Studies of the isospin symmetry in the hyperon-nucleon interactions

Raffaele Del Grande*

Discrete symmetries in particle, nuclear and atomic physics and implications for our Universe

ECT* Trento, 8th - 12th October 2018

*raffaele.delgrande@Inf.infn.it

Isospin symmetry

Proposed by Heisenberg after the discovery of neutron in 1932:

"The proton and the neutron can be regarded as two states of a single particle" (nucleon)

Motivation:
$$m_p = 938.28 \text{ MeV/c}^2$$

 $m_p = 939.57 \text{ MeV/c}^2$

The mass equivalence can be viewed as an energy degeneracy of the underlying interactions.

$$E = m \cdot c^2$$

- → approximate symmetry of the strong interaction (originally believed to be exact).
- \rightarrow u and d quarks have **similar masses** $\mathbf{m}_{\mathbf{u}} \sim \mathbf{m}_{\mathbf{d}}$, interchanging them works okay $\mathbf{u} \leftrightarrow \mathbf{d}$; interchanging **other quarks doesn't work as well**.

Werner Karl Heisenberg

Isospin properties

Isospin has exactly the same properties as spin:

$$[T_1, T_2] = iT_3$$
 $[T_2, T_3] = iT_1$ $[T_3, T_1] = iT_2$
 $[T^2, T_i] = 0$ $T^2 = T_1^2 + T_2^2 + T_3^2$

Eigenstates analogous to ordinary angular momentum

$$\mathsf{T}^2 \mid \mathsf{I}, \mathsf{I}_{\mathsf{i}} \rangle = \mathsf{I} \left(\mathsf{I} + \mathsf{1} \right) \mid \mathsf{I}, \mathsf{I}_{\mathsf{i}} \rangle \qquad \mathsf{T}_{\mathsf{i}} \mid \mathsf{I}, \mathsf{I}_{\mathsf{i}} \rangle = \mathsf{I}_{\mathsf{i}} \mid \mathsf{I}, \mathsf{I}_{\mathsf{i}} \rangle$$

- T_1 , T_2 and T_3 are non-commuting operators \Rightarrow cannot know observables I_1 , I_2 , I_3 simultaneously
- Isospin ladder operators for I₃:

$$T_{-} = T_{1} - i T_{2}$$
 $(u \rightarrow d)$ $T_{+} = T_{1} + i T_{2}$ $(d \rightarrow u)$

$$T_{-}|I,I_{3}\rangle = \sqrt{I(I+1)-I_{3}(I_{3}-1)}|I,I_{3}-1\rangle \qquad T_{+}|I,I_{3}\rangle = \sqrt{I(I+1)-I_{3}(I_{3}+1)}|I,I_{3}+1\rangle$$

Combination of isospin:

Clebsch-Gordan coefficients

Iso-multiplets

Isospin multiplets can be defined in the same way as for angular momentum and spin.

Using the notation $|1,1_3\rangle$ we have:

• <u>Iso-doublet</u>

$$\begin{array}{ll} m_{p} = 938.28 \ \text{MeV/c}^{2} & | \ p \ \rangle = \ | \ \frac{1}{2} \ , \ \frac{1}{2} \ \rangle \\ m_{n} = 939.57 \ \text{MeV/c}^{2} & | \ n \ \rangle = \ | \ \frac{1}{2} \ , \ -\frac{1}{2} \ \rangle \end{array}$$

• Iso-triplet

$$\begin{split} & m_{\pi^+} = 139.570 \, \text{MeV/c}^2 & |\pi^+\rangle = |1, +1\rangle \\ & m_{\pi^0} = 134.977 \, \text{MeV/c}^2 & |\pi^0\rangle = |1, 0\rangle \\ & m_{\pi^-} = 139.570 \, \text{MeV/c}^2 & |\pi^-\rangle = |1, -1\rangle \end{split}$$

<u>Heisenberg postulates:</u>

- \rightarrow p and n are up/down states of I= $\frac{1}{2}$
- \rightarrow pions are +1,0,-1 states of I=1
- → strong interaction is invariant under isospin rotations
- \rightarrow isospin symmetry is violated by electromagnetic and weak interactions (e.g. β decay)

• <u>Iso-quadruplet</u>

$$m_{\Delta} = 1232 \text{ MeV/c}^2 \qquad |\Delta^{++}\rangle = |3/2, 3/2\rangle |\Delta^{+}\rangle = |3/2, 1/2\rangle$$

$$|\Delta^{0}\rangle = |3/2, -1/2\rangle |\Delta^{-}\rangle = |3/2, -3/2\rangle$$

NN scattering Cross Sections

Isospin conservation is used to estimate the ratio between cross sections.

Example: Nucleon-Nucleon scattering

1)
$$p + p \rightarrow d + \pi^+$$

2)
$$p + n \rightarrow d + \pi^0$$

$$\frac{|\mathsf{T}_{pp\to d\pi^+}|^2}{|\mathsf{T}_{pp\to d\pi^+}|^2}$$

$$\Rightarrow \frac{\sigma(pp \to d\pi^+)}{\sigma(pn \to d\pi^0)} \sim \frac{|T_{pp \to d\pi^+}|^2}{|T_{pn \to d\pi^0}|^2} \xrightarrow{T_{fin, in}} = \langle \psi_{fin} | V | \psi_{in} \rangle \text{ is the amplitude}$$
 for the transition in \to fin \to The ratio of the phase spaces is 1.

Clebsch-Gordan

coefficients

Reaction 1):

final state

$$|p\rangle = |\frac{1}{2},\frac{1}{2}\rangle$$
 x $|p\rangle = |\frac{1}{2},\frac{1}{2}\rangle$ \rightarrow $|pp\rangle = |1,1\rangle$

Reaction 2): initial state

$$p \rangle = | \frac{1}{2}, \frac{1}{2}$$

$$|p\rangle = |\frac{1}{2}, \frac{1}{2}\rangle$$
 x $|n\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle$

$$\rightarrow |pn\rangle = 1/\sqrt{2}[|1,0\rangle + |0,0\rangle]$$

 $|d\rangle = |0,0\rangle$ \times $|\pi^{+}\rangle = |1,1\rangle$ \rightarrow $|d\pi^{+}\rangle = |1,1\rangle$

final state
$$|d\rangle = |0,0\rangle$$
 x $|\pi^0\rangle = |1,0\rangle$ $\rightarrow |d\pi^0\rangle = |1,0\rangle$

NN scattering Cross Sections

Isospin conservation is used to estimate the ratio between cross sections.

Example: Nucleon-Nucleon scattering

1)
$$p + p \rightarrow d + \pi^+$$

2) $p + n \rightarrow d + \pi^0$ \Rightarrow $\frac{\sigma(pp \rightarrow d\pi^+)}{\sigma(pn \rightarrow d\pi^0)} \sim \frac{|T_{pp \rightarrow d\pi^+}|^2}{|T_{pn \rightarrow d\pi^0}|^2}$ $\xrightarrow{T_{fin, in}} = \langle \psi_{fin} \mid V \mid \psi_{in} \rangle$ is the amplitude for the transition in \rightarrow fin \rightarrow The ratio of the phase spaces is 1.

$$T_{pp\rightarrow d\pi^{+}} = \langle d\pi^{+} | V | pp \rangle = \langle 1, 1 | V | 1, 1 \rangle = T_{l=1}$$

$$T_{pn\rightarrow d\pi^{0}} = \langle d\pi^{0} | V | pn \rangle = 1/\sqrt{2} \langle 1, 1 | V [| 1, 1 \rangle + | 0, 0 \rangle] = 1/\sqrt{2} T_{l=1}$$

$$\frac{\sigma(pp\rightarrow d\pi^{+})}{\sigma(pn\rightarrow d\pi^{0})} = 2$$
Energy of Total cross

Energy of incident nucleon, Mev	Reaction	Angular distribution	Total cross section 10^{-27} cm ²	Reference	
580 600	$ \begin{array}{c} p+p \to \pi^+ + d \\ n+p \to \pi^0 + d \end{array} $	$(0.216\pm0.033) + \cos^2 0* (0.220\pm0.022) + \cos^2 0*$	3.10±0.24 1.5 ±0.3	[²] Present	
660 610	$p+p \rightarrow \pi^+ + d$ $p+p \rightarrow \pi^+ + d$	$(0.\dot{2}3 \pm 0.03) + \cos^2 \theta^*$	$\begin{array}{c} 3.1 \pm 0.2 \\ 3.15 \pm 0.22 \end{array}$	experiment [⁵]	

[V. B. Fliagin et al., Sov. Phys. JETP 35(8), 592 (1959)]

Table III. Branching ratios for K^- absorption at rest.

Reaction	Events/(stopping K^-
$K^-\mathrm{He^4} \to \Sigma^+\pi^-\mathrm{H^3}$	9.3±2.3
$\rightarrow \Sigma^{+}\pi^{-}dn$	1.9 ± 0.7
$\rightarrow \Sigma^{+}\pi^{-}pnn$	1.6 ± 0.6
$\rightarrow \Sigma^{+}\pi^{0} nnn$	3.2 ± 1.0
$\rightarrow \Sigma^+ nnn$	1.0 ± 0.4
Total Σ^+ = (17.0 \pm	≥ 2.7)%
$K^-\mathrm{He^4} \rightarrow \Sigma^-\pi^+\mathrm{H^3}$	4.2 ± 1.2
$\rightarrow \Sigma^-\pi^+dn$	1.6 ± 0.6
$\rightarrow \Sigma^-\pi^+pnn$	1.4 ± 0.5
$ ightarrow \Sigma^-\pi^0 { m He^3}$	1.0 ± 0.5
$ ightarrow \Sigma^-\pi^0 \ pd$	1.0 ± 0.5
$\rightarrow \Sigma^-\pi^0 ppn$	1.0 ± 0.4
$\rightarrow \Sigma^- pd$	1.6 ± 0.6
$\rightarrow \Sigma^- ppn$	2.0 ± 0.7
Total $\Sigma^- = (13.8 \pm$	± 1.8)%
$K^-\mathrm{He^4} \to \pi^-\Lambda \mathrm{He^3}$	11.2 ± 2.7
$\rightarrow \pi^- \Lambda \ pd$	10.9 ± 2.6
$\rightarrow \pi^- \Lambda ppn$	9.5 ± 2.4
$\rightarrow \pi^- \Sigma^0 \mathrm{He}^3$	0.9 ± 0.6
$ ightarrow \pi^- \Sigma^0 \left(pd, ppn ight) \ ightarrow \pi^0 \Lambda \left(\Sigma^0 ight) \left(pnn ight)$	0.3 ± 0.3
$\rightarrow \pi^0 \Lambda (\Sigma^0) (pnn)$	22.5 ± 4.2
$\rightarrow \Lambda$ (Σ^0) (pnn)	11.7 ± 2.4
$\rightarrow \pi^{+}\Lambda \ (\Sigma^{0})nnn$	2.1±0.7
Total Λ (Σ^0) = (69.2)	$(\pm 0.0)\%$
Total = $\Lambda + \Sigma = (100_{-7}^{+0})\%$	

The first measurement of BRs for K⁻N and K⁻ multi-N absorptions were performed in bubble chamber experiments.

$$K^{-}$$
 "N" \rightarrow Y π 1NA pionic process

 K^{-} "NN" \rightarrow Y N 2NA

 K^{-} "NNN" \rightarrow Y (NN) 3NA non-pionic

 K^{-} "NNNN" \rightarrow Y (NNN) 4NA

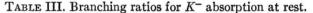
global non-pionic = 2NA + 3NA + 4NA + ...

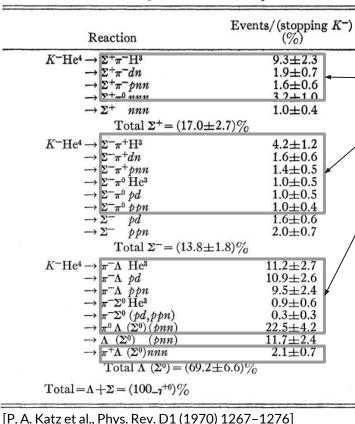
"NN" = bound nucleons (NN), (NNN) = residual nucleons bound or unbound

Hard to distinguish experimentally:

$$\Lambda \pi^0$$
 and $\Sigma^0 \pi^0$
 $\Lambda (\text{no} \pi)$ and $\Sigma^0 (\text{no} \pi)$
because $\Sigma^0 \to \Lambda \gamma$ and $\pi^0 \to \gamma \gamma$ decay via EM interaction.

Studies of the isospin symmetry in the hyperon-nucleon interactions





The first measurement of BRs for K⁻N and K⁻ multi-N absorptions were performed in bubble chamber experiments.

 K^{-} "N" \rightarrow Y π 1NA pionic process K^{-} "NN" \rightarrow Y N 2NA K^{-} "NNN" \rightarrow Y (NN) 3NA non-pionic K^{-} "NNNN" \rightarrow Y (NNN) 4NA

global non-pionic = 2NA + 3NA + 4NA + ...

"NN" = bound nucleons

Hard to distinguish experimentally:

$$\Lambda \pi^0$$
 and $\Sigma^0 \pi^0$
 Λ (no π) and Σ^0 (no π)
because $\Sigma^0 \rightarrow \Lambda \gamma$ and $\pi^0 \rightarrow \gamma \gamma$ decay via EM interaction.

(NN), (NNN) = residual nucleons bound or unbound

interaction.

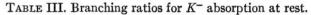


TABLE III. Branching ratios for A	absorption at rest.		
Reaction	Events/(stopping K-) (%)		
$K^{-}\text{He}^{4} \to \Sigma^{+}\pi^{-}\text{H}^{3}$ $\to \Sigma^{+}\pi^{-}dn$ $\to \Sigma^{+}\pi^{-}pnn$ $\to \Sigma^{+}\pi^{0}nnn$ $\to \Sigma^{+}nnn$ $\to \Sigma^{+}nnn$ $\to \Sigma^{+}nnn$	9.3 ± 2.3 1.9 ± 0.7 1.6 ± 0.6 3.2 ± 1.0 1.0 ± 0.4		
Total $\Sigma^{+}=(17.0\pm 2.$ $K^{-}\text{He}^{4} \rightarrow \Sigma^{-}\pi^{+}\text{H}^{3}$ $\rightarrow \Sigma^{-}\pi^{+}dn$ $\rightarrow \Sigma^{-}\pi^{+}pnn$ $\rightarrow \Sigma^{-}\pi^{0} \text{ He}^{3}$ $\rightarrow \Sigma^{-}\pi^{0} pd$ $\rightarrow \Sigma^{-}\pi^{0} ppn$ $\rightarrow \Sigma^{-} pd$ $\rightarrow \Sigma^{-} ppn$ Total $\Sigma^{-}=(13.8\pm 1.6)$	4.2 ± 1.2 1.6 ± 0.6 1.4 ± 0.5 1.0 ± 0.5 1.0 ± 0.5 1.0 ± 0.4 1.6 ± 0.6 2.0 ± 0.7		
$K^{-}\text{He}^{4} \rightarrow \pi^{-}\Lambda \text{ He}^{3}$ $\rightarrow \pi^{-}\Lambda \text{ pd}$ $\rightarrow \pi^{-}\Lambda \text{ ppn}$ $\rightarrow \pi^{-}\Sigma^{0} \text{ He}^{3}$ $\rightarrow \pi^{-}\Sigma^{0} (pd, ppn)$ $\rightarrow \pi^{0}\Lambda (\Sigma^{0}) (pnn)$ $\rightarrow \Lambda (\Sigma^{0}) (pnn)$ $\rightarrow \pi^{+}\Lambda (\Sigma^{0})nnn$ $\text{Total } \Lambda (\Sigma^{0}) = (69.2 \pm 6.6 + 1.5 $	$ \begin{array}{c} 11.2 \pm 2.7 \\ 10.9 \pm 2.6 \\ 9.5 \pm 2.4 \\ 0.9 \pm 0.6 \\ 0.3 \pm 0.3 \\ 22.5 \pm 4.2 \\ 11.7 \pm 2.4 \\ 2.1 \pm 0.7 \end{array} $		
Total = $\Lambda + \Sigma = (100_{-7}^{+0})\%$	12		
[P. A. Katz et al., Phys. Rev. D1 (1970) 1	[267-1276]		

The first measurement of BRs for K⁻N and K⁻ multi-N absorptions were performed in bubble chamber experiments.

$$K^{-}$$
 "N" \rightarrow Y π 2NA
 K^{-} "NN" \rightarrow Y (NN)
 K^{-} "NNN" \rightarrow Y (NN)
3NA non-pionic
 K^{-} "NNNN" \rightarrow Y (NNN)
4NA

global non-pionic = 2NA + 3NA + 4NA + ...

"NN" = bound nucleons
(NN), (NNN) = residual nucleons bound or unbound

Hard to distinguish experimentally:
 $\Lambda \pi^{0}$ and $\Sigma^{0} \pi^{0}$
 Λ (no π) and Σ^{0} (no π)
because $\Sigma^{0} \rightarrow \Lambda \gamma$ and $\pi^{0} \rightarrow \gamma \gamma$ decay via EM

Table III. Branching ratios for K^- absorption at rest.

TABLE III. Dranching ratios for A	absorption at rest.
Reaction	Events/(stopping K-)
$K^{-}\mathrm{He^4} \rightarrow \Sigma^{+}\pi^{-}\mathrm{H^3}$	9.3±2.3
$\rightarrow \Sigma^{+}\pi^{-}dn$	1.9 ± 0.7
$\rightarrow \Sigma^{+}\pi^{-}pnn$	1.6 ± 0.6
$\rightarrow \Sigma^{+}\pi^{0}$ nnn	3.2 ± 1.0
$\rightarrow \Sigma^+$ nnn	1.0 ± 0.4
Total $\Sigma^+=(17.0\pm 2.$	7)%
$K^-\mathrm{He^4} \! o \Sigma^-\pi^+\mathrm{H^3}$	4.2 ± 1.2
$\rightarrow \Sigma^-\pi^+dn$	1.6 ± 0.6
$\rightarrow \Sigma^-\pi^+pnn$	1.4 ± 0.5
$ ightarrow \Sigma^- \pi^0 { m He^3}$	1.0 ± 0.5
$ ightarrow \Sigma^-\pi^0 \ pd$	1.0 ± 0.5
$\rightarrow \Sigma^-\pi^0 ppn$	1.0 ± 0.4
$\begin{array}{ccc} \to \Sigma^- & pd \\ \to \Sigma^- & ppn \end{array}$	1.6 ± 0.6
$\rightarrow \Sigma^- ppn$	2.0 ± 0.7
Total $\Sigma^- = (13.8 \pm 1.$	8)%
$K^-{ m He^4} ightarrow \pi^-\Lambda { m He^3}$	11.2 ± 2.7
$ ightarrow \pi^- \Lambda \ pd$	10.9 ± 2.6
$\rightarrow \pi^- \Lambda ppn$	9.5 ± 2.4
$ o \pi^- \Sigma^0 \mathrm{He}^3$	0.9 ± 0.6
$\rightarrow \pi^{-}\Sigma^{0} (pd, ppn)$	0.3 + 0.3
$ ightarrow \pi^0 \Lambda (\widetilde{\Sigma}^0) (pnn)$	22.5 ± 4.2
$\rightarrow \Lambda$ (Σ^0) (pnn)	11.7 ± 2.4
$\rightarrow \pi^+ \Lambda \ (\Sigma^0) nnn$	2.1 ± 0.7
Total Λ (Σ^0) = (69.2 \pm	6.6)%
Total = $\Lambda + \Sigma = (100_{-7}^{+0})\%$	TH.
[P. A. Katz et al., Phys. Rev. D1 (1970) 1	[267-1276]
	-

The first measurement of BRs for K⁻N and K⁻ multi-N absorptions were performed in bubble chamber experiments.

$$K^{-}$$
 "N" \rightarrow Y π 1NA pionic process

 K^{-} "NN" \rightarrow Y N 2NA

 K^{-} "NNN" \rightarrow Y (NN) 3NA non-pionic

 K^{-} "NNNN" \rightarrow Y (NNN) 4NA

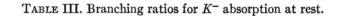
global non-pionic = 2NA + 3NA + 4NA + ...

"NN" = bound nucleons

Hard to distinguish experimentally:

$$\Lambda$$
 π⁰ and Σ ⁰ π⁰
 Λ (no π) and Σ ⁰ (no π)
because Σ ⁰ \to Λ γ and π ⁰ \to γ γ decay via EM interaction.

(NN), (NNN) = residual nucleons bound or unbound



K-He

The first measurement of BRs for K⁻N and K⁻ multi-N absorptions were performed in bubble chamber experiments.

$$K^{-}$$
 "N" \rightarrow Y π

1NA pionic process

Solution:

Isospin symmetry is used to determine the $\Lambda \pi^0$ and $\Sigma^0 \pi^0$ branching ratios.

K⁻He⁰

→
$$\pi^{-}\Lambda$$
 pd

→ $\pi^{-}\Lambda$ ppn

9.5±2.4

→ $\pi^{-}\Sigma^{0}$ He³

0.9±0.6

→ $\pi^{-}\Sigma^{0}$ (bd ppn)

0.3±0.3

→ $\pi^{0}\Lambda$ (Σ^{0}) (pnn)

22.5±4.2

→ Λ (Σ^{0}) (pnn)

11.7±2.4

→ $\pi^{+}\Lambda$ (Σ^{0}) nnn

2.1±0.7

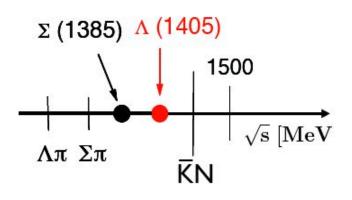
Total Λ (Σ^{0}) = (69.2±6.6)%

Hard to distinguish experimentally:

$$\Lambda \pi^0$$
 and $\Sigma^0 \pi^0$
 Λ (no π) and Σ^0 (no π) use $\Sigma^0 \rightarrow \Lambda V$ and π^0

because $\Sigma^0 \rightarrow \Lambda \gamma$ and $\pi^0 \rightarrow \gamma \gamma$ decay via EM interaction.

The controversial nature of the $\Lambda(1405)$



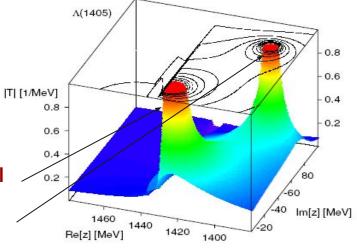
The $\Lambda(1405)$ (I=0) state does not fit with the simple three quarks model (*uds*) and it is commonly accepted that **it is, at least partially, a** $\overline{K}N$ **bound state**.

$$\Lambda(1405) \to (\Sigma \pi)^0 \text{ (BR=100\%)}$$

• Chiral SU(3) coupled channel dynamics: the state is given by the superpositions of two poles of the KN scattering amplitude.

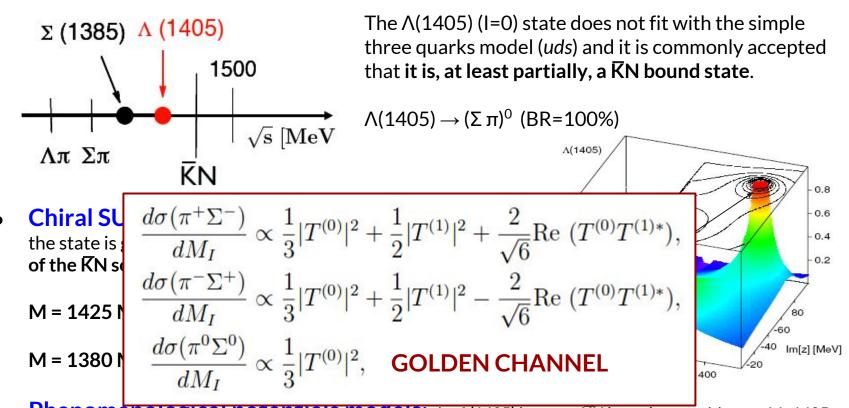
 $M = 1425 \text{ MeV} \rightarrow \text{mainly coupled to the } \overline{\text{N}} \text{ channel}$

 $M = 1380 \, MeV \rightarrow mainly coupled to the \Sigma\pi channel$



• Phenomenological potentials models: the $\Lambda(1405)$ is a pure \overline{KN} bound state with mass M=1405 MeV, binding energy BE = 27 MeV and width Γ =50 MeV.

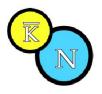
The controversial nature of the $\Lambda(1405)$



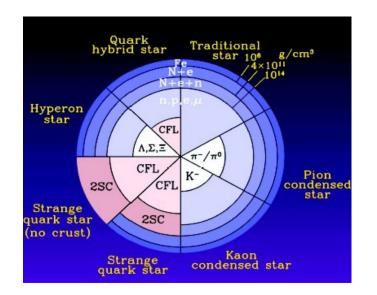
• Phenomenological potentials models: the Λ (1405) is a pure KN bound state with mass M=1405 MeV, binding energy BE = 27 MeV and width Γ =50 MeV.

Possible existence of kaonic bound state

The existence of kaonic bound state with multi-nucleons was suggested by S. Wycech (1986) and by Y. Akaishi, T. Yamazaki (2002) due to the strongly attractive KN interaction in I=0 channel.



Role of strangeness in dense baryonic matter, kaon condensation? Strange quark matter? Hyperons in Neutron Stars?



Determination of Σ^0 π⁰ and Λ π⁰ BRs

Pionic processes K^{-} "N" $\rightarrow Y \pi$

Final state:

$$| \Sigma^{+} \pi^{-} \rangle = 1/\sqrt{6} | 2,0 \rangle + 1/\sqrt{2} | 1,0 \rangle + 1/\sqrt{3} | 0,0 \rangle$$

$$| \Sigma^{+} \pi^{0} \rangle = 1/\sqrt{2} | 2,1 \rangle + 1/\sqrt{2} | 1,1 \rangle$$

$$| \Sigma^{-} \pi^{+} \rangle = 1/\sqrt{2} | 2,0 \rangle - 1/\sqrt{2} | 1,0 \rangle + 1/\sqrt{3} | 0,0 \rangle$$

$$| \Sigma^{-} \pi^{0} \rangle = 1/\sqrt{2} | 2,-1 \rangle - 1/\sqrt{2} | 1,-1 \rangle$$

$$| \Sigma^{0} \pi^{-} \rangle = 1/\sqrt{2} | 2, -1 \rangle + 1/\sqrt{2} | 1, -1 \rangle$$

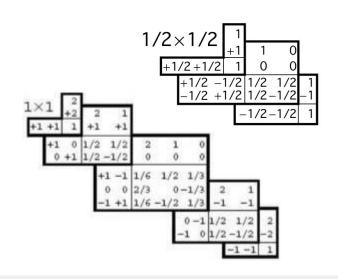
$$| \Sigma^{0} \pi^{0} \rangle = \sqrt{2}/\sqrt{3} | 2, 0 \rangle - 1/\sqrt{3} | 0, 0 \rangle$$

$$| \Sigma^{0} \pi^{+} \rangle = 1/\sqrt{2} | 2, 1 \rangle - 1/\sqrt{2} | 1, -1 \rangle$$

Initial state:

$$| K^{-}N \rangle = 1/2 | 0,0 \rangle + 1/2 | 1,0 \rangle + 1/\sqrt{2} | 1,-1 \rangle$$

$$| \Lambda \pi^{-} \rangle = | 1, -1 \rangle$$
$$| \Lambda \pi^{0} \rangle = | 1, 0 \rangle$$
$$| \Lambda \pi^{+} \rangle = | 1, +1 \rangle$$



Isospin symmetry in S=-1 sector

Λ π final states

$$T_{K^{-n}N^{n} \to \Lambda \pi 0} = \langle \Lambda \pi^{0} | V | K^{-}N \rangle = 1/2 T_{I=1}$$

$$T_{K^{-n}N^{n} \to \Lambda \pi^{-}} = \langle \Lambda \pi^{-} | V | K^{-}N \rangle = 1/\sqrt{2} T_{I=1}$$

$$T_{K^{-n}N^{n} \to \Lambda \pi^{+}} = \langle \Lambda \pi^{+} | V | K^{-}N \rangle = 0$$

$\frac{3R(\Lambda\pi^0)}{3R(\Lambda\pi^-)} = \frac{1}{2}$

Σπ final states

$$T_{K^{-1}N^{1} \to \Sigma^{+} \pi^{-}} = \langle \Sigma^{+} \pi^{-} | V | K^{-}N \rangle = 1/(2\sqrt{2}) T_{l=1} + 1/(2\sqrt{3}) T_{l=0}$$

$$T_{K^{-1}N^{1} \to \Sigma^{+} \pi^{0}} = \langle \Sigma^{+} \pi^{0} | V | K^{-}N \rangle = 0$$

$$\begin{split} T_{K^{-n}N^{n} \to \Sigma^{-} \pi^{+}} &= \langle \ \Sigma^{-} \pi^{+} \ | \ V \ | \ K^{-}N \ \rangle = 1/(2\sqrt{3}) \ T_{|=0} - 1/(2\sqrt{2}) \ T_{|=1} \\ T_{K^{-n}N^{n} \to \Sigma^{-} \pi^{0}} &= \langle \ \Sigma^{-} \pi^{0} \ | \ V \ | \ K^{-}N \ \rangle = - 1/2 \ T_{|=1} \end{split}$$

$$\begin{split} T_{K^{-"}N"\to\Sigma0\,\pi^{+}} &= \langle\; \Sigma^{0}\pi^{+} \mid V \mid K^{-}N \;\rangle = 0 \\ T_{K^{-"}N"\to\Sigma0\,\pi^{0}} &= \langle\; \Sigma^{0}\pi^{0} \mid V \mid K^{-}N \;\rangle = - \; 1/(2\sqrt{3}) \quad T_{I=0} \\ T_{K^{-"}N"\to\Sigma0\,\pi^{-}} &= \langle\; \Sigma^{0}\pi^{-} \mid V \mid K^{-}N \;\rangle = \; 1/2 \quad T_{I=1} \end{split}$$

$$\frac{\mathsf{BR}(\Sigma^{\scriptscriptstyle{-}}\pi^{\scriptscriptstyle{0}})}{\mathsf{BR}(\Sigma^{\scriptscriptstyle{0}}\pi^{\scriptscriptstyle{-}})} = 2$$

$$\mathsf{BR}(\Sigma^0 \pi^0) = \frac{1}{2} \left[\mathsf{BR}(\Sigma^+ \pi^-) + \mathsf{BR}(\Sigma^- \pi^+) - \mathsf{BR}(\Sigma^- \pi^0) \right]$$

$$\mathsf{BR}(\Sigma^0) = \frac{1}{2} \left[\; \mathsf{BR}(\Sigma^+) + \mathsf{BR}(\Sigma^-) \; \right]$$

Isospin symmetry in S=-1 sector

K⁻⁴He absorptions at-rest:

[P. A. Katz et al., Phys. Rev. D1 (1970) 1267–1276]

$$BR(\Sigma^{+}\pi^{-}) = (32.0 \pm 6.3) \%$$

BR(
$$\Sigma^{-}\pi^{+}$$
) = (9.3 ± 1.8) %
BR($\Sigma^{-}\pi^{0}$) = (3.9 ± 1.0) %

BR(
$$\Sigma^0 \pi^-$$
) = (4.3 ± 2.5) %
BR($\Sigma^0 \pi^0$) = (18.7 ± 3.3) %

BR(
$$\Lambda \pi^{-}$$
) = (9.3 ± 6.1) %
BR($\Lambda \pi^{0}$) = (4.7 ± 3.1) %

BR(
$$\Sigma^+$$
(no π)) = (2.5 ± 1.0) %
BR(Σ^- (no π)) = (4.6 ± 1.2) %
BR(Σ^0 (no π)) = (3.6 ± 0.8) %
BR(Λ (no π)) = (5.6 ± 2.6) %

K⁻¹²C absorptions at-rest:

[C. Vander Velde-Wilquet et al., Nuovo Cim. A39 (1977) 538-547]

BR(
$$\Sigma^{+}\pi^{-}$$
) = (29.4 ± 1.0 ± 5.0) %

BR(
$$\Sigma^{-}\pi^{+}$$
) = (13.1 ± 0.4 ± 0.9) %
BR($\Sigma^{-}\pi^{0}$) = (2.6 ± 0.6 ± 1.0) %

BR(
$$\Sigma^0 \pi^-$$
) = (2.6 ± 0.6 ± 1.0) %
BR($\Sigma^0 \pi^0$) = (20.0 ± 0.7 ± 3.0) %

BR(
$$\Lambda \pi^{-}$$
) = (6.8 ± 0.3 ± 2.0) %
BR($\Lambda \pi^{0}$) = (3.4 ± 0.2 ± 1.0) %

measured from isospin relations

Isospin symmetry in S=-1 sector

K⁻⁴He absorptions at-rest:

[P. A. Katz et al., Phys. Rev. D1 (1970) 1267-1276]

$$BR(\Sigma^+\pi^-) = (32.0 \pm 6.3) \%$$

BR(
$$\Sigma^{-}\pi^{+}$$
) = (9
BR($\Sigma^{-}\pi^{0}$) = (18.7 ± 3.3) %

BR(
$$\Lambda \pi^{-}$$
) = (9.3 ± 6.1) %
BR($\Lambda \pi^{0}$) = (4.7 ± 3.1) %

BR(
$$\Sigma^+$$
(no π)) = (2.5 ± 1.0) %
BR(Σ^- (no π)) = (4.6 ± 1.2) %
BR(Σ^0 (no π)) = (3.6 ± 0.8) %
BR(Λ (no π)) = (5.6 ± 2.6) %

K⁻¹²C absorptions at-rest:

[C. Vander Velde-Wilquet et al., Nuovo Cim. A39 (1977) 538-547]

BR(
$$\Sigma^{+}\pi^{-}$$
) = (29.4 ± 1.0 ± 5.0) %
BR($\Sigma^{-}\pi^{+}$) = R = $\frac{BR(\Lambda\pi^{0})}{BR(\Sigma^{0}\pi^{0})}$ = 0.17 ± 0.01 ± 0.06

BR(
$$\Sigma^0 \pi^-$$
) = (2.6 ± 0.6 ± 1.0) %
BR($\Sigma^0 \pi^0$) = (20.0 ± 0.7 ± 3.0) %

BR(
$$\Lambda \pi^{-}$$
) = (6.8 ± 0.3 ± 2.0) %
BR($\Lambda \pi^{0}$) = (3.4 ± 0.2 ± 1.0) %

measured from isospin relations

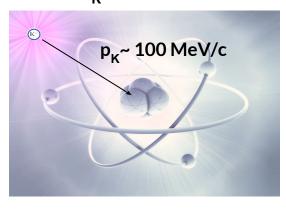
- First comprehensive study of K⁻ multi-nucleon absorptions is performed by the AMADEUS collaboration at DAΦNE collider in Frascati.
- Analyzed data sample contains K^- absorptions events of ^{12}C nuclei at-rest and in-flight $(p_{\kappa} \sim 100 \text{ MeV/c})$ and was collected by the KLOE collaboration during the 2004-2005 data taking.

AT-REST

K absorbed from atomic orbitals

(p_K ~ 0 MeV/c)

<u>IN-FLIGHT</u> (p_K~ 100 MeV/c)



• Λ and proton in the final state are reconstructed. Also in this case it is not possible to disentangle the direct Λ production from the Σ^0 production followed by $\Sigma^0 \to \Lambda \gamma$.

Monte Carlo simulations

Processes to be simulated in order to interpret the experimental spectra:

K⁻ multi-nucleon absorption processes in

Λ p channel $(K^- + {}^{12}C \rightarrow \Lambda + p + R)$ **2NA quasi-free (QF):** K^{-} "pp" $\rightarrow \Lambda$ p 2NA with final state interaction (FSI): K^{-} "NN" $\rightarrow \Lambda N$ Λ (N) + "N" $\rightarrow \Lambda$ (N) + N' 3NA: K^{-} "ppn" $\rightarrow \Lambda$ p n K^{-} "ppnn" $\rightarrow \Lambda$ p n n **4NA**:

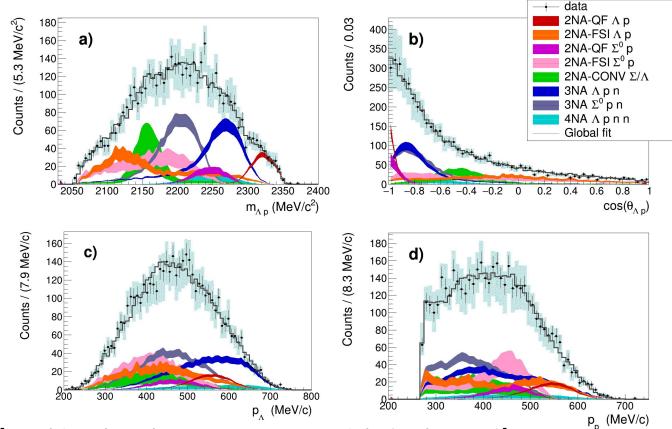
$$\Sigma^0$$
 p channel $(K^- + {}^{12}C \rightarrow \Sigma^0 + p + R \qquad \Sigma^0 \rightarrow \Lambda + \gamma)$

- 2NA quasi-free (QF): K^{-} "pp" $\rightarrow \Sigma^{0}$ p
- 2NA with final state interaction (FSI):

$$K^{-}$$
 "NN" $\rightarrow \Sigma^{0}$ N
 Σ^{0} (N) + "N" $\rightarrow \Sigma^{0}$ (N) + N'

- 3NA: K^{-} "ppn" $\rightarrow \Sigma^{0}$ p n
 - 4NA: K^{-} "ppnn" $\rightarrow \Sigma^{0}$ p n n
- 2NA with Σ/Λ conversion: K^- "NN" → Σ N Σ "N" → Λ N'

→ Single nucleon absorption included as a contribution to the systematic errors



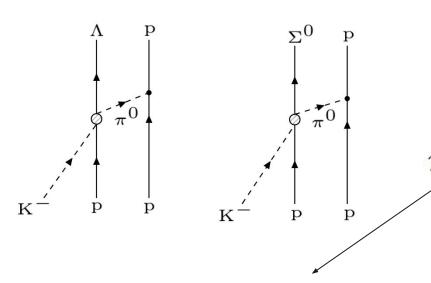
Simultaneous fit of:

- Λ p invariant mass
- angular correlation
- proton momentum
- Λ momentum

Reduced chi-square:

$$\chi^2$$
/ndf = 0.94

K ⁻ absorption at-rest		K ⁻ absorption in-flight		
	•			
Process	Branching Ratio (%)	σ (mb)	@	$p_K (\mathrm{MeV/c})$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.) } ^{+0.01}_{-0.02} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	@	128 ± 29
2NA-FSI $\Lambda_{\rm P}$	$6.2 \pm 1.4(\text{stat.}) {}^{+0.5}_{-0.6}(\text{syst.})$	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	0	128 ± 29
$2NA-QF \Sigma^{0}p$	$0.35 \pm 0.09(\text{stat.}) ^{+0.13}_{-0.06}(\text{syst.})$	$3.9 \pm 1.0 \text{ (stat.) } ^{+1.4}_{-0.7} \text{ (syst.)}$	@	128 ± 29
2NA-FSI Σ^0 p	$7.2 \pm 2.2(\text{stat.}) {}^{+4.2}_{-5.4}(\text{syst.})$	$80 \pm 25 \text{ (stat.)} ^{+46}_{-60} \text{ (syst.)}$	@	128 ± 29
3NA Λpn	$1.4 \pm 0.2 (\text{stat.}) ^{+0.1}_{-0.2} (\text{syst.})$	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	@	117 ± 23
$3NA \Sigma^{0}pn$	$3.7 \pm 0.4(\text{stat.}) ^{+0.2}_{-0.4}(\text{syst.})$	$41 \pm 4 \text{ (stat.) } ^{+2}_{-5} \text{ (syst.)}$	@	117 ± 23
4NA Λpnn	$0.13 \pm 0.09(\text{stat.}) ^{+0.08}_{-0.07}(\text{syst.})$			
2NA-CONV Σ/Λ	$2.1 \pm 1.2(\text{stat.}) {}^{+0.9}_{-0.5}(\text{syst.})$	-		



According to the pion exchange model [E. Oset, H. Toki, Phys. Rev. C74 (2006) 015207] the K^{-} absorption on 2 nucleons occurs through the exchange of a virtual π :

$$\mathcal{R} = \frac{BR(K^{-}"pp" \to \Lambda p)}{BR(K^{-}"pp" \to \Sigma^{0}p)} = \frac{BR(K^{-}"p" \to \Lambda \pi^{0})}{BR(K^{-}"p" \to \Sigma^{0}\pi^{0})}$$

Using BR($\Lambda\pi^0$) and BR($\Sigma^0\pi^0$) measured by [C. Vander Velde-Wilquet et al., Nuovo Cim. A39 (1977) 538–547]:

$$R = 0.17 \pm 0.01$$
 (stat.) ± 0.06 (syst.)

Using the BRs of K⁻2NA in Λ p and Σ ⁰p channels we measure:

$$\mathcal{R} = 0.7 \pm 0.2 (\text{stat.})^{+0.2}_{-0.3} (\text{syst.})$$

The s-wave (L=0) meson-nucleon interaction in the S=-1 sector is studied in Ref. [E. Oset and A. Ramos, Nuclear Physics A 635 (1998) 99-120] by means of coupled-channel Lippmann-Schwinger equation:

$$T = V + VGT$$

using:

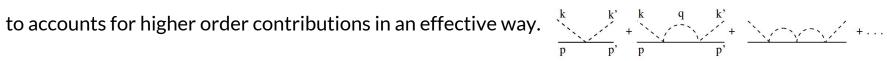
Lower order Chiral Lagrangians \Rightarrow the potential V_{ij} has the following form:

$$V_{ij} = -C_{ij} \frac{1}{4f^2} (k^0 + k'^0)$$

a free parameter q_{max} as a cutoff in the integral:

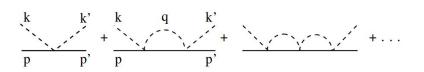
$$M_{l}$$
, E_{l} = intermediate baryon m_{l} = intermediate meson

$$V_{il} G_l T_{lj} = i \int \frac{d^4q}{(2\pi)^4} \frac{M_l}{E_l(\vec{q})} \frac{V_{il}(k,q) T_{lj}(q,k')}{k^0 + p^0 - q^0 - E_l(\vec{q}) + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$$



• Couplings of K⁻p to the eight channels

$$K^{\text{-}}p,\,K^0n,\,\pi^0\Lambda,\,\pi^0\Sigma^0,\,\pi^{\text{+}}\Sigma^{\text{-}},\,\pi^{\text{-}}\Sigma^{\text{+}},\,\eta\Lambda,\,\eta\Sigma^0$$



are considered. The couplings to $K^{+}\Xi^{-}$ and $K^{0}\Xi^{0}$ are demonstrated to be negligible.

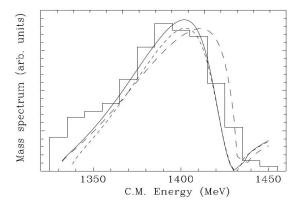
Fitting procedure:

- \rightarrow the coupling constant f and q_{max} are the free parameters;
- \rightarrow the fit is performed to get the best reproduction of the threshold parameter (γ , R_c and R_n) and the $\Lambda(1405) \rightarrow \Sigma \pi$ invariant mass spectrum.

$$\gamma = \frac{\Gamma(K^-p \to \pi^+\Sigma^-)}{\Gamma(K^-p \to \pi^-\Sigma^+)} = 2.36 \pm 0.04$$

$$R_c = \frac{\Gamma(K^-p \to \text{charged particles})}{\Gamma(K^-p \to \text{all})} = 0.664 \pm 0.011$$

$$R_n = \frac{\Gamma(K^-p \to \pi^0\Lambda)}{\Gamma(K^-p \to \text{all neutral states})} = 0.189 \pm 0.015$$



1. Amplitudes can be constructed using isospin formalism for which average masses are used for the isospin multiplets:

$$\pi$$
 (π^+ , π^0 , π^-), K^- (K^0 , K^-), K (K^+ , K^0), N (p, n) and Σ (Σ^+ , Σ^0 , Σ^-)

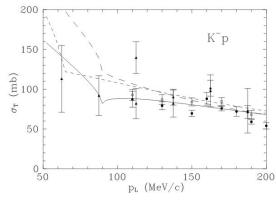
The coupled-channel equations are solved in the isospin basis for I=0 and I=1 cases and the amplitude for the physical channels are then constructed.

2. Alternatively the physical states using the physical masses are used.

This allow to investigate the isospin violation effects

[E. Oset and A. Ramos, Nuclear Physics A 635 (1998) 99-120]

[E. Oset and A. Ramos, Nuclear Physics A 635 (1998) 99-120]



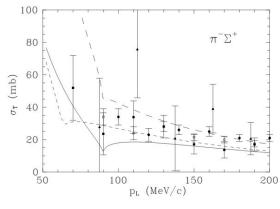
60

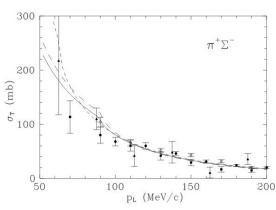
40

0 ^L

100

 $\sigma_{\rm T} \ ({
m mb})$





$$K^-p \rightarrow K^-p$$
 , K^0n , $\pi^-\Sigma^+$, $\pi^+\Sigma^-$

Cross section measurements are not used in the fit.

$$\sigma_{ij} = \frac{1}{4\pi} \frac{MM'}{s} \frac{k'}{k} |T_{ij}|^2$$

- physical masses
- **— —** isospin
- no η Λ, η Σ^0

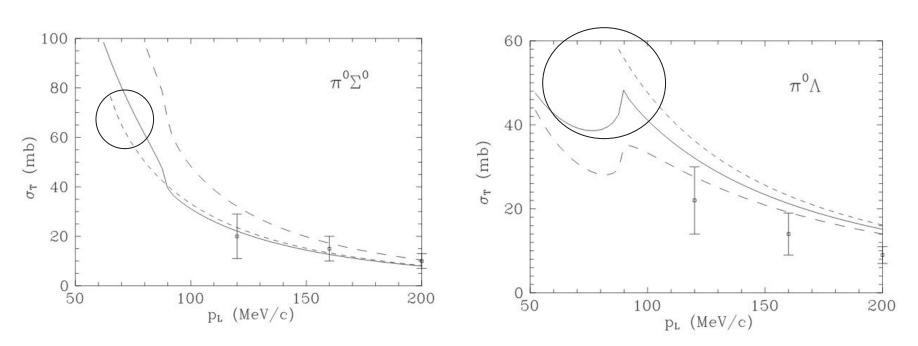
150

 $p_L (MeV/c)$

200

 $\overline{\mathrm{K}}^{0}$ n

$$K^{-}p \rightarrow \pi^{0}\Sigma^{0}$$
, $\pi^{0}\Lambda$



Isospin symmetry violation effect close to the K⁻p threshold.

Summary and Outlooks

- 1. Isospin is not an exact symmetry of the strong interaction but Isospin invariance works very well when is used to estimate the cross sections and branching ratios for NN scattering
- 2. Isospin symmetry is used to determine the BR($\Sigma^0 \pi^0$) and BR($\Lambda^0 \pi^0$)

3. Measuring the K⁻ 2NA in Λp and $\Sigma^0 p$ channels using ¹²C target:

$$\mathcal{R} = 0.7 \pm 0.2 (\text{stat.})^{+0.2}_{-0.3} (\text{syst.})$$

- 4. Isospin symmetry violation close to K⁻p threshold is suggested in Ref. [E. Oset and A. Ramos, Nuclear Physics A 635 (1998) 99-120]
- 5. Lack of experimental data for $K^-p \to \Lambda \pi^0$ and $K^-p \to \Sigma^0 \pi^0$ cross sections close to the threshold $\to \underline{\text{New data can used to test the models}}$

Conclusions

Thank you for your attention