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In this talk
• In this talk: 

• the thermal photon and dilepton rates at NLO in an 
infinite, equilibrated medium in different kinematical 
regimes

• at zero virtuality JG Hong Kurkela Lu Moore Teaney JHEP1305 
(2013)

• at small virtuality JG Moore JHEP1412 (2014)

• at larger virtuality Ghisoiu Laine JHEP1410 (2014), JG Moore

• a comparison with lattice data JG Kaczmarek Laine Meyer 
PRD94 (2016)



Basics of e/m production
• α≪1 implies that real/virtual photon production are rare 

events and that rescatterings and back-reactions are 
negligible: medium is transparent to/not cooled by EM 
radation

• At leading order in QED and to all orders in QCD the 
photon and  dilepton rates are given by (in eq.)  
 
 
 
 
 
thermal distribution x spectral function of the EM current
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Theory approaches



• pQCD: QCD action (and EFTs thereof), thermal 
average can be generalized to non-equilibrium. 
Real world: extrapolate from g≪1 to  αs~0.3
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Figure 4. Cut of a two loop diagram (left) corresponds to a 2 $ 2 scattering process (right).
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Figure 5. Two-loop diagram cut through a self-energy correction on the gluon, which corresponds
to scattering-induced photon radiation (crossings not shown)

significant spectral weight in this region. This leads to a distinct contributing kinematical

region which corresponds to scattering-induced emission, as shown in Fig. 5. We will call

these collinear processes or collinear splitting processes. Aurenche et al [20] first showed

that these processes are also leading order and can even be numerically dominant. The

reason is that the process includes a kinematical region in which the intermediate quark

line in Fig. 5 is nearly on the mass shell. But this near-singularity requires the inclusion

of self-energy corrections, which bring in additional diagrams by gauge invariance and the

necessity to correctly represent charge conservation. Therefore, in the kinematic region

where gluons are soft and spacelike (representing scattering processes), one must sum

over multiple gluon exchanges, such as the diagram of Fig. 6. The interference e↵ect this

generates and the associated suppression are called Landau-Pomeranchuk-Migdal (LPM)

e↵ect.

In [13], AMY showed that these two kinds of processes (elastic scattering when one

gluon is on-shell, scattering induced emission with any number of soft spacelike gluons) are

both needed in the calculation, but arise from kinematically distinct momentum regions.

Therefore the computation can be separated into a contribution from each process. The

easiest way to see that this is true is to consider the components of the o↵-shell fermion’s

momentum P , particularly the transverse component p? and the longitudinal component

p+. As illustrated in Fig. 7, the relevant momentum regions are quite distinct when viewed
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• lattice QCD: Euclidean QCD action, pure thermal 
average. Real world: analytically continue to 
Minkowskian domain
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• pQCD: QCD action (and EFTs thereof), thermal 
average can be generalized to non-equilibrium. 
Real world: extrapolate from g≪1 to  αs~0.3

• lattice QCD: Euclidean QCD action, pure thermal 
average. Real world: analytically continue to 
Minkowskian domain

• AdS/CFT:            action, in and out of equilibrium, 
weak and strong coupling. Real world: extrapolate 
to QCD 

N=4
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Motivation
• Test the reliability of the perturbative rates

• by going to NLO

• by interplay with lattice measurements

• Phenomenological motivation clear

• More theoretical motivation: lots of knowledge about 
perturbative thermodynamics to high orders, not so 
much about dynamical quantities. Is convergence 
better/worse?



Kinematics of e/m production
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NLO at small K2
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• Consider 

• A phenomenological motivation: low-mass dileptons as 
an ersatz real photon measurement (see for instance 
PHENIX). Is the spectral function smooth approaching 
the light cone?

k0 + k ⇠ T k0 � k ⇠ g2T



NLO at small K2
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• Consider k0+k~T, k0-k~g2T. Includes real photons

• A phenomenological motivation: low-mass dileptons as 
an ersatz real photon measurement (see for instance 
PHENIX). Is the spectral function smooth approaching 
the light cone?

Figure 1. The current-current correlator Π<(K) for the case k = 6T , as a function of k0 (normal-
ized by α and its dominant k0 dependence). The black curve is for free (g = 0) QCD, illustrating
the cusp at k0 = k. The red dotted curve shows the behavior in N=4 SYM theory at infinite
coupling, the most strongly coupled QCD-like theory known, which shows no cusp-like behavior.

and the small-mass-squared dilepton rate are almost interchangeable. If it behaves more

like the black curve, then the dilepton rate will show a sharp dependence on the invariant

mass of the dilepton, and photon production will be suppressed relative to expectations

based on moderate invariant-mass dileptons (if those expectations are based on Eq. (1.2)

and Eq. (1.3) and the assumption of smooth behavior in Π<).

The goal of this paper is to provide the most complete perturbative calculation of Π<

for Kµ close to lightlike which is currently possible. Previously, Ref. [6] have shown how to

compute the dilepton rate for K2 parametrically in the range K2 ∼ g2T 2 at leading order

in the coupling. We improve this determination to the next order in the strong coupling g.

We also extend the result to larger virtuality, K2 ∼ gT 2, and discuss the matching onto the

recently completed next-to-leading order calculation at large invariant mass squared [7, 8].

Our main motivation is to improve Fig. 1, showing how the finite-coupling, perturbative

rate behaves near the real-photon point K2 = 0.

Besides the phenomenological justification we have presented, there is an additional

theoretical reason to be interested in doing this. It is possible to determine the Euclidean-

time-domain behavior of Π nonperturbatively on the lattice [9, 10]. At least in princi-

ple, this can be analytically continued to determine the real-frequency behavior which is

physically interesting, for instance, by applying an Ansatz [10] or using the Maximum En-

tropy Method [11]. Unfortunately, in practice this method is very bad at reconstructing

frequency-domain functions which possess sharp features, such as that displayed by the

black curve in Fig. 1. This is particularly so if the feature is not expected and is not

built into the model function (priors) used in the reconstruction. Therefore, determining

whether we expect such a feature would be very useful in characterizing and improving the

– 3 –



• At zeroth order (αEM g0):  
 
Apparently LO, but very small phase space, proportional to 
K2~g2T2. This is a collinear process.

• As in the real photon case, the calculation is split  
 in the distinct  2↔2 processes  (hard+soft)  
and collinear processes. Only collinear  
processes are modified wrt the photon  
case

Small K2 dileptons
Perturbative Analysis

Jµ =
∑

q=uds

eqq̄γ
µq : ✄"✂✁%!

❅

Leading diagram:⟨JJ⟩ = ✄"✂✁%
✬
✫

✩
✪
%✂✁✄"

Timelike K: pair production ✄"✂✁%✟✟
❍❍

kinematically fine

Spacelike K: DIS
✄✂"✁%

✟✟❍❍
also kinematically OK

Lightlike K: on-shell quarks kinematically disallowed!

BNL Photons: 5 December 2011: page 6 of 27
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• Cut two-loop diagrams (αEM g2)  
 
 
 2↔2 processes (with crossings and interferences):  
 
 

• 1↔3 processes suppressed by small K2

• Equivalence with kinetic theory: distributions x matrix 
elements

• IR divergence (Compton) when t goes to zero

2↔2 processes

LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

LO diagrams
Cut diagrams correspond to:

Compton scattering:
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dq2
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dq2
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Pair annihilation:

t ∝

∫

dq2
⊥
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dq2
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Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:
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• The IR divergence disappears when Hard Thermal Loop 
resummation is performed Braaten Pisarski NPB337 (1990)  
 
 
 
 

2↔2 processes

HTL

K



• The IR divergence disappears when Hard Thermal Loop 
resummation is performed Braaten Pisarski NPB337 (1990)  
 
 
 
 

• In the end one obtains the result  
 
 
Kapusta Lichard Siebert PRD44 (1991) Baier Nakkagawa Niegawa Redlich ZPC53 (1992)

2↔2 processes
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Collinear processes
g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g2T 2 and the thermal

width � ⇠ g2T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.

d��

d3k

����
coll

= = Re

0

BBBBBBBBB@

1

CCCCCCCCCA

⇤ 0

BBBBBBBBB@

1

CCCCCCCCCA

Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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• These diagrams contribute to LO if small (g) angle radiation/
annihilation Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000

• Virtual photon formation times is then of the same order of 
the soft scattering rate ⇒ interference: LPM effect

• Requires resummation of infinite number of ladder diagrams  
 
 
 
AMY (2001-02), Aurenche Gelis Moore Zaraket (2002), Aurenche 
Carrington Gynther (2007)  



Beyond leading order
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Beyond leading order
• The soft scale gT introduces O(g) corrections  

• In the  collinear sector: account for 1-loop rungs (related to 
NLO qhat). Euclidean (EQCD) evaluation  
Caron-Huot PRD79
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√

g
√

g

 soft Coulomb, 
spacelike

soft plasmon, 
timelike

Beyond leading order
• The soft scale gT introduces O(g) corrections  

• In the  collinear sector: account for 1-loop rungs (related to 
NLO qhat). Euclidean (EQCD) evaluation  
Caron-Huot PRD79

• New semi-collinear processes: larger angle radiation, NLO 
in collinear radiation approx. Requires a “modified qhat”, 
relevance for jets too

g g

nB(p) ∼ T/p ∼ 1/g



• Add soft gluons to soft quarks: nasty all-HTL region

• Analyticity allows us to take a detour in the complex plane 
away from the nasty region  ⇒ compact expression 
(Derek’s talk)  
 
 
 
JG Hong Kurkela Lu Moore Teaney (2013) for photons 
JG Moore (2014) for dileptons

P

p+

Analytic

Beyond leading order

Z
d2p?
(2⇡)2

m2
1

p2? +m2
1

NLO!
Z

d2p?
(2⇡)2

m2
1 + �m2

1
p2? +m2

1 + �m2
1



NLO at large K2



NLO at large K2

π
2 π

π
2

π

k0

k

⇡T

gT

⇡TgT

• Before showing any results, let  
us look at the large-M region  
 
 

• As we have seen, the Born term is proportional to K2, 
which is now large (~T2), so that the Born term is a well 
defined LO (αEMg0)  

k0 + k ⇠ T k0 � k ⇠ T

K
=

K
2



NLO at large K2

• At NLO, HTL and LPM resummations are no longer 
necessary

• Very complicated two-loop integrals with intricate  
kinematics. Interplay of real and virtual corrections with 
cancellations of IR divergences  
 
 
 
Laine JHEP1305, JHEP1311 (2013)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



Matching small and large K2

• The large-M calculation diverges logarithmically for 
M→0

• The small-M calculation extrapolates for large M to 
ρ∝K2+T2, in violation of OPE results forbidding a T2 
term Caron-Huot PRD79 (2009)

• A procedure has been devised to combine the two 
calculations. In a nutshell,  
 
where ρLPM is the LO collinear part. NLO can be added 
easily.  
Ghisoiu Laine JHEP1410 (2014), JG Moore JHEP1412 (2014)  
 

⇢merge = ⇢largeM + ⇢LPM � ⇢LPMK2�T 2



• Full lines: JG Moore, valid at small K2, does not 
include Laine (large M)  
Dashed lines: Ghisoiu Laine, valid at large K2

• At αs=0.3 the transition at the light cone is smooth  
Ghisoiu Laine JHEP1410 (2014), JG Moore JHEP1412 (2014)  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Figure 14. The same as Fig. 12, but with the dominant Born term subtracted.

Note that none of the effects which give rise to δΠ<(K) involve diagrams which are included

in Laine’s calculation [7], and no NLO contribution grows as a power6 at large k−/g2T , so

no new subtraction is called for here. Figures 15 and 16 are then the NLO counterparts of

Figs. 12 and 14, with δΠ< added to both full and dashed lines. These represent our best

estimate of the spectral function relevant for dilepton production in the small virtuality

region.
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Figure 15. The same plot as Fig. 12, but with the inclusion of the small-virtuality NLO corrections
which are the focus of this paper. The solid curves are Eq. (4.7) and the dotted curves are Eq. (4.9).

6At large k
− the largest NLO term is the δm

2
∞ contribution to Eq. (3.10) which grows logarithmically

with k
−.
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• Full lines: JG Moore, valid at small K2, does not 
include Laine (large M)  
Dashed lines: Ghisoiu Laine, valid at large K2

• At αs=0.3 the transition at the light cone is smooth  
Ghisoiu Laine JHEP1410 (2014), JG Moore JHEP1412 (2014)  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Figure 16. The same as Fig. 15 but subtracting the dominant free Born term as in Fig. 14.

In order to highlight the effect the NLO corrections have on the LO rate, in Fig. 17

we plot the ratio Π<
NLO/Π

<
LO in the two prescriptions, with the same convention for dis-

tinguishing them. At the smallest coupling the NLO effect is negligible except for a dip of
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Figure 17. The NLO/LO ratio for k = 6T . Solid lines are the ratio of Eq. (4.7) to Eq. (4.6), while
dashed lines are the ratio of Eq. (4.9) to Eq. (4.8).

a few percent across the light cone, consistently with what is observed in the real photon

case. At larger couplings the dip disappears, to be replaced by a maximum at positive

k− and a minimum on the opposite side. The large corrections observed at negative k−

are not to be trusted; as discussed below Eq. (3.13), the collinear approximations in our

treatment break down for k− < −T .
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and JG Moore results on a k0,k mesh, ready for pheno. Used by 
the McGill group and by Burnier Gastaldi PRC93 (2015)

• http://www.laine.itp.unibe.ch/dilepton-lattice/ best available 
pQCD data for the spectral function

• at finite k: Ghisoiu Laine plus JG Moore plus vacuum 
corrections to the Born term

• at zero k: transport peak from Moore Robert (2006), k0>#T, 
NLO thermal from Aurenche Altherr (1989), vacuum 
corrections to the Born term. Missing reliable pQCD input in 
the intermediate region
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EM probes and the lattice
• What is measured directly is the Euclidean 

correlator  

• Analytical continuation  
 

• It contains a lot of info (full spectral function), but 
hidden in the convolution. Inversion tricky, discrete 
dataset with errors
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• If k>0 spf describes DIS (k0<k), photons (k0=k) and 
dileptons (k0>k).

At finite momentum
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Fitting to the lattice
• Getting the Euclidean correlator from the pQCD results is 

straightforward. It overshoots the lattice data (hold on). 
Too much spf in the ill-constrained spacelike region?

• Try a fitting Ansatz: pQCD thermal spf above M~#T. 5th 
degree odd polynomial in ω below M~#T (3 coefficients):  
  

• Fix two coefficients by requiring smoothness in spf and 
first derivative at the matching point ω0. Fit the remaining 
coefficient to lattice data. Higher order odd polynomials 
also examined 
JG Kaczmarek Laine Meyer PRD94 (2016)

converge well. In contrast, we may assume that the regime of large frequencies, known up to

O(g2) for M >∼πT and up to O(g8) for M ≫ πT , is better under control.

It is an interesting question whether the spectral function needs to be analytic across the

light cone.2 At zero temperature this is not the case: ρV vanishes identically in the spacelike

domain. However, in an interacting system the spectral function gets generally smoothened

by a temperature. Physical arguments in favour of smoothness at the NLO level have been

presented in ref. [29], and this is also the case in the concrete NLO computation [17] as

well as in the non-perturbative frameworks discussed in secs. 2.3 and 2.4. In the following,

we assume ρV to be a smooth function across the light cone, and represent it through a

polynomial interpolation on both sides.

Let ω0 lie in the time-like domain, for instance ω0 ≃
√

k2 + (πT )2. We introduce a polyno-

mial starting with a linear behaviour at ω ≪ T and attaching to the known ρV continuously

and with a continuous first derivative at ω = ω0. Defining

ρV(ω0,k) ≡ β , ρ′V(ω0,k) ≡ γ , (3.1)

where the dimension of β is T 2 and that of γ is T , a general (5 + 2nmax)th order polynomial

proceeding in odd powers of ω and satisfying these boundary values can be expressed as

ρfit ≡
β ω3

2ω3
0

(

5−
3ω2

ω2
0

)

−
γ ω3

2ω2
0

(

1−
ω2

ω2
0

)

+
nmax
∑

n≥0

δnω
1+2n

ω1+2n
0

(

1−
ω2

ω2
0

)2

. (3.2)

We treat β and γ as known from perturbation theory through the matching in eq. (3.1). For

nmax = 0 there is only one free parameter in the 5th order polynomial, given by the slope

at origin (α ≡ δ0/ω0), and more generally there are nmax + 1 free parameters (α, δ1, ...). For

ω > ω0, a perturbative result is used (its details are explained in footnote 3).

4. Lattice analysis

4.1. Observable and parameters

In continuum notation, the imaginary-time observable measured on the lattice reads

GV(τ,k) ≡
∫

x

e−ik·x
〈

V i(τ,x)V i(0)− V 0(τ,x)V 0(0)
〉

c
. (4.1)

In order to minimize discretization effects, the momentum is taken to point along one of the

lattice axes. In a finite-size box momenta are of the type k = 2πn/(aNs), where a is the

lattice spacing and n is an integer; given that aNτ = 1/T , we thus consider

k = 2πnT ×
Nτ

Ns
, (4.2)

2This discussion concerns the infinite-volume limit.
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• The perturbative data overshoots the lattice data. 
Too much support at low frequency?

• Try a fitting Ansatz: perturbative, thermal spf 
above M~#T. Fifth-degree polynomial in k0, with 
odd powers only, below M~#T (three coefficients)

• Constrain two coefficients by requiring smoothness in spf and 
first derivative at the matching point. Fit the remaining 
coefficient to lattice data  
 
JG Kaczmarek Laine Meyer PRD94 (2016)

• Local discretization of J, with 
non-perturbatively clover-
improved Wilson fermions

• Results qualitatively similar 
at T=1.1Tc

• Lattice continuum 
extrapolation reliable only 
from τT>0.22

• Matching point at k0=k+1.5T

Fitting to the lattice
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Figure 1: Fitted imaginary-time correlators at non-zero momenta. The “best estimate from pQCD”

(perturbative QCD) is based on refs. [17,18,20], and has been constructed as explained in footnote 3.

“Polynomial interpolations” correspond to nmax = 0, but similarly good fits are obtained for nmax = 1.

χq is the quark number susceptibility and

G
V,free(τ,0) ≡ 6T 3

[

π(1− 2τT )
1 + cos2(2πτT )

sin3(2πτT )
+

2 cos(2πτT )

sin2(2πτT )

]

. (4.3)

Normalization by χq removes the renormalization factors associated with our local discretiza-

tion of the vector current, and normalization through G
V,free hides the short-distance growth

of the imaginary-time correlator. O(a) improvement permits for a continuum extrapolation

quadratic in 1/Nτ . More details can be found in ref. [37]. With this approach a continuum

extrapolation could be carried out at τT ≥ 0.18 for T = 1.1Tc and at τT ≥ 0.22 for T = 1.3Tc.

These are the distances included in the subsequent analysis. A bootstrap sample was gen-

erated for the continuum extrapolated results, which was used for estimating the statistical

errors of our final observables. In a separate set of continuum extrapolations, the suscepti-

bilities were determined through a quadratic fit, yielding χq = 0.857(16)T 2 at T = 1.1Tc and

χq = 0.897(17)T 2 at T = 1.3Tc [37].
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• The perturbative data overshoots the lattice data. 
Too much support at low frequency?

• Try a fitting Ansatz: perturbative, thermal spf 
above M~#T. Fifth-degree polynomial in k0, with 
odd powers only, below M~#T (three coefficients)

• Constrain two coefficients by requiring smoothness in spf and 
first derivative at the matching point. Fit the remaining 
coefficient to lattice data  
 
JG Kaczmarek Laine Meyer PRD94 (2016)

• Results qualitatively similar 
at T=1.1Tc

• The fit has a good χ2, which 
also has a local minimum for 
M~#T and the spf at the 
photon point is stable against 
varying the matching point

• Deff proportional to spf at 
photon point (hold on), quite 
stable too0.0 2.0 4.0 6.0 8.0 10.0

ω0 / T

0.0
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T = (1.2 - 1.3) Tc

Figure 2: We show χ2/d.o.f. (top) and DeffT (bottom; cf. eq. (5.2)) as a function of the matching

point ω0 for nmax = 0. In the right panel, the upper curves are for T = 1.2Tc and the lower curves

for T = 1.3Tc on the perturbative side (the lattice data is fixed but it is not known precisely to which

temperature it corresponds, cf. table 1). A local minimum of χ2/d.o.f. is generally found close to the

point where ω0 =
√

k2 + (πT )2; it is very shallow for the smallest k.

5. Fit results

Having discussed the spectral function on one side (sec. 3) and the imaginary-time correlator

on the other (sec. 4), the remaining task is to compare the two. The relation is given by

GV(τ,k) =

∫ ∞

0

dω

π
ρV(ω,k)

cosh[ω(β2 − τ)]

sinh[ωβ2 ]
, β ≡

1

T
. (5.1)

Inserting into eq. (5.1) the best available perturbative estimate for ρV, based on an interpo-

lation between the results of refs. [17, 18, 20],3 a visible discrepancy is observed between the

perturbative and lattice results at τT >∼ 0.3 (cf. fig. 1). In general the lattice results are below

3The data is available through ref. [38]. More precisely, for very large time-like frequencies it is given by

the large-M results of ref. [20] which go over into the N4LO vacuum result for ω ≫ πT [21–23]. For ω<
∼ 10T it

is given by the interpolation of the large-M result and the LO LPM-resummed small-M result, as presented in

ref. [18], summed together with the NLO small-M result of ref. [17] (switched off exponentially with growing

M to avoid OPE-violating contributions [21] proportional to T
2). In this way, the value at the real photon

point ω = k agrees with the NLO photon calculation [11]. In the space-like region the spectral function is the

largest between the Born one with vacuum corrections [20] and the NLO small-M result [17]. In practice, this

implies that at the smallest ω we have the Born-like spectral function, whereas close to the light-cone we have

the small-M one, ensuring continuity across the light-cone.
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• The perturbative data overshoots the lattice data. 
Too much support at low frequency?

• Try a fitting Ansatz: perturbative, thermal spf 
above M~#T. Fifth-degree polynomial in k0, with 
odd powers only, below M~#T (three coefficients)

• Constrain two coefficients by requiring smoothness in spf and 
first derivative at the matching point. Fit the remaining 
coefficient to lattice data  
 
JG Kaczmarek Laine Meyer PRD94 (2016). AdS/CFT: Caron-
Huot Kovtun Moore Starinets Yaffe JHEP0612 (2006)

• At the photon point modest 
changes from pQCD 
expectations (below 20% 
except perhaps at the 
smallest ks, also at 1.1 Tc). 
Good for pheno!

• AdS/CFT curve adjusted to 
asymptote to the bare QCD 
result (extra symmetries 
make T=0 curve coupling-
independent)0.0 2.0 4.0 6.0 8.0

ω / T

0.0
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ρ V
 / 
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Figure 3: The spectral functions corresponding to fig. 1 (nmax = 0). The vertical bars locate the

light cone. The “best estimate from pQCD” is based on refs. [17, 18, 20], and has been constructed

as explained in footnote 3. The AdS/CFT result comes from ref. [28], and has been rescaled to agree

with the non-interacting QCD result at large ω/T . (This rescaling choice is rather arbitrary.)

the perturbative ones. The goal now is to test whether the discrepancy could be explained

by modifications of ρV in the domain of small frequencies, as explained in sec. 3.

With the ansatz of eq. (3.2), a good representation of the data can indeed be obtained.

This is illustrated in fig. 1 and more quantitatively in fig. 2, which shows the dependence of

χ2 on the matching point ω0. In the following, we fix ω0 =
√

k2 + (πT )2, which is close to

the local minimum of χ2. Similarly small χ2 could be obtained with ω0 = k, where the curves

start, but we prefer to use the minimum that is deeper in the perturbative domain, because

then we have more reasons to trust the perturbative prediction.

The corresponding results for the spectral function are illustrated in fig. 3. Barring the

possibility of large non-perturbative effects at M >∼πT , it appears plausible from fig. 3 that

the pQCD spectral functions have too much weight in the spacelike domain. This is in

qualitative agreement with the discussion in secs. 2.3 and 2.4, and suggests the gradual onset

of hydrodynamics-like behaviour. That the fit lies below the perturbative curves at k <∼ 3T

is also consistent with the expectation that the diffusion coefficient D of a strongly coupled

system should be smaller than the result of a leading-order weak-coupling analysis [39].

The value of the spectral function at the photon point, normalized as ρV(k,k)T/(2χqk), is

shown in fig. 2 (lower panels) and in fig. 4. More precisely, in order to accommodate data
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• The perturbative data overshoots the lattice data. 
Too much support at low frequency?

• Try a fitting Ansatz: perturbative, thermal spf 
above M~#T. Fifth-degree polynomial in k0, with 
odd powers only, below M~#T (three coefficients)

• Constrain two coefficients by requiring smoothness in spf and 
first derivative at the matching point. Fit the remaining 
coefficient to lattice data  
 
JG Kaczmarek Laine Meyer PRD94 (2016). NLO pQCD: JG Hong 
Kurkela Lu Moore Teaney JHEP05 (2013) 

• In the hydro limit k≪T 
Deff→D 

• Lattice errors from bootstrap 
samples

• At large momentum excellent 
agreement with NLO pQCD 
from before. At finite k>0 this 
method could be a more 
controlled approach to the 
extraction of σ, w/o the large 
uncertainties associated with 
the transport peak at k=0. 

• Try this for shear?
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Figure 4: Lattice results for Deff defined in eq. (5.2) (data points), compared with the NLO pertur-

bative prediction from ref. [17] (continuous curves). The lattice errors have been obtained by carrying

out fits with nmax = 1 to the bootstrap ensemble. The data points at k = 0 (cf. appendix A) have been

slightly displaced for better visibility. For comparison note that the heavy-quark diffusion coefficient,

determined with different methods, has been estimated as DT ∼ 0.6...1.1 at T ∼ 1.5Tc [40], and the

light-quark value as DT ∼ 0.2...0.8 at T = 1.1Tc and DT ∼ 0.2...0.5 at T = 1.3Tc [37]. The predic-

tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding

DT ≈ 2.9 at T = 1.1Tc and DT ≈ 3.1 at T = 1.3Tc. The AdS/CFT value is DT = 1/(2π) [27].

both at k = 0 and at k > 0, we define

Deff(k) ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρV(k,k)

2χqk
, k > 0

lim
ω→0+

ρii(ω,0)

3χqω
, k = 0

. (5.2)

According to eqs. (2.9) and (2.11), limk→0Deff(k) = D. Even though the evidence for a

continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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light-quark value as DT ∼ 0.2...0.8 at T = 1.1Tc and DT ∼ 0.2...0.5 at T = 1.3Tc [37]. The predic-

tions of ref. [17] are only reliable for k ≫ gT , but LO perturbative values at k = 0 can be obtained

by dividing the results of ref. [39] through the lattice susceptibility according to eq. (2.9), yielding

DT ≈ 2.9 at T = 1.1Tc and DT ≈ 3.1 at T = 1.3Tc. The AdS/CFT value is DT = 1/(2π) [27].
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According to eqs. (2.9) and (2.11), limk→0Deff(k) = D. Even though the evidence for a

continuous behaviour is not overwhelming in fig. 4 due to the large systematic uncertainties

at small k <∼ 3T , it is not excluded either. We recall that according to the discussion in

sec. 2.4, hydrodynamic behaviour is expected to set in for k <∼ 1/D, which according to the

k = 0 results in fig. 4 roughly speaking corresponds to k <∼ 2T .

As already alluded to, our analysis contains systematic as well as statistical uncertainties.

In order get an impression about their magnitudes, the following tests have been carried out:

• We have tested the dependence of the results on the order of the fitted polynomial,

parametrized by nmax in eq. (3.2). Obviously, given the ill-posed nature of the inversion
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in the non-interacting limit [16],

ρV(ω,k) =
NcTM2

2πk

{

ln

[

cosh(ω+k
4T )

cosh(ω−k
4T )

]

−
ω θ(k − ω)

2T

}

, (2.7)

where Nc = 3. This “Born” or “thermal Drell-Yan” rate provides for a reasonable approxi-

mation at large invariant masses, M ≫ πT . However for zero invariant mass the Born rate

vanishes, and the leading-order (LO) result is proportional to αsT 2.

The determination of the correct LO result poses a formidable challenge [10]. However

there is a logarithmically enhanced term that can be worked out analytically [7, 8],

ρV(k,k) =
αsNcCFT 2

4
ln

(

1

αs

)

[

1− 2nF(k)
]

+O(αsT
2) , (2.8)

where nF is a Fermi distribution and CF ≡ (N2
c − 1)/(2Nc). The non-logarithmic terms are

only known in numerical form [9,10]. Recently, these results have been extended to O(α3/2
s T 2)

both at vanishing [11] and non-vanishing photon masses (|M |<∼ gT , where g ≡
√
4παs) [17].

In the following we make use of the results of ref. [17].

If the photon mass is large, M ≫ g1/2T , then there is a “crossover” to a different type of

behaviour [17, 18]. For M ∼ πT the NLO corrections are suppressed by αs and numerically

small [19, 20]. For M ≫ πT , the spectral function goes over into a vacuum result [21] which

is known to relative accuracy O(α4
s ) [22, 23] and can directly be taken over for a thermal

analysis [20,24]. Such precisely determined results play an essential role in our investigation.

2.3. Hydrodynamic regime

A special kinematic corner in which it is possible to make statements about ρV beyond

the weak-coupling expansion is given by the so-called hydrodynamic regime, parametrically

ω, k <∼α2
sT . This is the regime in which the general theory of statistical fluctuations [25]

applies. Then the properties of ρV can be parametrized by a diffusion coefficient, denoted

by D, and by a susceptibility, denoted by χq. The susceptibility determines the value of the

conserved charge correlator at zero momentum, χq ≡
∫ β
0 dτ

∫

x
⟨V 0(τ,x)V 0(0)⟩, whereas D

can be defined through a Kubo formula as

D ≡
1

3χq
lim

ω→0+

3
∑

i=1

ρii(ω,0)

ω
. (2.9)

The electrical conductivity is a weighted sum over these quantities,

σ = e2
Nf
∑

f=1

Q2
f χqD , (2.10)

where the disconnected contribution has been omitted thanks to
∑

f
Q

f
= 0.

3
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Recent developments
• Main idea: introduce this spf  

                                 ρMainz=2ρT-2ρL

• Through the Ward identity it agrees with the standard 
ρ## at the photon point ω=k 
                        ρV=2ρT+ρL         ρL(ω=k)=0

• The vacuum contribution vanishes  
identically in this new spf (Lorentz  
invariance), much better control  
in the analytical continuation  
Brandt Francis Harris Meyer Steinberg  
1710.07050

The latter linear combination vanishes identically in the vacuum and is highly suppressed in the ul-
traviolet. Here we concentrate on the case � = �2; in the future, we plan to also analyze the case
� = 0, which should yield consistent photon rates, thus providing a powerful cross-check. At the end,
the spectral functions with � = 0 and � = �2 can be recombined in order to predict the dilepton rate.
The importance of removing UV divergences from Euclidean correlators to estimate thermal real-time
observables has also been discussed in ref. [12].
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Figure 1. The spectral function ⇢�(!, k) computed in tree-level continuum perturbation theory, illustrating the
improved UV behaviour of the � = �2 spectral function (solid lines) versus the standard divergent choice � = 1
(dashed line).

Figure 1 illustrates the e↵ect of the cancellation on the tree-level spectral function in the solid
lines. The standard correlation function (� = 1) is shown for the lowest momenta in the dashed line,
which diverges as !2 at large frequencies. The spectral function with � = �2 on the other hand is
very suppressed for ! > k, thus making this channel very sensitive to the infrared physics of interest.
Note that the spectral function evaluated on the photon mass-shell (at the kink), and thus the photon
rate, vanishes at this order in perturbation theory. If one thinks of the inverse problem as resulting in a
‘smearing’ of the actual spectral function, as is explicitly the case in the Backus-Gilbert method, then
this represents a di�culty, since the spectral weight is of order unity for ! . k.

2 Continuum limit

We have generated a series of ensembles to take the continuum limit at a single temperature, ap-
proximately T = 250 MeV, above the crossover to the chirally symmetric phase, and an additional
ensemble at a single lattice spacing deep in the deconfined phase, approximately T = 500 MeV;
see table 1. We use the non-perturbatively O(a)-improved Wilson action [13] with Nf = 2 Wilson
fermions and the Wilson gauge action. The parameters were chosen using the running of the coupling
and quark masses as determined by the CLS collaboration [14]. The lattice with N⌧ ⌘ �/a = 16 at
T ⇡ 250 MeV, where � = T�1 is the inverse temperature, has been used for our previous studies, see
refs. [15–17].

In order to control the continuum limit we measured the two-point correlation functions of the
vector current using both local and exactly-conserved discretizations of the current. Furthermore, in
the case of the local-conserved correlation function, there are two discretizations of the � = �2 linear
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• Backus-Gilbert inversion, Nf=2 
Brandt Francis Harris Meyer Steinberg 1710.07050
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Figure 11. Estimate of the e↵ective di↵usion constant at T ⇡ 500 MeV for a single lattice spacing. The results
from the BG method are plotted as purple and green dots. Additionally, the strong-coupling result from N = 4
SYM and a weak-coupling result from leading-order (LO) perturbative QCD with ↵s = 0.25 are shown. The
model has not been fitted to the data at this temperature.

the constraint. For the whole momentum range, the bounds of the e↵ective di↵usion constant from
examining the minimum and maximum values of the maximum likelihood estimator consistent with
the data, cover a big interval and it is not possible to discriminate between the weak-coupling and
the strong-coupling scenarios. At lower momenta the spread from the model is compatible with the
separation of the two BG estimators.

Figure 11 shows the estimate of the e↵ective di↵usion constant deep in the deconfined phase at
T ⇡ 500 MeV. For this temperature, we only have one ensemble at a single lattice spacing so there
is no continuum extrapolation available, and the Padé ansatz has not yet been analyzed for this data.
By comparison with figure 10, however, we do not observe any strong temperature dependence of this
observable.

5 Summary and Outlook

We presented an estimate of the photon rate from dynamical QCD based on continuum-extrapolated
correlators. In order to be more sensitive to the physics on the light cone, we propose an alternative
linear combination of the vector-vector correlator that eliminates the UV contamination.

We avail of two qualitatively di↵erent approaches to estimate the photon rate: the Backus-Gilbert
method is a linear mapping that reconstructs a smeared estimator of the true spectral function; and a
Padé fit ansatz serves as a model inspired by relativistic hydrodynamics, AdS/CFT and plausibility
constraints. We can exploit the UV behaviour of the spectral function expected from an OPE and
derive a superconvergent sum rule that is implemented into the model.

As the uncorrelated �2-landscape is rather degenerate, we quote the median of the distribution
of acceptable solutions with �2 < 1 and the min and max values of this distribution. The median



Recent developments
• What is measured directly is the Euclidean 

correlator

• Analytical continuation  

• New ideas go to beyond this 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Conclusions
• NLO calculations for dileptons are now available over a 

wide range of invariant masses (at finite k)

• In both cases convergence seems reasonable. At small K2 
transition to photon is smooth

• A collection of the best available data has been prepared 
and is ready for use by pheno/lattice practitioners

• Comparison with lattice with a simple, motivated Ansatz 
gives a good fit and seems to further suggest stability (at 
the tens of % level) of the pQCD rates
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LPM resummation
• Quark statistical functions × DGLAP splitting × 

transverse evolution  

• Transverse diffusion and Wilson-loop correlators evolve 
the transverse density f along the spacetime light-cone  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• Asymptotic mass

• Light-cone Wilson loop, related to 

LPM resummation: two inputs

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008), can be “easily” computed in perturbation theory 
Possible lattice measurements Laine Rothkopf JHEP1307 
(2013) Panero Rummukainen Schäfer 1307.5850 talk by Panero

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z
DADqDqe�iS(0)

TrP exp
⇢
�ig

I

⇤
dxµAa

µ(x)T a

�
(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)

s (r)�3(x1 � y1)�3(x2 � y2)e�iTW V
(0)
s (r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆
, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(
V (0)

s (r) = u0(r)
log Z(0)

s (r) = u1(r)
(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)

s (r) = u0(r) = � lim
TW!1

1
iTW

loghW⇤i. (2.12)
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2.2 Application to Jet Evolution

The dominant energy loss mechanism of high energy particles (at weak coupling) is
bremsstrahlung (including quark-antiquark pair production), triggered by soft colli-
sions against plasma constituents. The theoretical description of these processes, at
the leading order in the coupling, is well-established [28] [29] [30]. Their duration tform
depends on the energy of the participants, and can interpolate between the Bethe-
Heitler (single scattering) regime tform ∼ E/q2⊥ ∼ E/m2

D at energies E <
∼ T , and the

Landau-Pomeranchuk-Migdal (LPM) [31] (multiple-scattering) regime at high ener-
gies E ≫ T , with tform ∼

√

E/q̂, in which destructive interference between different
collisions plays a significant role.

In all of these regimes, however, the description factors into a “hard” collinear split-
ting vertex (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, DGLAP vertex [33]), times an
amplitude (wavefunction in the transverse plane) which describes the in-medium evo-
lution of the vertex. The latter accounts for the collisions which trigger, and occur
during, the splitting process [28] [29] [30]. The DGLAP vertices themselves only in-
volves hard scale physics (in essence, they are Clebsch-Gordon coefficients between
states of different helicities) and thus cannot receive O(g) corrections; the NLO ef-
fects, which come from soft classical fields with p ∼ gT , are included in their dressing
amplitude.

In section 6 we discuss these amplitudes at NLO and show that the relevant (three-
body) collision kernel factors as a sum of two-body kernels C(q⊥), exactly like the LO
one does [28] [29] [30, 32]. As a consequence, our results can be used to give a full NLO
treatment of radiative jet energy loss; one must simply include the NLO shift (20) to
the two-body kernel C(q⊥) which serves as an input to these calculations2.

2.3 Momentum broadening coefficient (q̂)

When the effects of a large number of small collisions are added together, it is natural
to replace them by an effective diffusive process. The diffusion coefficient relevant for
transverse momentum broadening, q̂, is defined as the second moment of the collision
kernel (1):

q̂ ≡
∫ qmax

0

d2q⊥
(2π)2

q2⊥C(q⊥). (2)

The ultraviolet cutoff |q⊥| < qmax is needed to deal with the weak power-law falloff
C(q⊥) ∼ g4T 3/q4⊥ at large q⊥, which leads to a logarithmic dependence of q̂ on qmax.
This is a leading order logarithm; below we shall comment on the value of the cutoff
qmax. Using our NLO kernel (20) we can calculate the expansion of q̂ up to terms of

2 For instance, one would simply modify “C(q⊥)” in [32], which is actually equal to C(q⊥)/(g2CsT )
in our conventions.
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q̂



• Seemingly different processes boiling down to wider-angle 
radiation  
 
 
 
 

• Evaluation: introduce “modified    ” that keep tracks of the 
changes in the small light-cone component p- of the quarks 
 
 

• The “modified    ” can also be evaluated in EQCD   
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Grr(t = xz,x?) =
PZ

p

GE(!n, p?, pz + i!n)e
i(p?·x?+pzxz)

• For v=xz/t=∞ correlators (such as propagators) are the 
equal time Euclidean correlators.  

• Causality: retarded functions analytic for positive 
imaginary parts of all timelike and lightlike variables: 
the above result can be extended to the lightcone  

• The sums are dominated by the zero mode for soft 
physics=>EQCD!

• Equivalent to sum rules

Grr(t = 0,x) =
PZ

p

GE(!n, p)e
ip·x

Euclideanization of light-cone soft 
physics

Caron-Huot PRD79 (2009)
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Summary 
• LO rate  
 
 

• NLO correction  
 
 

• Fits available in the paper  
JG Hong Kurkela Lu Moore Teaney JHEP0513 (2013)
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Figure 18. (a) The function, C(k/T ), parametrizing the photon emission rate for Nc = Nf = 3
and ↵s = 0.3 (see Eq. (6.8) and Eq. (2.9)). The full next to leading order function (CLO+NLO) is
a sum of the leading order result (CLO), a collinear correction (�Ccoll), and a soft+semi-collinear
correction (�Csoft+sc). The dashed curve labeled CLO + �Ccoll shows the result when only the
collinear correction is included, with the analogous notation for the CLO + �Csoft+sc curve. The
di↵erence between the dashed curves provides a uncertainty estimate for the NLO calculation. (b)
The same as (a) but for larger k/T . {plot_c_30_1}
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Given those definitions, it then follows that
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In Fig. 18, we start by plotting the function CLO+NLO(k/T ) for ↵s = 0.3 and Nc =

Nf = 3. In the phenomenologically interesting momentum range, k/T ⇠ 10, the collinear

and semi-collinear+soft corrections largely cancel, leading to a small positive correction

of order ⇠ 15% (Fig. 18(a)). At large momentum, k/T >
⇠

20, the LO and LO+NLO

curves cross and the NLO correction turns negative (Fig. 18(b)). We believe that the
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In Fig. 18, we start by plotting the function CLO+NLO(k/T ) for ↵s = 0.3 and Nc =

Nf = 3. In the phenomenologically interesting momentum range, k/T ⇠ 10, the collinear

and semi-collinear+soft corrections largely cancel, leading to a small positive correction

of order ⇠ 15% (Fig. 18(a)). At large momentum, k/T >
⇠

20, the LO and LO+NLO

curves cross and the NLO correction turns negative (Fig. 18(b)). We believe that the
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large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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respectively of an “uncertainty estimate” of the NLO calculation.
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For the smaller coupling constant the NLO correction is always negative and rather flat,
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Figure 21. The di↵erential rate, d��/dk, relative to the leading order rate as described in Fig. 20,
but for ↵s = 0.05. {plot_ratio_05}

In Figs. 20 and 21 we plot the di↵erential photon emission rates d��/dk relative to the

leading order rate, (LO+ NLO)/LO, for two di↵erent values of the coupling constant. The

reasonable, but somewhat ad hoc, “uncertainty estimate” described above can be inferred

from the di↵erence between the upper and lower dashed curves, which include either the

collinear or the soft+semi-collinear correction, but not both.

For the largest coupling, ↵s = 0.3, NLO corrections are modest and positive, although

the “uncertainty band” is rather large – of order 50% (see Fig. 20). At intermediate

coupling, ↵s = 0.15, the cancellation between the collinear and semi-collinear+soft contri-

butions is quite dramatic, causing the LO+NLO result to be within a few percent of the

LO rate (not shown). Nevertheless, the uncertainty band remains rather large – of order

40%. Finally, at the smallest coupling ↵s = 0.05, the (LO+NLO)/LO ratio is somewhat

larger than at intermediate coupling, but with a considerably smaller uncertainty band

(Fig. 21).

7 Conclusions
{sec_concl}

We have computed the photon production rate to NLO of an equilibrated, weakly-coupled

quark-gluon plasma. The contributions to the LO rate can be divided into distinct kine-

matical regimes — the hard, soft and collinear regions. The contributions arising from the

hard and the soft regions have logarithmic sensitivity to the details of how the kinematical

regions are divided. However, this dependence cancels in the sum. At NLO the soft and

collinear regions receive O(g) corrections, and a new “semi-collinear” region starts to con-

tribute here. We have dealt with the collinear region in Sec. 3, with the soft region in 4,

and with the semi-collinear region in 5.

The collinear regime is a↵ected by the LPM interference of multiple scatterings through

the integral equation (3.1). As we showed, computations are most easily performed in

impact parameter space and the resulting O(g) perturbation to the LO result is given
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