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Twelve fold improved 
measurement of the 

electron’s EDM with ThO
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EDMs probe TeV scale physics
• The Standard Model cannot explain

• what is dark matter

• baryogenesis - why is there more matter 
than antimatter

• New theories predict particles at the TeV
energy scale.

• Electron EDM sensitive to coupling with 
T-violating interactions with particles at 
the 3-30 TeV scale.

• No Standard Model

background.



Electric dipole moments and fundamental 
symmetries

Ԧ𝑠

𝑑𝑒



Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.

Ԧ𝑠

𝑑𝑒

T

Ԧ𝑠

𝑑𝑒



Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.

• EDMs are also not symmetric under 

parity inversion.

Ԧ𝑠

𝑑𝑒

Ԧ𝑠

𝑑𝑒

T P

Ԧ𝑠

𝑑𝑒



Electric dipole moments and fundamental 
symmetries

• Permanent EDMs of fundamental 

particles violate T-symmetry.

• EDMs are also not symmetric under 

parity inversion.

• CPT Theorem <-> EDMs are also

CP-violating <-> baryogenesis.

• No permanent EDMs have yet been

observed, despite 60 years of 

searching[1].
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[1] Purcell, E. & Ramsey, N., Phys. Rev., 78(6), 807 (1950)
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The Thorium Monoxide (ThO)                state
• High effective field.

• Can be easily polarized.

• Low magnetic noise 
sensitivity.

Can reverse the direction 
of Eef either by reversing:

• The lab electric field, E.

• The internal electric 
field, N.

Measure EDM-like, NE 
correlated frequency         .
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Phase measurement scheme

Read

L = 22 cm

STIRAP 
Preparation

Electric field direction

Packet of molecules arriving from the 
molecule source. We are running in 
pulsed mode (50 Hz).

Magnetic field direction

Refine



Prepare initial spin-aligned state
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Spin Precession

Read
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Electric field direction
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Phase readout
L = 22 cm

Electric field direction
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Preparation Read x polarization
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Phase readout
L = 22 cm

Electric field direction

STIRAP 
Preparation Read y polarization

Fluorescence
 cos2()

Magnetic field direction

Refine



Switches
• EDM is correlated with N,E

• More switches reject noise and 
systematic effects, P, L, R.

• In addition, monitor systematics 
during the dataset.

• Change magnitude of electric, 
magnetic field.



Schematic of ACME II Measurement



Real ACME II
“control room”
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• Look for dependence of ωNE on over 40 varied 
parameters.

• Observed a shift of EDM frequency (ωNE) with large 
applied dBz/dz.

• Given the size of the slope and ambient gradient 
value, we could estimate the effect magnitude around 
statistical sensitivity.

Systematic effects
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• Typical molecule precession.

• In a dBz/dz gradient, molecules 
precess with different amounts 
depending on their z position.

• A translation along z of the 
“center of mass”, dz, of the 
molecules can then cause a 
change in measured phase.

• Such a translation can occur due 
to a z-dependent state 
preparation efficiency, from a 
detuning δz of the STIRAP 
resonance.

• For the translation to be EDM-like 
(NE- correlated), dNE, we need the 
detuning to also be NE-correlated, 
δz

NE . A gradient in the non-
reversing electric field dEnr/dz
causes such δz

NE .

An Example Systematic: dBz/dz x δ x dEnr/dz
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Non-reversing E-field, Enr, causes δNE
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• Confirm, by looking at dependence on δ.

• Minimize, by tuning and carefully controlling 
δ=0.

• Measure the size of the imperfections, such 
as the Enr gradient.

• “Keep an eye” on slope, imperfections during 
the ACME dataset

Confirm, minimize, monitor
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ACME II
2018

Feng, Naturalness and the Status of Supersymmetry. Annual Review of Nuclear and Particle Science (2013) 



• Progress underway for more ACME technique upgrades.

• Already understood and suppressed source of excess noise in ACME II 
dataset, which corresponds to factor of ~3 in signal (~1.7 in EDM 
sensitivity).

• Electrostatic/magnetic lens could increase molecular flux by up to 
factor of x10.

• Currently detecting 5% of molecules. Optical cycling could give us 20x 
photons per molecule, which would make us molecule shot-noise 
limited.

ACME III
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