	Mid p _T	Positive and small	Positive and small	
Primordial (jets)	High p _T	~zero	~zero	→
Jet-Brems.	Mid p _T	Positive	?	>
Jet-photon conversion	Mid p _T	Negative	?	>>
Magnetic field	All p _T	Positive down to p _T =0	Zero	>

- CERN results (WA98)
 - Third generation experiment, WA98, showed the first significant result
 - Pb+Pb $\sqrt{s_{NN}}$ =17.3GeV, PRL85, 3595(2000).

p+Pb data shows initial nuclear effect

Baumann, QM2008

- RHIC results (PHENIX)
 - Real (direct or external conversion) and virtual photon analysis. T_{eff}~220MeV

PRC91, 064904 (2015)

- RHIC results (STAR)
 - Virtual photon analysis

Physics Letters B 770 (2017) 451-458

- LHC results (ALICE)
 - Several methods are employed for solidifying the result
 - Higher T_{eff} was observed compared to RHIC: ~300MeV

Phys. Lett. B 754 (2016) 235

 More success has been seen in lower energies as well in RHIC/LHC era

11/29/2018

PRL 100, 022302 (2008)

CG SMASH: J. Staudenmaier et al., arXiv:1711.10297v1

HSD: Phys. Rev. C 87, 064907 (2013)

Two photon flow examples

- PHENIX and ALICE data called a puzzle
 - Large yield (Emission from early stage where T is high)
 - Large elliptic flow (v₂) (Emission from late stage where the collectivity is sufficiently built up)
- Dilepton flow results exist (HADES, STAR)

Schmidt, HP2018

Filled and missing parts?

Filled and missing parts?

Filled and missing parts?

Time evolution of collision system

A photon yield scaling has been found

- Photon yield scales with dN_{ch}/dη over wide
 - $dN_{ch}/d\eta$ ~ energy density * system size
- Both energy density and system size change as time goes; needs a handle on either (both) of them

11/29/2018

One idea: size from Interferometry

$$A_{12} = \frac{1}{\sqrt{2}} \left[e^{ip_1 \cdot (r_1 - \mathbf{x})} e^{ip_2 \cdot (r_2 - \mathbf{y})} + e^{ip_1 \cdot (r_1 - \mathbf{y})} e^{ip_2 \cdot (r_2 - \mathbf{x})} \right]$$

$$P_{12} = \int d^4 \mathbf{x} d^4 \mathbf{y} |A_{12}|^2 \rho(\mathbf{x}) \rho(\mathbf{y}) = 1 + |\tilde{\rho}(q)|^2 \equiv C_2(q)$$

- Interference of two identical particles from incoherent sources
 - First applied by Hanbury-Brown and Twiss for star size measurement
 - Hanbury-Brown Twiss (HBT) effect

- K, etc. as probes.
 - Measurement can be basically made at freezeout

One idea: size from Interferometry

$$A_{12} = \frac{1}{\sqrt{2}} [e^{ip_1 \cdot (r_1 - \mathbf{x})} e^{ip_2 \cdot (r_2 - \mathbf{y})} + e^{ip_1 \cdot (r_1 - \mathbf{y})} e^{ip_2 \cdot (r_2 - \mathbf{x})}]$$

$$P_{12} = \int d^4 \mathbf{x} d^4 \mathbf{y} |A_{12}|^2 \rho(\mathbf{x}) \rho(\mathbf{y}) = 1 + |\tilde{\rho}(q)|^2 \equiv C_2(q)$$

- Interference of two identical particles from incoherent sources
 - First applied by Hanbury-Brown and Twiss for star size measurement
 - Hanbury-Brown Twiss (HBT) effect
- In heavy ion collisions, we use π, K, etc. as probes.
 - Measurement can be basically made at freezeout

detecto

Dynamics seen from HBT

- HBT radii as a function of $\Delta \phi$ (ϕ - Ψ_n)
- PHENIX and STAR observed 2nd order modulation of HBT radii in 200GeV Au+Au collisions
 - source shape at freezeout and emission duration of particles have angular modulation

PHENIX observed the triangular pattern, too

Geometry or flow dominant?

Charged pion HBT results favor flow anisotropy dominant scenario

PRC88, 044914 (2013)

Geometry deform dominant

Flow anisotropy dominant

T. Sakaguchi@ECT* EM radiation workshop

Direct (virtual)photon HBT...?

- Very hard to measure. May need a new setup (e.g. ALICE Run4+)
- Using virtual photons may be a solution?
- One can study time-dependent size of the QGP
 - Photons penetrate systems. Momentum will tell the time they are emitted.
 - Angle dependent HBT → shape measurement
- Caveat: as opposed to hadrons, photons are decoupled anytime

Direct photon HBT measurement by now

- WA98 results (in Pb+Pb @ $\sqrt{s_{NN}}$ =17.3GeV)
 - PRL 93, 022301 (2004)
 - 1D HBT
- Yield at lowest p_T was obtained from correlation length.

11/29/2018

FIG. 3. Comparison of parameters of correlation functions with different particle identification criteria: \triangle , all clusters; ∇ , narrow electromagnetic; \square , all neutral; \bigcirc , narrow neutral electromagnetic (no significant result for high K_T).

A Calculation

PhysRevLett.93.162301

k_T=2GeV

k_T=1GeV

T. Sakaguchi@ECT* EM radiation workshop

Hard photons don't interact?

Primordial photon production

- Photons will be produced both from prompt and fragmentation
- Well scaled in x_⊤ (n=4.5). n=4 for 2->2

Phys.Rev. D86 (2012) 072008

T. Sakaguchi@ECT* EM radiation workshop

Process of primordial photon production

- Production Process
 - Compton and annihilation (LO, direct)
 - Fragmentation (NLO)

Small Rate: Yield $\propto \alpha \alpha_s$

Gordon and Vogelsang, PRD48, 3136 (1993)

What the measurement says?

- Obviously, prompt and fragment component can't be separated in rigorous way
- PHENIX performed measurement for isolated/inclusive photon ratio down to low p_T
 - NLO pQCD describes the data reasonably?

p+p baseline at low p_T

PHENIX, PRL. 104, 132301 (2010)

- p+p itself is OK, but can be linearly scaled to A+A by T_{AB}?
- Like leading hadrons, the fragmentation part of the NLO pQCD photons should be suppressed in A+A collisions?
 - It can be suppressed to be as much as 0.5 at p_T=1GeV/c
 - -0.75(frag)*0.3+0.25(dir)=~0.5
- Supposed to be more thermal contributions?
 - It's p_T-dependent
 - It may affect to T_{eff} rather than yield in the end.

Photons from another process

Jet-photon conversion

A model calculation

PHYSICAL REVIEW C 77, 024909 (2008)

My expectation for LHC was

- A calculation tells that even in low p_T region(p_T~2GeV/c), jet-photon conversion significantly contributes to total
- What do we expect naively (compared to RHIC)?
 - Jet-Photon conversions: a factor of ~30 increase in hard scattering
 - − Thermal Photons: $(dN_{ch}/dη)^1.25 \rightarrow ~4$ increase
 - Bet: Jet-photon conversion contribution dominates over thermal

Then...

- Data don't move.
- It is exaggerated, but makes us happier?

Sources	p _T	V ₂
Jet-photon	Mid p _T	Negative
conversion		

What can we do for jet-medium photons?

- Proof of its existence may be obtained rather high p_T
- A method to look for these photons

G. David, ECT2015

True temperature

Temperature systematics

T_{eff} vs. collision energy

Temperature systematics

- Corrected for blue shift using radial boost parameters obtained from Blast-wave fit to hadrons
- Obviously misleading, and over-corrected

Sweet spots spread over wide energies

- Pure temperature via dileptons is expected in M=1-2GeV/c²?
- Important measurement not only at LHC/RHIC/SPS, but also at FAIR/NICA/J-PARC

QGP tomography by EM is underway

- (Virtual) photons have two axes (p_T and M). And η ?
- Still a lot to do…

Closing remark

- Photon physics became fruition after the decades of efforts both from experiment and theoretical sides
- Still several missing parts that have not been touched are existing
 - HBT, jet-photon, fragment photons in p+p, etc.
- Hanging these items on our mind would eventually make them realized

Backup

C. Shen, U. Heinz, J-F. Paquet and C. Gale, PRC89, 044910 (2014)

Doppler shift

First γ_{dir} in Au+Au (hard scattering)

- Au+Au = p+p x T_{AB} holds pQCD factorization works
- NLO pQCD works. → Non-pert. QCD may work in Au+Au system

$$R_{AA} = \frac{\left(\frac{d^3N}{dp^3}\right)_{AA}}{T_{AA} \cdot \left(\frac{d^3\sigma}{dp^3}\right)_{pp}}$$

Au+Au: Phys. Rev. Lett. 109, 152302 (2012)

A theory: F. Arleo (JHEP 0609 (2006) 015)?
•Isospin effect, in addition to jetquenching(BDMPS) and shadowing.

Gluon radiation when energy loss

- Energy loss of partons by emitting gluons
- How about photons?

Fractional momentum loss of hadrons

- Yield suppression is the consequence of the momentum shift of the hadrons.
- Fractional momentum loss (S_{loss}) is calculated using spectra in Au+Au and N_{coll} scaled p+p spectra.

$$- S_{loss} = (p_T^{pp} - p_T^{AA})/p_T^{pp}$$

3rd order HBT radii has rich feature

- Simple triangular geometry at the freezeout does not produce 3rd order modulation in HBT radii (not from static source) unlike 2nd order
 - Plumbert, Shen and Heinz, PRC88, 044914 (2013)
 - Either non-zero triangular flow in a spatially isotropic source, or triangular geometry coupled with azimuthally symmetric radial flow or both.
- Coupling of static source with dynamic motion of the system!
 - System dynamics can be observed through HBT

Geometry deform dominant

Flow anisotropy dominant

Emission duration changes

- π+ π+ and K+K show the different HBT radii coming from possible different emission duration
 - STAR has similar result as well
- The difference is also seen in emission angle dependent HBT radii
- Recent result of π+ K correlation from ALICE collaboration attracted me quite a bit, too

PHYSICAL REVIEW C 92, 034914 (2015)

