# Probing new physics with precision isotope shift spectroscopy



Nitzan Akerman

Roee Ozeri group

Weizmann Institute of Science, Rehovot, Israel.

פכוז ויצמן למדע weizmann Institute Of science

ECT\* Workshop on Discrete Symmetries in Particle, Nuclear and Atomic Physics and implications for our Universe October 2018

#### AMO Precision Measurements

- Variation of fundamental constant
- eEDM measurements
- Atomic parity violation
- Test of local Lorentz invariance
- > Testing general relativity with atom interferometry
- Probing\bounding new light force-mediators by isotope
  - shift spectroscopy

C. Delaunay, R.Ozeri, G.Perez and Y. Soreq Phys. Rev. D 96, 093001 (2017) Berengut J. C.; Budker D.; Delaunay C.; Flambaum V. V.; Frugiuele C.; Fuchs E.; Grojean C.; Harnik R.; RO; Perez G.; Soreq Phys. Rev. Lett. 120, 091801 (2018)

#### Isotope Shifts

#### hypothetical new force carriers

A boson that couples to electrons and neutrons

$$V_{\phi}(r) = \frac{-(-1)^{s} y_{e} y_{n}(A - Z)}{4\pi} \frac{\mathrm{e}^{-m_{\phi} r}}{r}$$

Α

ν

#### Atomic transition

$$\frac{d \phi^{r}}{\nu} \qquad \frac{1}{\nu} \qquad \delta \nu / \nu = 10^{-18}$$

#### An over simplified picture :

Measure different isotope

$$\delta \nu_i^{AA'} \equiv \nu_i^A - \nu_i^{A'}$$

There are **normal** contributions : Mass shift and Field shift

#### Isotope Mass Shift



#### Isotope Field Shift



### Mass shifts and Field Shift

$$\delta \nu^{AA'} = \delta \nu^{AA'}_{MS} + \delta \nu^{AA'}_{FS}$$

- Mass shift dominates in light atoms
- Field shift dominates in heavy atoms
- IS on the order of GHz for A>10
- Theoretical uncertainty is still poor



### King plot comparison (to the rescue...)

$$\delta \nu^{AA'} = \delta \nu^{AA'}_{MS} + \delta \nu^{AA'}_{FS}$$

Following King's factorization :

$$\delta v_i^{AA'} = \frac{K_i \mu + F_i \delta \langle r^2 \rangle^{AA'}}{+ X_i \gamma_{AA'}}$$

For two transitions  $\delta v_1^{AA'}$  and  $\delta v_2^{AA'}$ :

$$m\delta v_2^{AA'} = K_{21} + F_{21}m\delta v_1^{AA'}$$

with 
$$m \equiv \frac{M^A M^{A'}}{M^A - M^{A'}}$$
;  $F_{21} \equiv \frac{F_2}{F_1}$ ;  $K_{21} \equiv K_2 - F_{21}K_1$ 

W. H. King "Isotope Shifts in Atomic Spectra" Springer (1984)



### King's plot for **dipole** transitions in Ca<sup>+</sup>



#### Bounds on new force-mediators



#### Requirements

- At least four different even isotopes (without hyperfine)
- Two narrow optical transitions (could be neutral and ions)
- Transitions between as different states as possible
- Possible candidates :
  - Ion and neutral : Ca, Yb (Sr)
  - E2 transitions in ions :
    - Ca+, Sr+,Ba+, Yb+
  - E2 and E3 in Yb+
- Small Standard Model nonlinearity

#### Nonlinearity in King plots

#### PHYSICAL REVIEW A 97, 032510 (2018)

#### Isotope shift, nonlinearity of King plots, and the search for new particles

|                 |    |     |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nonlinearity (Hz)    |                      |                         |                                     |              |
|-----------------|----|-----|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------|-------------------------------------|--------------|
| Ion             | Ζ  | A   | $A_1$ | $A_2$ | $A_3$ | Pair of transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method 4             | Method 5             | Without $\alpha_p$      | With $\alpha_p$                     | QMS          |
| Ca <sup>+</sup> | 20 | 40  | 42    | 44    | 48    | $3p^{6}4s^{2}S_{1/2} \rightarrow 3p^{6}3d^{2}D_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $3.0 	imes 10^{-4}$  | $-6.6 	imes 10^{-2}$ | $\pm 2.9 	imes 10^{-3}$ | $\pm$ 2.7 $\times$ 10 <sup>-3</sup> | ± 3.0        |
| Sr <sup>+</sup> | 38 | 84  | 86    | 88    | 90    | $5p 4s  S_{1/2} \rightarrow 5p  Sa  D_{5/2}$ $4p^65s \ ^2S_{1/2} \rightarrow 4p^64d \ ^2D_{3/2}$ $4p^65s \ ^2S \rightarrow 4p^64d \ ^2D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.1 	imes 10^{-2}$  | -2.6                 | $\pm 0.23$              | $\pm 0.25$                          | ± 9.0        |
| Ba <sup>+</sup> | 56 | 132 | 134   | 136   | 138   | $4p^{-}Ss^{-}S_{1/2} \rightarrow 4p^{-}4a^{-}D_{5/2}$ $5p^{6}6s^{1-}S_{1/2} \rightarrow 5p^{6}5d^{-}D_{3/2}$ $5p^{6}6s^{1-}S_{1/2} \rightarrow 5p^{6}5d^{-}D_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-3.9 	imes 10^{-2}$ | 7.4                  | $\mp 2.0$               | <b>∓</b> 1.9                        | <b>∓</b> 1.8 |
| Yb <sup>+</sup> | 70 | 168 | 170   | 172   | 176   | $5p^{-}0s^{-}S_{1/2} \rightarrow 5p^{-}3a^{-}D_{5/2}$<br>$4f^{14}6s^{-2}S_{1/2} \rightarrow 4f^{13}6s^{-2}F_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3.1                 | 39                   | $\pm 12260$             | ± 12130                             | $\pm 28$     |
|                 |    |     |       |       |       | $4f^{14}6s  {}^{2}S_{1/2} \rightarrow 4f^{14}5d  {}^{2}D_{3/2} \\ 4f^{14}6s  {}^{2}S_{1/2} \rightarrow 4f^{14}5d  {}^{2}S_{1/2} \rightarrow 4f^{14}5d  {}^{2}S_{1/2} \\ 5f^{14}6s  {}^{2}S_{1/2} \rightarrow 4f^{14}5d  {}^{2}S_{1/2} \rightarrow $ | 3.1                  | -18                  | $\pm 392$               | ± 386                               | $\pm 1.1$    |
| Hg <sup>+</sup> | 80 | 196 | 198   | 200   | 204   | $\begin{array}{l} 4f^{16}6s^{2}S_{1/2} \rightarrow 4f^{16}5d^{2}D_{5/2} \\ 5d^{10}6s^{2}S_{1/2} \rightarrow 5d^{9}6s^{2}{}^{2}D_{3/2} \\ 5d^{10}6s^{2}S_{1/2} \rightarrow 5d^{9}6s^{2}{}^{2}D_{5/2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                  | -13                  | $\pm 2406$              | $\pm 2382$                          | ± 0.38       |

V. V. Flambaum,<sup>1,2</sup> A. J. Geddes,<sup>1</sup> and A. V. Viatkina<sup>2</sup>

## Precision isotope shift spectroscopy in trapped ions



#### Isotope Shift Spectroscopy



Takano et al. Applied Physics Express 10, 089201 (2017) Origlia et. al. arXiv:1803.03157 (2018)

#### Isotope Shift Spectroscopy In DFS

#### The Quadruple transition in Sr+ ion



### Trapped lons



### Trapped lons



### Isotope Shift Spectroscopy In DFS



#### The Experiment Sequence - Entangled



### The Experimental Sequence - Separable



### Systematic Uncertainties

- Common mode rejection:
- Common Magnetic field noise
- Quadruple shift (for only two ions)
- Blackbody radiation
- > Spatial Inhomogeneity :
- Magnetic field gradient
- Micromotion :
  - Second order Doppler
  - ac stark shift
- Light shift (laser light leakage)g-factor ?



### Preliminary Result



### Summary

- King plot linearity has the potential to bound new physics
- Isotope shift can be measured with very high precision (relatively easy in trapped ions)







- Future plans:
  - Measuring King plot for the two E2 transitions is Yb<sup>+</sup> (Ca+)
  - For Strontium we need the fourth isotope <sup>90</sup>Sr
  - Measuring the isotope g-factor

### Weizmann Institute Trapped-ion group





Roee Ozeri (PI) Nitzan Akerman Tom Manovitz Ravid Shaniv Yotam Shapira Tomas Sikorsky Ruti Ben-Shlomi Meirav Pinkas Lee Peleg Jonatan Piasetzky Meir Alon Collaborators: Gilad Perez Cedric Deleunay Yotam Soreq Dima Budker Christoph Grojean Julian Berengut Victor Flambaum Claudia Frugiuele Elina Fuchs Roni Harnik



SRAEL SCIENCE FOUNDATION





M I N E R V A S T I F T U N G Gesellschaft für die Forschung m.b.H.

European Research Council



#### Precision mass measurements: 10<sup>-10</sup>



#### The most precise atomic mass measurements in Penning traps

Edmund G. Myers \* Florida State University, Department of Physics, Tallahassee, FL 32306-4350, USA

#### Table 10

Atomic masses of the most abundant isotopes of strontium and ytterbium measured at FSU [109].

| Atom              | FSU mass (u)         | $\sigma_m/m({ m ppt})$ |
|-------------------|----------------------|------------------------|
| <sup>86</sup> Sr  | 85.909 260 730 9(91) | 105                    |
| <sup>87</sup> Sr  | 86.908 877 497 0(91) | 105                    |
| <sup>88</sup> Sr  | 87.905 612 257 1(97) | 110                    |
| <sup>170</sup> Yb | 169.934 767 241(18)  | 105                    |
| <sup>171</sup> Yb | 170.936 331 514(19)  | 110                    |
| <sup>172</sup> Yb | 171.936 386 655(18)  | 105                    |
| <sup>173</sup> Yb | 172.938 216 213(18)  | 105                    |
| <sup>174</sup> Yb | 173.938 867 539(18)  | 105                    |
| <sup>176</sup> Yb | 175.942 574 702(22)  | 125                    |