

Direct virtual photon at STAR

Chi Yang 杨驰 Shandong University 山东大学

Direct photons

Direct photons:

all photons which DO NOT come from hadron decay

Unique probe:

- ✓ Charge neutral
- ✓ Can probe the whole time evolution

Higher p_T -> Earlier produced

- \checkmark high p_T : initial hard scattering
- ✓ low p_T : QGP thermal + hadron gas

Data set

- Run10 and Run11 200 GeV Au+Au collisions
- 258 M and 488 M events after event selection
- Dielectron continuum reconstruction details and hadronic cocktail simulation details can be found in the papers: [STAR Collaboration, Phys. Rev. C 92 (2015) 024912]

[STAR Collaboration, Phys. Rev. C 92 (2015) 024912] [STAR Collaboration, Phys. Rev. C 90 (2014) 064904]

Dielectron continuum in 0-80%

- Combination of Run10 and Run11 data
- ~1% difference between Run10 and Run11 dielectron continuum in pion region (good statistics)

TBW inputs for cocktail simulation

- TBW: simultaneous fit the spectra from many particle species
- Limit eta measurement in low p_T

Cocktail uncertainty from η

- η/π ratio affect the direct photon results significantly
- Calculate the η/π ratio as a function of p_T (Tsallis blastwave model prediction)
- Match it to the η/π ratio value measured by PHENIX at p_T = 5 GeV/c
- The ratio uncertainty is quoted as 13%

[PHENIX Collaboration, Phys. Rev. Lett. 104 (2010) 132301] [PHENIX Collaboration, Phys. Rev. C 75 (2007) 024909]

η/π versus p_T

Dielectron in Au+Au at STAR

Au+Au 200GeV

Au+Au 19.6GeV

- \checkmark In ρ -like region, clear excesses are observed from RHIC top energy to low energy
- Consistent with ρ broadening scenario
- ✓ Self consistent picture from 200, 62.4, 39, 27 and 19.6 GeV

e⁺e⁻ pairs from internal conversion

• Relation between real photon yield and the associated e⁺e⁻ pairs:

Two-component fitting

More fit plots in backup.

ECT 2018

Direct virtual photon yield and uncertainties

STAR, PLB, 770 (2017) 451-458

$$\frac{2\alpha dN_{\gamma}^{dir}(p_T)}{3\pi M_{ee}dp_T} = rF_{dir}\frac{1}{M_{ee}},$$
$$\frac{d^2 N_{\gamma}^{dir}(p_T)}{2\pi p_T dp_T dy} = \frac{3rF_{dir}}{4\alpha p_T dy} = r\frac{d^2 N_{\gamma}^{inc}(p_T)}{2\pi p_T dp_T dy},$$

 F_{dir} : f_{dir} normalization factor

Compared to pp reference, thermal photons can be observed

p+p baseline is from PHENIX

~2% run difference

Source	Centrality 0-80%	Centrality 0–20%	Centrality 20–40%	Centrality 40–60%	Centrality 60–80%
Fit range	14%	13%	15%	9%	16%
π^0/η	2-43%	2–31%	1–35%	2–71%	1–70%
cc	0–6%	0-4%	0-4%	0–6%	0–5%
Global	15%	15%	15%	15%	15%
Normalization	0.2%	0.2%	0.1%	0.2%	0.1%
RunDiff	2.2%	2.7%	0.8%	0.5%	1.2%
Total	20-48%	19–37%	21–41%	17–73%	21–74%

Direct photon at STAR

STAR, PLB, 770 (2017) 451-458

Model predictions considering -

- thermal radiation
- in-medium ρ meson
- other mesonic interactions in the hadronic gas
- primordial contributions from the initial

hard parton scattering

- Model calculations are consistent with the yield within uncertainties except some bins in 60-80%
- In most peripheral, hydrodynamic calculations might not be applicable
- Uncertainty in peripheral centrality bin definition

Direct photon dN/dy

Since the p + p references have a large uncertainty, we also compare the total direct photon yield to the sum of thermal and primordial contributions in the models

PHENIX data are from:

[PHENIX Collaboration, Phys. Rev. Lett. 104 (2010) 132301] [PHENIX Collaboration, Phys. Rev. C 91 (2015) 064904]

Future measurement

- Different collision energies: 54GeV Au+Au data taken in Run17 ~ 1.2 B
- Different collision systems: 200GeV Zr+Zr, 200GeV Ru+Ru -- Isobaric data taken in Run18 ~3.1B (1.5B in proposal), daily switch to minimize the systematic uncertainty
- Beam Energy Scan Phase II at RHIC:
 - ✓ 7.7, 9.1, 11.5, 14.5 and 19.6 GeV in 2019 and 2020
 - ✓ 10 times more statistics compared to BES-I
 - ✓ May provide direct virtual photon yield in low energies

Current and future STAR data provide good opportunity to study the collision energy and collision system dependence

Summary

- ✓ Thermal photons observed in Au+Au collisions
- ✓ Run10 and Run11 results are consistent with each other within ~ 2%
- Model calculation simultaneously describe dielectron and direct virtual photon results
- More results expected based on current and future data collected at STAR

Thank you for your attention!