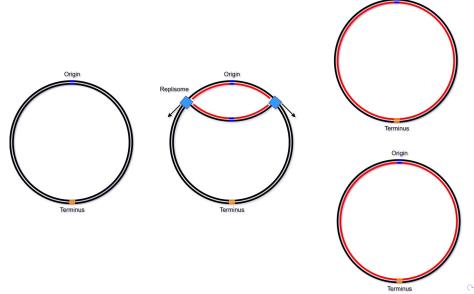
A study of the bacterial replication clock

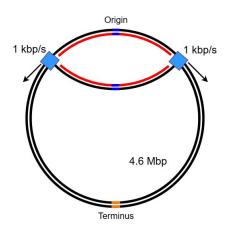
Alberto Sassi

Biological Complexity Unit Okinawa Institute of Science and Technology

Molecular Biophysics at the Transition State: From Statistical Mechanics to Al July 7-11, 2025

Okinawa


Biological Complexity Unit (Pigolotti unit)


Postdoc positions available! Feel free to reach out.

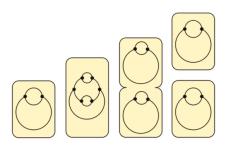
The bacterial replication clock

Replication in bacteria

The timing puzzle

Genome size: 4.6 MbpFork speed: 1 kbp/s

Replication

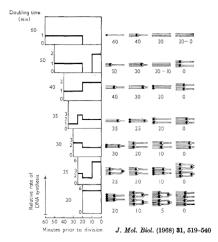

time (C): \sim 40 min

Doubling time (τ) :

(LB, 37°C) \sim 20 min

 τ < C ??

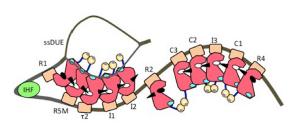
Multifork replication



Cooper-Helmstetter model

Two constants:

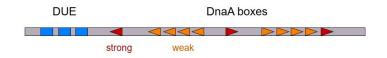
Replication time C \sim 40 min Separation time D \sim 20 min


Chromosome Replication and the Division Cycle of Escherichia coli B/r

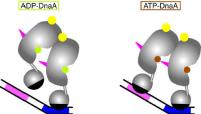
Two fundamental questions

- 1. How does the cell "know" when to initiate replication?
 - 2. How does it make all origins fire at the same time?

At the heart of both questions: the initiator DnaA


Katayama et al. Frontiers 2017

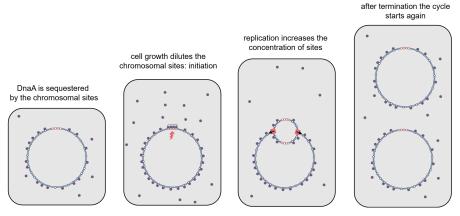
The initiator protein DnaA plays a central role in replication timing.


It binds to repeated sequences at the origin of replication and promotes the separation of the two DNA strands.

This marks the beginning of each replication cycle.

DnaA recognizes a specific DNA motif

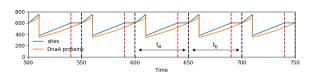
S. Ozaki, T. Katayama/Plasmid 62 (2009) 71-82

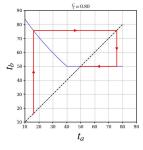


The regulatory mechanisms of DnaA

1. Titration

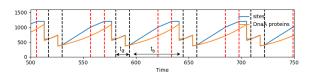
2. Activation/de-activation switch

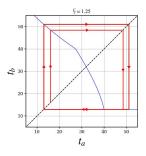

Titration


Hansen et al., Res. Microbiol, 1991.

Stability analysis: slow growth

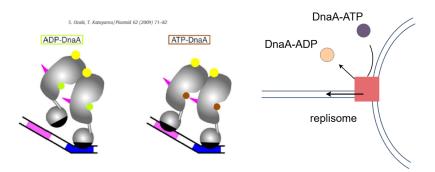
$replication \ time < doubling \ time$


$$\left(1+\min\left(1,rac{t_a}{C}
ight)
ight)\cdot e^{\lambda t_b}=2\cdot\left(1+\min\left(1,rac{t_b}{C}
ight)
ight)$$

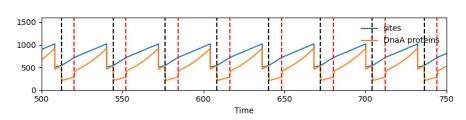

Fu et al., PRX LIFE 2023.

Stability analysis: fast growth

replication time > doubling time



$$\left(1+\min\left(1,rac{t_a}{C}
ight)
ight)\cdot e^{\lambda t_b}=2\cdot\left(1+\min\left(1,rac{t_b}{C}
ight)
ight)$$


Fu et al., PRX LIFE 2023.

(De)-activation

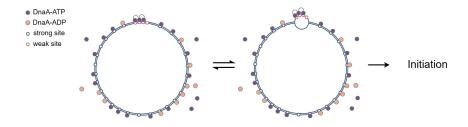
Hydrolysis restores stability

$$\begin{split} \frac{d\left[\mathsf{DnaA-ATP}\right]}{dt} &= -\frac{n_{\mathsf{forks}}}{V} k_h \left[\mathsf{DnaA-ATP}\right] + \left(k_e + \lambda\right) \left[\mathsf{DnaA-ADP}\right] \\ \frac{d\left[\mathsf{DnaA-ADP}\right]}{dt} &= \frac{n_{\mathsf{forks}}}{V} k_h \left[\mathsf{DnaA-ATP}\right] - \left(k_e + \lambda\right) \left[\mathsf{DnaA-ADP}\right] \end{split}$$

1. How does the cell "know" when to initiate replication?

2. How does it make all origins fire at the same time?

Equilibrium model for DnaA-DNA interaction


$$E^{(p)}(\{\mathbf{s}^{(c)}\}, \{\mathbf{s}^{(o)}\}) = -\sum_{i=1}^{n_{\text{tot}}^c} \epsilon_c \cdot \mathbf{s}_i^{(c)} - \sum_{i=1}^{n_{\text{tot}}^c} \epsilon_o^{(p)} \cdot \mathbf{s}_i^{(o)} - \sum_{\langle i,j \rangle} \mathbf{s}_i^{(o)} \hat{J}^o \mathbf{s}_j^{(o)}$$

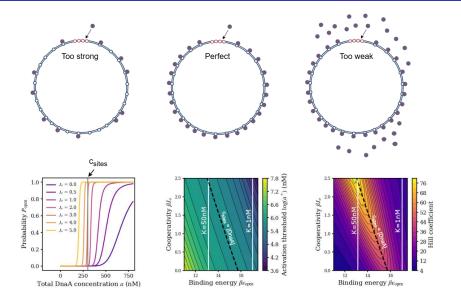
$$\mathbf{s}_i = egin{cases} (1,0,0) & \text{if site } i \text{ is vacant} \\ (0,1,0) & \text{if occupied by DnaA-ATP} \\ (0,0,1) & \text{if occupied by DnaA-ADP} \end{cases}$$

The origin region can be in two conformations: $p \in \{\text{open}, \text{closed}\}$.

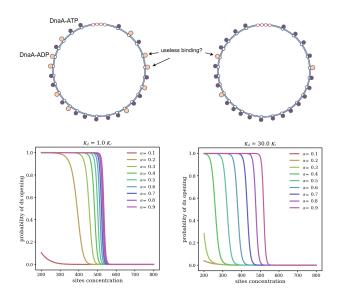
Only ATP-bound DnaA can bind cooperatively: $\hat{J}_{mm}^o = J_c \delta_{m2} \delta_{n2}$.

Origin activation

Probability of open conformation:


$$P_{
m open} = rac{e^{-eta\epsilon_{
m cost}}Z^{
m open}}{e^{-eta\epsilon_{
m cost}}Z^{
m open} + Z^{
m closed}}$$

Stochastic rate of origin firing:


$$k = P_{\text{open}} k_{\text{max}}$$

Titration leads to ultra-sensitivity

The binding of inactive DnaA reduces sensitivity

Conclusions

- Cells coordinate the replication cycle with the cell cycle via DnaA titration and (de)-activation.
- The origin design (weak, cooperative sites) is crucial to ensure a sharp response and a quick feedback.
- DnaA sequestration on the chromosome ensures ultra-sensitivity.
- A quantitative assessment of the strength of cooperative binding is needed, both at the origin and the chromosome.

Thank You!

