ELECTROMAGNETIC RADIATION AND THE MODELLING OF HEAVY-ION COLLISIONS

Charles Gale McGill University

IREAS

Mattu

Dense Hadroni

Hot and

Electromagnetic Radiation

Outline

- Most of this talk: real and virtual photons $^{(\star)}$ of, at the most, a couple of GeV's
- Photons can be **soft** and still **penetrating**

They enjoy a unique status

- •(Very brief) Review of the physics of the bulk system
 - •Reaction modelling and EM emission are indissociable
- •Electromagnetic radiation, theory status and updates
 - The "photon flow puzzle"
 - Towards a complete treatment of "viscous photons"
 - •Pre-hydro photons
 - •BES-energies radiation
 - Dileptons
 - Small systems

(*) Photons and dileptons

Relativistic nuclear collisions: The emergence of a "standard picture"

Much progress in the calculation of the initial state

800

Niemi, Eskola, Paatelainen, PRC (2015)

Schenke, Tribedy, and Venugopalan, PRL (2012)

Also: Effective kinetic theory; 3D IP-Glasma...

The success of fluid dynamics modelling at RHIC and at the LHC: The existence of collectivity

• Viscous relativistic fluid dynamics

 $T^{\mu\nu} = T^{\mu\nu}_{ideal} + T^{\mu\nu}_{diss}; \qquad T^{\mu\nu}_{ideal} = (\mathcal{E} + P)u^{\mu}u^{\nu} - Pg^{\mu\nu};$ $T^{\mu\nu}_{diss} = \pi^{\mu\nu}(\eta) - \Delta^{\mu\nu}\Pi(\zeta) \qquad \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$

To first order in the velocity gradient: Navier-Stokes
To higher order:

Israël & Stewart, Ann. Phys. (1979); Baier et al., JHEP (2008); Denicol et al., PRD (2012); Denicol et al., PRC (2014); Jeon & Heinz, Int. J. Mod. Phys. E (2015)

 $\eta,\,\zeta\,$ are shear and bulk viscosities

•Resistance to deformation, and to volume expansion

One lesson from hydro: Matter behaves collectively Calculating transport coefficients

•Kubo relation: $\eta = \frac{1}{20} \lim_{\omega \to 0} \frac{1}{\omega} \int d^4 x \, e^{i\omega t} \langle [S^{ij}(t,\vec{x}), S^{ij}(0,\vec{0})] \rangle \theta(t)$ $S^{ij} = T^{ij} - \delta^{ij} P$

For finite-temperature QCD, can be calculated

•Perturbatively: Arnold, Moore, Yaffe JHEP (2000, 2003)

•On the lattice: H. B. Meyer PRD(2007); (2009) Sakai, Nakamura LAT2007

•Using FRG techniques Haas, Fister, Pawlowski PRD (2014) Christiansen et al., PRL (2015)

OUsing Schwinger-Dyson Liu, Rapp 1612.09138

•Using strong-coupling AdS/CFT techniques:

 $\eta / s \ge \frac{1}{4\pi}$ Policastro, Son, Starinets PRL(2001) Kovtun, Son, Starinets (KSS) PRL(2003)

Calculating transport coefficients, II

WHAT ABOUT BULK?

Huovinen and Petreczky, Nucl. Phys. A (2010)

- For a non-conformal fluid, the bulk viscosity is not zero
- Around, and sightly above, T_c, the bulk viscosity will matter

Kharzeev, Tuchin PLB (2007); JHEP (2008) Czajka et al., PRC 2018

$$T^{\mu\nu} = -Pg^{\mu\nu} + \omega u^{\mu}u^{\nu} + \Delta T^{\mu\nu}$$

The dissipative terms, to second order: $\Delta T^{\mu\nu} = \mathfrak{F}^{\mu\nu}[\eta, \zeta, \chi]$

•Calculations now incorporate these

S. Ryu et al., PRL (2015); PRC 2018; J. E. Bernhard et al., PRC (2016)

• The hydro description is still in evolution: Extract the transport coefficients from analyzing data

THE SITUATION WITH HADRONS

• The bulk viscosity reduces the average p_T: it acts as a negative pressure $\Pi \sim -\zeta \theta$

THE SITUATION WITH HADRONS

• The bulk viscosity reduces the average p_T: it acts as a negative pressure $\Pi \sim -\zeta \theta$

DIRECT PHOTONS

Photon Sources (real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Jet-plasma photons "Thermal"

Jet in-medium bremsstrahlung "Thermal"

DIRECT PHOTONS

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Jet-plasma photons "Thermal"

Jet in-medium bremsstrahlung "Thermal"

Charles Gale McGill

Pre-hydro?

DIRECT PHOTONS

Photon Sources (real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons "Thermal"

DIRECT PHOTONS AND HIC MODELLING

• Unlike hadrons, photons are emitted throughout the entire space-time history of the HIC

pQCD Photons

• INCNLO, P. Aure

• CTEQ6.1m, BFG-2, Isospin, Erouy

• Measurement!

J.-F. Paquet, Phos Thesis (2015) proton-proton collisions

pQCD Photons

Info Carried by the thermal radiation

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{Z} \sum_{i} e^{-\beta K_{i}} \sum_{f} (2\pi)^{4} \delta(p_{i} - p_{f} - k)$$

$$\times \langle f | J_{\mu} | i \rangle \langle i | J_{\nu} | f \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^{3}R}{d^{3}k} = -\frac{g^{\mu\nu}}{(2\pi)^{3}} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega} - 1} \quad \text{(photons)}$$
$$E_{+}E_{-}\frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}} \frac{1}{k^{4}} L^{\mu\nu} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega} - 1} \quad \text{(dileptons)}$$

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)

•QGP rates have been calculated up to NLO in α_s in FTFT

Ghiglieri et al., JHEP (2013); M. Laine JHEP (2013)

... and on the lattice (dileptons)

Ding et al., PRD (2011)

•Hadronic rates C. Gale, Landolt-Bornstein (2010) Turbide, Rapp, Gale PRC (2004)

Photon rates@LO

Thermal Photons from hot QCD: HTL program (Klimov (1981), Weldon (1982), Braaten & Pisarski (1990); Frenkel & Taylor (1990))

$$\operatorname{Im}\Pi^{\mu}_{\mathrm{R}\,\mu} \sim \ln\!\left(\frac{\omega T}{m_{\mathrm{th}}^2}\right)$$

Kapusta, Lichard, Seibert (1991) Baier, Nakkagawa, Niegawa, Redlich (1992)

Going to two loops: Aurenche, Kobes, Gélis, Petitgirard (1996) Aurenche, Gélis, Kobes, Zaraket (1998)

2001: Results complete at $O(\alpha_s)$

Arnold, Moore, and Yaffe JHEP **12**, 009 (2001); JHEP **11**, 057 (2001) Incorporate LPM; Inclusive treatment of collinear enhancement, photon and gluon emission

Photon rates@NLO

Ghiglieri, Hong, Kurkela, Lu, Moore, Teaney, JHEP (2013)

McGill

Photon rates@NLO

Ghiglieri, Hong, Kurkela, Lu, Moore, Teaney, JHEP (2013)

Photon rates II

Thermal Photons from a hot ensemble of hadrons

In-medium hadrons:

$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{1}{\exp[(u^{\mu}p_{\mu} - \mu)/T] \pm 1}$$

$$q_{0} \frac{d^{3}R}{d^{3}q}\Big|_{1+2\to3+\gamma} = \int \frac{d^{3}p_{1}}{2(2\pi)^{3}E_{1}} \frac{d^{3}p_{2}}{2(2\pi)^{3}E_{2}} \frac{d^{3}p_{3}}{2(2\pi)^{3}E_{3}} (2\pi)^{4} |M|^{2} \delta^{4}(...) \frac{f(E_{1})f(E_{2})[1\pm f(E_{3})]}{2(2\pi)^{3}}$$

Consider all the reaction and radiative decay channels of combinations of:

 $\{\pi, K, \rho, \omega, K^*, a_1\}$ With hadronic form factors

Chiral, Massive Yang-Mills:

- O. Kaymakcalan, S. Rajeev, J. Schechter, PRD 30, 594 (1984)
- Ulf G. Meissner, Phys. Rept. 161, 213 (1988)

Turbide, Rapp, Gale, PRC (2004); S. Turbide, PhD Thesis (2006)

Parameters and form factors are constrained by hadronic phenomenology:

- Masses & strong decay widths
- Electromagnetic decay widths
- Photoabsorption data
- Others: e.g. $a_1 \rightarrow \pi + \rho$

- All reactions combining light and intermediate mass mesons and baryons
- $\pi\pi$ and πK bremsstrahlung Heffernan, Hohler, Rapp, PRC (2015)

Then:

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}}(K \cdot u(X), T(X))$$

- All reactions combining light and intermediate mass mesons and baryons
- $\pi\pi$ and πK bremsstrahlung Heffernan, Hohler, Rapp, PRC (2015)

Where we are with "viscous photon" rates (no NLO): SOME BOXES ARE (STILL) EMPTY

Rate/viscous correction	ldeal	I+Shear	l+S+Bulk
QGP: 2->2	AMY (2001)	Shen et al., PRC (2015)	 Paquet et al., PRC (2016) Hauksson, Jeon, Gale (2017)
QGP: LPM- Brem.	AMY (2001)		Hauksson, Jeon, Gale (2017)
Hadronic: Meson reactions	 Turbide et al. , PRC (2004) van Hees et al., PRC (2011) 	 Dion et al., PRC (2011) Paquet et al., PRC (2016) 	Paquet etal., PRC (2016)
Hadronic: Meson-Meson Brem.	 Liu et al., NPA (2007) Linnyk et al., PRC (2015) 		
Hadronic: Baryons	 Rapp et al., ANP (2000) Turbide et al., PRC (2004) Paquet et al., PRC (2016) 		
	(An incomplete	reference list)	Cha Cha

Calculating with a system out of equilibrium (\mathbf{k}, T)

In-medium hadrons:

$$f_0(u^{\mu}p_{\mu}) = \frac{1}{(2\pi)^3} \frac{4 \text{-velocity } u \text{ is}}{\exp[(\chi \cdot u, T)]}$$
(5)

(5

$$f \rightarrow f_0 + \delta f$$
, $\delta f = f_0 (1 \pm (2\pi))$
amics, photon emission is given by convolut

$$q_{0} \frac{d^{3}R}{d^{3}q} = \int \frac{d^{3}p_{1}}{2(2\pi)^{3}E_{1}} \frac{d^{3}p_{2}}{2(2\pi)^{3}E_{2}} \frac{d^{3}p_{3}}{2(2\pi)^{3}E_{3}}$$
(ton rate
Photons:
$$\frac{3\Gamma}{l\mathbf{k}}(K \cdot u(X), T(X))$$
(5)

F

13 m

• Recalculate all the odynamics, the photon emission rate must • Integrate rates w^{or} hadrons, as described in Section 3.4.

$$E\frac{d^3N}{d\mathbf{k}} = \int d^4X E\frac{d^3\Gamma}{d\mathbf{k}}(K^{\mu}, u^{\mu}(X), T(X), \pi^{\mu\nu}(X), \Pi(X))$$

M. Dion, MSc thesis (2011), Diof et ale Reviention from thermal equilibri Shen et al., PRC (2014), Paquet et al., (2016))rward. It is the subject of the next chapte

"Viscous photons"

Can't directly compare rates with and without viscous corrections

"Viscous photons" (II)

 $\delta f_i = -\frac{\Pi}{T\hat{\mathcal{L}}} \left(f_{0i} \tilde{f}_{0i} \right) \left| \left(c_s^2 - \frac{1}{3} \right) E_i + \frac{m_i^2}{3E_i} \right|$ **Bulk** (Massive hadrons) $\hat{\zeta} = \frac{1}{3T} \sum_{i}^{N} \int dK_{i} m_{i}^{2} g_{i} f_{0i} \widetilde{f_{0i}} \left[\left(c_{s}^{2} - \frac{1}{3} \right) E_{i} + \frac{m_{i}^{2}}{2E_{i}} \right]$ Paquet et al., PRC (2011) Czajka et al., PRC (2018) 10² 0.2 ALICE (prelim) ALICE (prelim) 1/(2пр_T) dN^Y/dp_T (GeV⁻²) Rates w/ shear and bulk viscous corr. Rates w/ shear and bulk viscous corr. Rates w/ shear viscous corr. Rates w/ shear viscous corr. 10¹ Rates w/o viscous corr Rates w/o viscous corr. 0.15 Pb-Pb 0-40% 10⁰ v₂^V{SP} √s=2.76 TeV 0.1 10-1 Direct photons 0.05 10-2 Pb-Pb 0-40% √s=2.76 TeV 10⁻³ 0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 3 3 0 0 p_T (GeV) p_T (GeV)

UPDATE: YIELDS & FLOW

McGill

PHOTON SUMMARY II STAR

10^{2} Theory 10^{1} 0-20 % $imes 10^2$ 10^{0} 20-40 % $\times 10^1$ 0-80 % $\times 10^{0}$ 10^{-} $d^2N/(2\pi p_Tdp_Tdy)~(GeV/c)^{-2}$ 40-60 % $imes 10^{-1}$ 10^{-} 60-80 % $\times 10^{-2}$ 10^{-} 10^{-} 10^{-} 10- 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10^{-12} 5 6 p_T (GeV/c) 2 3 7 8 9 10 1 4

STAR arXiv:1607.01447

PHOTON SUMMARY II STAR

10²

ANALYZING THE YIELDS AND FLOW

- No jet-medium photons
- No in-medium jet fragmentation photons
- A consistent treatment of viscous effects on LPM photons is missing (see later)
- Photons from final hadronic stage [See A. Schaefer's talk]

Applications:

• Photon tomography: Temperature/earlytime dynamics Charles Gale McGill

THE "PRE-HYDRO" PHOTONS?

PHSD

The contribution of equilibrium vs. nonequilibrium stages?
Fugacities

THE PRE-HYDRO PHOTONS?

BAMPS

Compton, qq
Brem/LPM (added)

Pre-hydro radiation: intriguing results

Calculating photon rates complete at LO, for a system out of equilibrium (I)

$$\omega \frac{d^3 R}{d^3 k} = \frac{i}{2(2\pi)^3} (\Pi_{12})^{\mu}{}_{\mu}$$

$$2 \rightarrow 2$$
 Schenke, Strickland, PRD (2007)
Shen et al., PRC (2015)

Landau-Pomeranchuk-Migdal

c.f. Majumder, Gale PRC 2002

Calculating photon rates complete at LO, for a system out of equilibrium (II)

$$S_{1122}(x_1, x_2; y_1, y_2) = \langle T_c \{ \widetilde{\psi}_1(x_1) \psi_1(x_2) \widetilde{\psi}_2(y_1) \widetilde{\psi}_2(y_2) \} \rangle$$

Using the r/a basis
$$\phi_r = \frac{1}{2}(\phi_1 + \phi_2), \quad \phi_a = \sum_{1}^{\infty} -\phi_2,$$

One can derive expression for hard quark and soft gluon propagators, to leading order, and construct the self-energy

<u>Without</u> using the KMS condition $G_{12}(Q) = -e^{-\beta Q^0}G_{21}(Q)$

 \overleftarrow{P}

Hauksson, Jeon, Gale, PRC 2017

Photons from a medium out of equilibrium

$$\omega \frac{dR}{d^3k} \sim \int_{\mathbf{p}_\perp} [...] \mathbf{p}_\perp \cdot \operatorname{Re} \mathbf{f}(\mathbf{p}_\perp)$$

Obtain a Boltzmann-like equation:

$$\mathbf{p}_{\perp} = i \, \delta E \, \mathbf{f}(\mathbf{p}_{\perp}) + \int_{\mathbf{q}_{\perp}} \mathcal{C}(\mathbf{q}_{\perp}) [\mathbf{f}(\mathbf{q}_{\perp}) - \mathbf{f}(\mathbf{q}_{\perp} + \mathbf{p}_{\perp})]$$

- $^{\circ}$ Solve numerically for **f** by a functional expansion
- C is a scattering kernel
- No reliance on the KMS condition
- Perturbative treatment
- In the appropriate limit, same result as AMY kinetic theory
- Formalism can be applied to jet-medium interaction at finite temperature
- ...work in progress; more to come...

(preliminary) Exploration of the phenomenology Assume $f(\mathbf{p}) \sim f_{eq}(\sqrt{\mathbf{p}^2 + \xi(\mathbf{p} \cdot \mathbf{n})^2} / \Lambda)$

$$\theta = 0^{\circ}$$

Photons from lower energy heavy-ion collisions?

Photons from lower energy heavy-ion collisions?

Using photons to explore collision dynamics at low energies/high baryon density

Photons from lower energy heavy-ion collisions?

(depend on freeze-out energy density)

Using photons to explore collision dynamics at low energies/high baryon density

(markers at $\mu_B/T=1$ and $\mu_B/T=3$ to guide the eye)

J.-F. Paquet et al., in preparation

McGill

Hadronic dynamics at lower energies

Shen and Schenke, 1710.00881

Dynamical initialization Algorithm:

- Each pair of colliding nucleons is identified
- A string connects them
- The string ends are decelerated through some (phenomenological) algorithm
- The deceleration dictates the energy assigned to the string profile
- The energy is fed into the hydro source term
- The baryon density associated with the string ends is fed into the baryonic density

Hadronic dynamics at lower energies

- Dynamical initial state
- 3D hydro with baryon current
- Finite baryon density EOS

$$\partial_{\mu} T^{\mu\nu} = S^{\nu}$$
$$\partial_{\mu} J^{\mu}_{B} = \rho_{B}$$

The dynamics of gradual energy deposition

Dileptons: Theory-experiment comparison

 At all energies: Important/ dominant contribution from vector meson (mostly rho) mass broadening
 No dilepton flow

New development: low pT dileptons $p_{T} < 0.15$ GeV

Dilepton flow

Au+Au, 20-40%, RHIC

Collectivity in small systems?

C. Shen et al., PRL (2016)

• Agreement between theory and measurement for spectra, centrality tracking, and flow

 $o < p_T >$ values in agreement within uncertainties

Min. bias

• For minimum bias p+Pb collisions, thermal photons are suppressed w.r.t. prompt photons, but are still visible in the total yield

- Prompt photons: NLO pQCD
- There is however a clear photon elliptic flow, and a photon triangular flow

0-20%

 In the 0-20% centrality range, the thermal photons compete with the prompt, up to intermediate p_T
 Larger elliptic and triangular flows

0-10%

In the 0-10% centrality range, the thermal photons compete with the prompt, up to intermediate p_T
 Larger elliptic and triangular flows

0-1%

In the 0-1% centrality range, a clear thermal photon signal over the prompt photon contribution; a factor of 3 @ 1.5 GeV
There is a clear photon elliptic flow, and a photon triangular flow
T_{dec} is kept high: arguably even a lower limit to the thermal contributions

0-1%

- In the 0–1% centrality range, a clear thermal photon signal over the prompt photon contribution
- There is a clear photon elliptic flow, and a photon triangular flow
- T_{dec} is kept high: arguably a lower limit to the thermal contributions

Comparing against what is currently known, and some predictions

• Thermal radiation can leave a measurable imprint even on min. bias $R_{\rm pPb}^{\gamma}$ • An additional empirical support to the existence of a medium with features of collectivity

C. Shen et al., PRL (2016)

Comparing against what is currently known, and some predictions

• Thermal radiation can leave a measurable imprint even on min. bias $R_{\rm pPb}^{\gamma}$ • An additional empirical support to the existence of a medium with features of collectivity

C. Shen et al., PRL (2016)

NEW Shown for the first time at Quark Matter 2018:

Small Systems: PHENIX Preliminary R_{pA}

Conclusions

- Photons (real and virtual) are unique probes
 Early stages of the reaction, T, viscosities...
 Parton content (q,g...)
- Info about electromagnetic observables inform the modelling of bulk matter
- Much progress in theory towards a comprehensive theory of photons from out of equilibrium media
 Application to jets coming
- Update on the "photon flow puzzle"
- EM radiation: valuable probe of early time dynamics in lower energy collisions
- Thermal photons in pA collisions?!

Conclusions (cont'nd)

- Low pT photons in pp, measurement?
- STAR/PHENIX photons
- Photon multiplicity scaling [A. Drees' talk]
- Non-equilibrium radiation, new developments
- Dilepton flow measurements at RHIC and LHC
- Effect of magnetic fields
- Jet-photon conversion
- **o** ...

Conclusions (cont'nd)

- Low pT photons in pp, measurement?
- STAR/PHENIX photons
- Photon multiplicity scaling [A. Drees' talk]
- Non-equilibrium radiation, new developments
- Dilepton flow measurements at RHIC and LHC
- Effect of magnetic fields
- Jet-photon conversion
- **o** ...

There is work for all!

