Low transverse momentum dilepton production in heavy ion collisions

Lijuan Ruan (Brookhaven National Laboratory)

Outline:

- How was it started?
- Recent results
- Future perspectives
- Summary

a passion for discovery

11/27/18

Traditional: the dielectron excess spectrum

A broadened ρ spectral function consistently describes the low mass dielectron excess for all the energies 19.6-200 GeV.

ρ: characteristic diffractive dips observed

11/27/18

Lijuan Ruan, EM workshop, Trento

R

Very low $p_T J/\psi$ in heavy ion collisions

Large enhancement of J/ ψ yield observed in peripheral A+A collisions!

Prominent centrality and p_T dependence.

11/27/18

J/ψ yield :t=p_T² and centrality dependence

Slope parameter consistent with the size of the Au nucleus. Interference structure observed. Coherent photon-nucleus interactions!

No significant centrality dependence of the excess yield!

"Photon distribution function" induced by ions? ✓ Equivalent Photon Approximation

Initial geometry?
 ✓ Glauber model

W. Zha et al., PRC 97 (2018) 044910

- Microscope cross sections?
 - \checkmark J/ ψ cross section in γ +p convoluted with Glauber +VMD
- Possible disruption by the hadronic collisions?

Wangmei Zha, ATHIC2018, USTC

11/27/18

BROOKHAVEN NATIONAL LABORATORY

Possible disruption from overlap region?

11/27/18

Calculations with different scenarios

W. Zha et al., PRC 97 (2018) 044910 Wangmei Zha, ATHIC2018, USTC

• All scenarios describe the data in peripheral collisions!

- Nuclues+Nucleus: overestimate the data in semi-central collisions.
- Spectator+Spectator: under predict the data in semi-central collisions.
- To distinguish the different scenarios, measurements at central collisions are needed!

11/27/18

COOKHAVEN The STAR (Solenoidal Tracker at RHIC) Detector

Time Projection Chamber (TPC): Measure ionization energy loss (dE/dx) and momentum Time of Flight Detector (TOF) & Muon Telescope Detector (MTD):

Multi-gap Resistive Plate Chamber (MRPC), gas detector, avalanche mode

TOF: has precise timing measurement, <100 ps timing resolution

MTD: provide trigger capabilities in heavy ion collisions and muon identification with precise timing and position information

Inclusive dielectron invariant mass distribution

Lijuan Ruan, EM workshop, Trento

Cocktail components:

e+e- pairs from light flavor meson and heavy flavor decays (charmonia and open charm correlation):
Pseudoscalar meson Dalitz decay: π⁰, η, η' →γe⁺e⁻
Vector meson decays: ρ⁰, ω, φ → e⁺e⁻, ω → π⁰ e⁺e⁻, φ → ηe⁺e⁻
Heavy flavor decays: J/ψ→e⁺e⁻, ccbar→ e⁺e⁻ X, bbbar→ e⁺e⁻ X
Drell-Yan contribution

Cocktail simulation

Z. Tang et al. Phys. Rev. C 79, 051901 (2009)

Electron-positron mass spectrum from known hadronic sources without hot, dense medium contribution.

11/27/18

Low p_T e⁺e⁻ signal

Very low p_T electron-positron production

STAR: Phys. Rev. Lett. 121 (2018) 132301

Very low p_T electron-positron excess

STAR: Phys. Rev. Lett. 121 (2018) 132301

The excess: no significant centrality dependence

Coherent photon-photon process describes the excess.

BROOKHAVEN Coherent photonuclear and two-photon processes

We see this in heavy ion collisions too!

How is the J/ ψ from coherent photonuclear process affected by hot and cold QCD matter!

A new tool to study enriched multi-body dynamics on the strong QCD force!

How are the electron and positron pairs from photon-photon process affected by the medium?

p_T² distribution

STAR: Phys. Rev. Lett. 121 (2018) 132301

p_T² distribution is sensitive to magnetic field effect (eBL~30 MeV/c, B~10¹⁴T, L~ 1fm)

Towards isobar collisions taken in 2018

W. Zha etal., arXiv:1810.02064

Experimentally:

- UPC collisions \rightarrow to constrain initial production model
- System size and energy dependence (isobaric collisions, 54 and 27 GeV Au+Au) → to constrain the B field evolution. The effective B field and pathlength the dilepton traverse should depend on collision system size, and energy.
- 200 GeV Au+Au is the best data sample to study the above effect.
 1) Initial production increases as a function of Z⁴
 2) Initial production over thermal (S/B) is largest

Call for a coherent theoretical calculation taking into account the photoproduction, cold and hot QCD medium effects, and their space-time evolutions!

The 200 GeV Au+Au data beyond 2021+, together with advanced theoretical calculations, will enable a quantitative understanding of the magnetic field evolution in heavy ion collisions!

What is the connection to typical dilepton program at STAR?

The future electron-positron program (2021+)

To link electron-positron measurements to chiral symmetry restoration need more precise measurement at μ_B = 0:

- Lattice QCD calculation is reliable at $\mu_B = 0$.
- Theoretical approach: derive the a1(1260) spectral function by using the broadened rho spectral function, QCD and Weinberg sum rules, and inputs from Lattice QCD; to see the degeneracy of the rho and a1 spectral functions (Hohler and Rapp 2014).

Lijuan Ruan, EM workshop, Trento

Beyond 2021+

Mid-rapidity: e^+e^- measurement at $\mu_B \sim 0$

Connection to chiral symmetry restoration Thermal radiation from QGP: The slope in the intermediate mass region represents the true average temperature T of the medium.

Low-mass electron-positron emission depends on T, total baryon density, and life time, and enables systematic life-time measurements.

Thermal dilepton measurements in the intermediate mass region will constrain T_0 , t_0 . Low p_T dielectron production constrains initial EM field.

The above two will put a constraint on magnetic field evolution in hot, dense medium

The p_T distributions of produced dilepton could be sensitive to this magnetic field evolution.

Theoretical efforts are needed and critical!

Summary

STAR measured dielectrons from light-light scattering in peripheral heavy ion collisions.

The current model with initial photon-photon process describes the low p_T dielectron production yields but fails to reproduce the p_T distributions

Upgrade plan for BES II

endcap Time-Of-Flight vert Plane Detector vert Plane Detector vert Plane Detector vert Plane Detector		
iTPC upgrade	EPD upgrade	eTOF upgrade
Continuous pad rows Replace all inner TPC sectors	Replace Beam Beam Counter	Add CBM TOF modules and electronics (FAIR Phase 0)
η <1.5	2.1< η <5.1	-1.6<η<-1.1
p _⊤ >60 MeV/c	Better trigger & b/g reduction	Extend forward PID capability
Better dE/dx resolution Better momentum resolution	Greatly improved Event Plane info (esp. 1 st -order EP)	Allows higher energy range of Fixed Target program
Fully operational in 2019	Fully operational in 2018	Fully operational in 2019
11/27/18	Lijuan Ruan, EM workshop, Trento	24

Calorimetry: Electromagnetic and Hadronic

Tracking: Silicon detectors and small-strip Thin Gap Chambers (sTGC)

pp, pA and AA data taking in FY2021/22 and parallel with sPHENIX data taking period

AA physics at 200 GeV for 2023-2025: Constrain 3D hydro evolution Temperature dependent η/s Rapidity dependent vorticity

Successful technical review on Nov 19, 2018, BNL

Outlook

In 2009-2018, qualitative:

 A broadened ρ spectrum function consistently describes the low mass electron-positron excess in A+A collisions

In 2019-2021, start to be quantitative:

 Beam Energy Scan II (7.7-19.6 GeV) will provide a unique opportunity to quantify the effect of Chiral Symmetry Restoration via total baryon density effect on the ρ broadening.

In 2021+, indispensable mission with 200 GeV Au+Au data:

- Measure the temperature and lifetime of hot, dense medium
- Provide input for the community to establish connection between dilepton observables and chiral symmetry restoration
- Gain a quantitative understanding of magnetic field evolution in heavy ion collisions.
- Solve photon puzzle