A Large Ion Collider Experiment

Dielectron production in pp collisions at 13 TeV with low B-field

ECT* Workshop – Trento 29.11.2018

Jerome Jung For the ALICE collaboration Goethe Universität, Frankfurt

'anomalous' dileptons in pp

CERN ISR – AFS (1987):

Excess of dielectrons over expectation from known hadronic sources in a 'elementary' collision system

Low-mass region (LMR) excess:

- 0.05 $GeV/c^2 < m_{ee} < 0.6 GeV/c^2$ - $p_{T,ee} < 1 \text{ GeV}/c$
- No other experiment could probe this region

30 years of Heavy lons: (H. J. Specht ,2016):

- Remaining open issue
- "Challenge for the future"

Dedicated low-mass dielectron runs

Reduced field of the ALICE L3 solenoid magnet: ($B = 0.5 \text{ T} \rightarrow 0.2 \text{ T}$)

- \rightarrow Overall charged-particle acceptance increased
 - \rightarrow Bulk of the dielectron yield is located at low momenta
 - \rightarrow Improve background rejection capabilities
 - \rightarrow Access to low- p_{T} particle production

Dedicated low-mass dielectron runs

Reduced field of the ALICE L3 solenoid magnet: ($B = 0.5 \text{ T} \rightarrow 0.2 \text{ T}$)

- \rightarrow Overall charged-particle acceptance increased
 - \rightarrow Bulk of the dielectron yield is located at low momenta
 - \rightarrow Improve background rejection capabilities
 - \rightarrow Access to low- $p_{\rm T}$ particle production

Dielectron acceptance:

Dedicated low-mass dielectron runs

Reduced field of the ALICE L3 solenoid magnet: ($B = 0.5 \text{ T} \rightarrow 0.2 \text{ T}$)

- \rightarrow Overall charged-particle acceptance increased
 - \rightarrow Bulk of the dielectron yield is located at low momenta
 - \rightarrow Improve background rejection capabilities
 - \rightarrow Access to low- $p_{\rm T}$ particle production

Effects of low magnetic field

Particle identification

Specific energy loss in the TPC

Nominal B-field configuration:

- Low-p cut-off at 150 MeV/c
 - → Limits analysis to $p_{\rm T} \ge 0.2 \text{ GeV/}c$

Effects of low magnetic field Particle identification

30 Energy deposit per unit length (keV/cm) ALICE performance pp, 1s = 13 TeV B = 0.2 T10⁻¹ 10 Momentum (GeV/c) ALI-PERF-102369 Access with low-B field

Specific energy loss in the TPC

Nominal B-field configuration:

- Low-p cut-off at 150 MeV/c
 - → Limits analysis to $p_{\rm T} \ge 0.2~{\rm GeV/c}$

Low B-field configuration:

• Enables single-leg $p_{\rm T}$ -cut of $p_{\rm T} \ge 0.075~{\rm GeV}/c$

New Challenge:

- Pion crossing
- No ITS PID available in RUN 3

\rightarrow New eID approach required

Low-Field Dielectrons | ECT* Trento | 29.11.2018 | Jerome Jung | Uni Frankfurt 8

Low-Field Dielectrons | ECT* Trento | 29.11.2018 | Jerome Jung | Uni Frankfurt 9

ALICE

Electron identification

New Scheme

Low-Field Dielectrons | ECT* Trento | 29.11.2018 | Jerome Jung | Uni Frankfurt 12

Signal extraction

Combinatorial pairing of all electron and positron candidates:

- Unlike-sign (ULS) pairs: contain real signal, correlated & combinatorial background
- Like-sign (LS) pairs: contain correlated & combinatorial background

→ Signal **S** = ULS – 2 R · $\sqrt{LS_{++}LS_{--}}$ R: rel. acceptance correction factor R = ULS_{mix}/(2 $\sqrt{LS_{mix,++}LS_{mix,--}}$)

Background (B)

 ρ^+

е

e+

Signal extraction

 \rightarrow

Combinatorial pairing of all electron and positron candidates:

- Unlike-sign (ULS) pairs: contain real signal, correlated & combinatorial background
- Like-sign (LS) pairs: contain correlated & combinatorial background

Signal **S** = ULS – 2 R $\cdot \sqrt{LS_{++}LS_{--}}$ 10 0.5 1.5 2 R: rel. acceptance correction factor $R = ULS_{mix}/(2\sqrt{LS_{mix,++}LS_{mix,--}})$ Low S/B: Reduction of combinatorial background key aspect of this analysis

Combinatorial background

Dominated by combinatorial pairs originating from

- π^0 -Dalitz decays
- Conversions from beam pipe

Conversion pairs are "close" pairs → More likely to share an ITS cluster

Combinatorial background

Dominated by combinatorial pairs originating from

- π^0 -Dalitz decays
- Conversions from beam pipe

Conversion pairs are "close" pairs
→ More likely to share an ITS cluster

Low-field configuration:

- More conversion pairs get reconstructed (especially asymmetric pairs)
- → Higher conversion rejection efficiency via a veto on shared clusters in the ITS

_

Nominal field

Effects of low field

Comparison to nominal field setting in S/B and significance

Higher tracking and PID efficiency in **low field**:

- Improvement in S/B especially for low invariant masses
- Clear boost in significance per event: reduction of stat. uncertainty

Low-Field Dielectrons | ECT* Trento | 29.11.2018 | Jerome Jung | Uni Frankfurt 16

Corrected spectra

Comparison to nominal-field setting

Comparison with published data within same kinematic region: ($p_{\rm T} \ge 0.2 \text{ GeV/}c$)

- Good agreement within statistical uncertainties
 - Effect of low-field configuration on the resolution small within the given statistics
 - Similar significance compared to measurement at nominal field $(\sim 440 \cdot 10^6 \text{ vs.} \sim 150 \cdot 10^6 \text{ events})$

Low-B-Field Acceptance Effects of the magnetic field

Mixed events: Low Field ($p_T > 75 \text{ MeV}/c$) / Nom Field ($p_T > 200 \text{ MeV}/c$)

Gain in phase space with low field:

- Acceptance: lower single-leg $p_{\rm T}$
- Efficiency: TOF

→ Increase sensitivity for soft virtual-photon production

Corrected spectra & hadronic cocktail

Hadronic Cocktail

Low- $p_{\rm T} \eta$ parametrization

- $-\eta$ contribution dominant in the LMR
- ALICE measurement only down to $p_T < 0.4 \text{ GeV}/c$
- $m_{
 m T}$ scaling overshoots η at low p_T
- Ceres Taps measurement used to further constrain the cocktail at low $p_{\rm T}$
- η/π^0 ratio independent of collision system and energy

- Higher estimate compared to AFS

ALICE

Invariant-mass spectra in LMR

 Hint for enhancement at LHC energies?
 → 2.2σ stat. significance integrated over 0.14 < m_{ee} < 0.6 GeV/c² over the central value of the cocktail

- Cocktail uncertainties from $m_{\rm T}$ scaling \rightarrow overpredicts η at low $p_{\rm T}$

Invariant-mass spectra in LMR

Low-Field Dielectrons | ECT* Trento | 29.11.2018 | Jerome Jung | Uni Frankfurt 23

ALICE

Outlook

Multiplicity dependence of the LMR excess

Dielectron signal after subtraction of hadronic sources as a function of multiplicity

Idea:

Multiplicity dependence gives insight into the underlying production mechanism

→ Soft annihilation processes expects quadratic dependence

ALICE

Outlook

Multiplicity dependence of the LMR excess

Dielectron signal after subtraction of hadronic sources as a function of multiplicity

Idea:

Multiplicity dependence gives insight into the underlying production mechanism

→ Soft annihilation processes expects quadratic dependence

New low-B field data taking in 2018:

- Increase in statistics by a factor of 3
- → Expect to reach a stat. significance of about 3σ
- Study multiplicity dependence at LHC energies?
 → Constrain for the underlying production mechanism

Outlook Multiplicity dependence of the LMR excess

Dielectron signal after subtraction of hadronic sources as a function of multiplicity

Idea:

Multiplicity dependence gives insight into the underlying production mechanism

→ Soft annihilation processes expects quadratic dependence

New low-B field data taking in 2018:

- Increase in statistics by a factor of 3
- \rightarrow Expect to reach a stat. significance of about 3σ

Study multiplicity dependence at LHC energies?
 → Constrain for the underlying production mechanism

Conclusion

- First preliminary results of the dielectron measurement in pp collisions at $\sqrt{s} = 13$ TeV with the low-field configuration
- Good agreement within stat. uncertainties with published nom.-field analysis
- Low field: Increase in significance and S/B
- Low-field gives access to a new phase space at low momenta
- \rightarrow Sheds new light on the LMR excess seen at the ISR

However: Low- p_{T} η measurement required for

a final conclusion

ALICE

Hadronic Cocktail

Low- $p_{\rm T} \eta$ parametrization

AFS measurement:	
P _T (MeV/c)	η/π
200 - 500	0.01±0.06
500 - 1500	0.30 ± 0.15

- Even lower value compare to CERES/TAPS
- Large uncertainties ignored
- \rightarrow Leads to a bigger LMR excess