Towards a short-range effective theory for deformed halo nuclei

Live-Palm Kubushishi

P.Capel, D.R.Phillips, H-W.Hammer

Department of Physics and Astronomy Ohio University

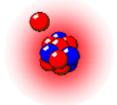
October 21, 2025 - Trento

Overview

- Introduction/motivation
 - Halo Nuclei
 - Halo-EFT
 - Breakup reactions with halo nuclei
- EFT-inspired calculations of ¹¹Be [potential model]
 - Bound states
 - Resonant states
- A short-range effective theory for deformed halo nuclei?
 - ¹¹Be spectrum
 - ¹⁷C spectrum
 - ³¹Ne spectrum
- 4 Summary/perspectives

Halo nuclei

- Light, neutron-rich nuclei with large matter radius
- ullet Low ${f S}_n$ or ${f S}_{2n}$: one or two loosely-bound neutrons
- Clusterised structure: neutrons can tunnel far from the core
 - \rightarrow halo-nucleus \equiv compact core + valence neutron(s)



- Our case study : 11 Be \equiv 10 Be + n
- Short-lived → studied via reactions (e.g. breakup)
 - ightarrow need of an **effective few-body** model for reaction calculations
 - \rightarrow Halo-EFT

Halo-EFT description of ¹¹Be

- Halo-structure \rightarrow separation of scales (in energy/distance)
 - ightarrow small parameter $\eta=\sqrt{rac{S_{1n}}{E_{2^+}}}$ or $rac{R_{core}}{R_{halo}}\simeq 0.4 < 1$
 - ightarrow expansion of the core-neutron Hamiltonian along η ,
 - i.e. reproducing the low-energy (viz. long distance) behaviour of the system

[Bertulani, Hammer, van Kolck, NPA 712, 37 (2002)]

Review: [Hammer, Ji, Phillips, JPG 44, 103002 (2017)]

- 11 Be $=^{10}$ Be (0^+) +n [core has no internal structure]
 - ightarrow single-particle description: $H(\mathbf{r}) = \mathrm{T}_{\mathbf{r}} + \mathrm{V}_{\mathrm{cn}}(\mathbf{r})$
- Effective Gaussian potentials in each partial wave ℓj @NLO ($\ell \leqslant 1$):

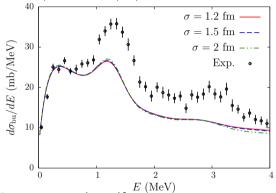
$$V_{cn}(r) = V_{\ell j}^{(0)} e^{-\frac{r^2}{2\sigma^2}} + V_{\ell j}^{(2)} r^2 e^{-\frac{r^2}{2\sigma^2}}$$

- $V_{\ell i}^{(0)}$ and $V_{\ell i}^{(2)}$ fitted to reproduce:
- ightarrow \mathbf{S}_{n} & asymptotic normalization coefficient (ANC) for bound states
- \rightarrow effective range parameters for continuum states
- σ := cut-off \rightarrow evaluates sensitivity to short-range physics

What is the problem?

• Assumption: ¹⁰Be remains in its 0⁺ ground state still valid?

 \rightarrow Nuclear breakup: $^{11}\text{Be+C} \rightarrow ^{10}\text{Be+n+C}$



Exp: [Fukuda *et al.* PRC 70, 054606 (2004)]
Th.: [**L.-P.K** & P. Capel, PRC 111, 054618 (2025)]

 \Rightarrow Missing peaks @ $\frac{5}{2}^+$ and $\frac{3}{2}^+$ resonances \rightarrow single-particle picture is not enough

 \Rightarrow Missing [10 Be($^{2+}$)] degree of freedom [Mo

[Moro & Lay, PRL 109, 232502 (2012)]

Core excitation within Halo-EFT

• Extension of Halo-EFT to include core excitation:

$$H(\mathbf{r}, \xi) = \mathrm{T}_{\mathbf{r}} + \mathrm{V}_{\mathrm{cn}}(\mathbf{r}, \xi) + \mathrm{h}_{\mathrm{c}}(\xi)$$

 $h_c(\xi){:=}$ intrinsic Hamiltonian of the core with eigenstates $\chi_I^c(\xi)$

• Halo-EFT particle-rotor model [Bohr and Mottelson (1975)]:

$$V_{\rm cn}(\mathbf{r}, \xi) = V_{\rm cn}(\mathbf{r}) + \beta \sigma Y_2^0(\hat{\mathbf{r}}') \frac{\mathrm{d}}{\mathrm{d}\sigma} V_{\rm cn}(\mathbf{r})$$

• Set of radial **coupled-channel** Schrödinger equations:

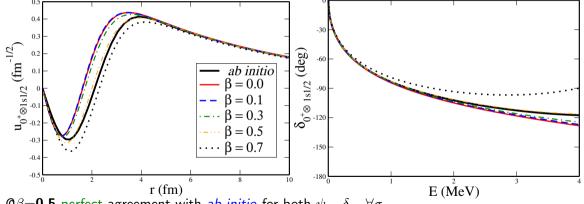
$$\begin{split} \left[T_r^\ell + V_{\alpha\alpha}(r) + \epsilon_\alpha - E\right] \psi_\alpha(r) &= -\sum_{\alpha' \neq \alpha} V_{\alpha\alpha'}(r) \psi_{\alpha'}(r) \\ \text{with } V_{\alpha\alpha'}(r) &= \langle \mathcal{Y}_\alpha(\hat{r}) \chi_\alpha(\xi) | V_{cn}(\textbf{r},\xi) | \mathcal{Y}_{\alpha'}(\hat{r}) \chi_{\alpha'}(\xi) \rangle, \; \alpha = &\{\ell,s,j,I\} \end{split}$$

 \rightarrow solved within the R-Matrix method on a Lagrange mesh [D. Baye, Phys. Rep. 565 (2015) 1]

ightarrow study impact of core excitation on: ψ_{α} , δ_{α}

Core excitation in 11 Be ${}^{1}_{2}$ ground state

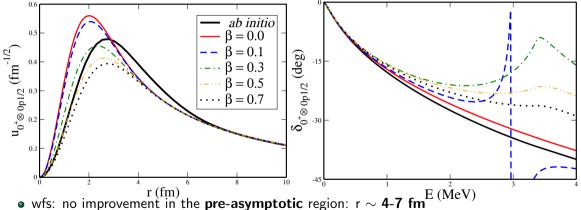
- Compare to *ab initio* predictions [Calci et al., PRL 117, 242501 (2016)] $\Psi_{1/2^+} = \psi_{1{\rm s}1/2}({\bf r}) \otimes \chi_{0^+}^{^{10}{\rm Be}} + \psi_{0{\rm d}5/2}({\bf r}) \otimes \chi_{2^+}^{^{10}{\rm Be}} + \psi_{0{\rm d}3/2}({\bf r}) \otimes \chi_{2^+}^{^{10}{\rm Be}}$
 - NLO potentials **fitted to** reproduce S_n and *ab initio* **ANC** for $\neq \bar{\beta}$



 $@\beta = 0.5$ perfect agreement with ab initio for both ψ_{α} , δ_{α} , $\forall \sigma$ \Rightarrow confirms the role of **core excitation** in structure of ¹¹Be g.s

Core excitation in 11 Be $\frac{1}{2}^-$ bound excited state

- $\Psi_{1/2-} = \psi_{0\text{p}1/2}(\mathbf{r}) \otimes \chi_{0+}^{^{10}\text{Be}} + \psi_{0\text{p}3/2}(\mathbf{r}) \otimes \chi_{2+}^{^{10}\text{Be}} + \psi_{0\text{f}5/2}(\mathbf{r}) \otimes \chi_{2+}^{^{10}\text{Be}}$
- NLO potentials **fitted to** reproduce S_n and *ab initio* **ANC** for $\neq \beta$



- phase shifts: less good than without core excitation
- ⇒ No influence of core excitation on structure of ¹¹Be e.s.because shell-model state?

Electric dipole strength: B(E1)

E1 transition from bound state to bound state: $\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$

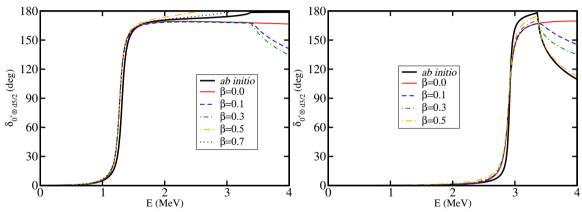
		2 2
	B(E1) (e ² fm ²)	
σ (fm)	$\beta = 0.5$	$\beta = 0$
1.3	0.104	0.103
1.5	0.106	0.106
1.8	0.109	0.108
2.0	0.110	0.109
ab initio	0.117	
Experiments		
[PRC 28, 497]	0.116(12)	
[PLB 394, 11]	0.099(10)	
[PLB 650, 124]	0.105(12)	
[PLB 732, 210]	0.102(2)	

- Core excitation has no influence on B(E1)
- Good agreement with exp. data but lower than ab initio
- Ab initio overestimates exp. $B(E1) \rightarrow wrong pre-asymptotic region ?$

Core excitation in low-energy resonances : $\frac{5}{2}^+$, $\frac{3}{2}^-$, $\frac{3}{2}^+$

Compare to ab initio predictions [Calci et al., PRL 117, 242501 (2016)]

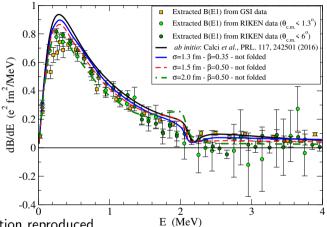
• NLO potentials **fitted to** reproduce exp. \mathbf{E}_{res} and Γ_{res} for $eq \beta$



- ullet Excellent agreement with *ab initio* results o probing **nature of resonances** $[\Gamma_{0^+}, \Gamma_{2^+}]$
- ullet Direct access to scattering wfs, phase shifts $ightarrow rac{dB(E1)}{dE}$, cross sections,...

dB(E1)/dE

E1 transition from $\frac{1}{2}$ bound state to the continuum with **final-state interactions**

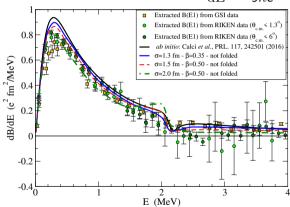


- Ab initio prediction reproduced
- Good agreement with exp. data reproduced but overshoot at low E (like ab initio)
- Significant σ -dependency because of $\frac{3}{2}^-$ phaseshift

Coulomb breakup & Equivalent Photon Method

Coulomb breakup: $^{11}\text{Be+Pb} \rightarrow ^{10}\text{Be+n+Pb}$ @69AMeV \rightarrow E1-dominated

$$\frac{\mathrm{d}\sigma}{\mathrm{dE}} = \frac{16\pi^3}{9\hbar c} \mathrm{N_{E1}(E)} \frac{\mathrm{dB(E1)}}{\mathrm{dE}}$$



Coulomb breakup & Equivalent Photon Method

Coulomb breakup: $^{11}\text{Be+Pb} \rightarrow ^{10}\text{Be+n+Pb}$ @69AMeV \rightarrow E1-dominated

$$\frac{d\sigma}{dE} = \frac{16\pi^3}{9\hbar c} N_{E1}(E) \frac{dB(E1)}{dE}$$

$$0.8 = \frac{1}{1000} \frac{1}{1000} N_{E1}(E) \frac{dB(E1)}{dE}$$

$$0.8 = \frac{1}{1000} \frac{1}{1000} N_{E1}(E) \frac{dB(E1)}{dE}$$

$$0.8 = \frac{1}{1000} \frac{1}{10$$

 \rightarrow B(E1) distribution overshoots reflected on cross-sections (which are folded)

Yes, it works, but is it really EFT?
Short-range effective theory for deformed halo nuclei?

A short-range effective theory for deformed halo nuclei?

Simple portable structure model for (breakup) reactions codes, including core deformation

- \rightarrow with **2 caveats**:
 - Power counting?
 - ullet @NLO: non zero interactions in channels where $\ell \geq \! \! 1$ [mean field]

Idea: build $V_{\rm eff}$ as a series of local contact potentials [Lepage, arXiv:nucl-th/9706029]:

$$V_{\text{eff}}(\mathbf{r}) = C_0 \, \delta_{\sigma}^{(3)}(\mathbf{r}) + C_2 \, \nabla^2 \, \delta_{\sigma}^{(3)}(\mathbf{r}) + C_{2'} \, \nabla \cdot \delta_{\sigma}^{(3)}(\mathbf{r}) \, \nabla + \dots + C_{2n+2} \, \nabla^n \, \delta_{\sigma}^{(3)}(\mathbf{r}) + \dots$$

ightarrow each term:= $\mathrm{C_i} imes$ operator

 $[C_i := coupling constants]$

 \rightarrow C_i properly tuned, operators respect symmetries

We want to describe **deformed** halo nuclei using:

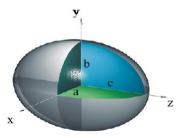
- a rotationally asymmetric term generated solely by s-waves [s-d coupling]
- a power counting, i.e. hierarchy between different terms
- → Q: Can we reproduce the spectrum of deformed halo nuclei?

Geometry of deformed cores

 $\begin{tabular}{l} \textbf{Goal} := \end{tabular} \begin{tabular}{l} \textbf{Goal} := \end{tabular} \begin{tabular}{l} \textbf{describe} key features of the low-energy spectrum of (light) deformed one-neutron nuclei light) deformed one-neutron nuclei light and l$

Assumptions on the core:

- \bullet axially symmetric rigid rotor: $\hat{H}_{core} = \frac{\hat{I}^2}{2\theta}$
 - ightarrow rotational spectrum: 0+g.s. (bandhead) and low-lying 2+ excited state
- deformed ellipsoid along z-axis (symmetry axis) in intrinsic frame
 - \rightarrow stretching parameter ζ directly linked to β for small deformation



Operators and coupling constants (LECs)

From Halo-EFT:

[in momentum space]

$$QLO: V_{LO} = C_0$$

$$ONLO: V_{NLO} = C_0 + C_2(\mathbf{p}^2 + \mathbf{p}'^2)$$

 \rightarrow fine-tuned s-waves [Kaplan, Savage, Wise (98)]

Quadrupole operator:

$$\texttt{@} \mathrm{NNLO} : \mathrm{V}_{\mathrm{sd}} = \mathrm{C}_{\mathrm{sd}} \big[\mathrm{I.q.I.q} - \frac{1}{3} (\mathrm{I.q})^2 \big] \qquad \text{ with } \ \mathbf{q} = \mathbf{p} - \mathbf{p'}$$

 $\rightarrow C_{sd} := \mathsf{LEC}$ related to β

Hyperfine operator:

$$@LO: V_{hf} = C_{hf} I.j$$
 with $j = \ell + s$

Core is a rigid rotor
$$\rightarrow \hat{H}_{core} = \frac{\hat{I}^2}{2\theta} \sim \mathbf{v}^2$$

N.B.
$$I=O(1)$$

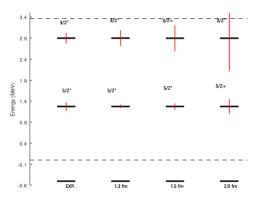
 \rightarrow higher order terms suppressed by powers of \mathbf{v}^2

Goal: tune C_0 , C_2 , C_{sd} and C_{hf} to reproduce low-energy spectrum of deformed halos

¹¹Be: positive parity states

[PRELIMINARY]

- $\frac{1}{2}$ g.s.; S_{1n} =0.5 MeV; E_{2} +(10 Be)=3.368 MeV \rightarrow p_{rotor} \gg p_{halo}
- Tune C_0 , C_2 , C_{sd} and C_{hf} against S_{1n} , ANC, positions of resonances of ¹¹Be

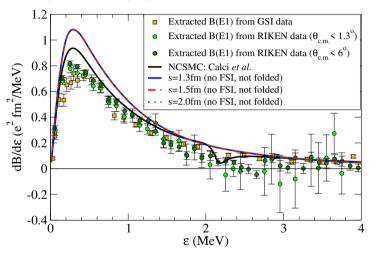


- We reproduce the position of each state
- ullet Unprecised widths for resonances o higher order effect

¹¹Be: dB(E1)/dE

[PRELIMINARY]

Coulomb breakup: $^{11}\text{Be+Pb} \rightarrow ^{10}\text{Be+n+Pb}$ @69AMeV \rightarrow E1-dominated



Fair agreement with data but with **2 caveats** \rightarrow no folding, no final-state interaction

What if $p_{halo} \sim p_{rotor}$?

Question: What about the case where $p_{halo} \sim p_{rotor}$?

 \rightarrow deformation (V $_{\mathrm{sd}}$) enters @LO and we have:

$$\begin{split} \frac{p_{\rm halo}^2}{2\mu} \sim \frac{I(I+1)}{2\theta} \\ \theta = \theta_{\rm xx} = \theta_{\rm yy} = \frac{A m_{\rm N}}{5} R_{\rm core} (1+\zeta^2) \quad \text{and} \quad \mu = \mu_0 m_{\rm N} \\ \frac{p_{\rm halo}^2}{2\mu_0} \sim \frac{I(I+1)}{\frac{A}{5} R_{\rm core}^2 (1+\zeta^2)} \end{split}$$

with different regimes:

$$\zeta\gg 1$$
: prolate (:=elongation along z-axis); $\zeta\ll 1$: oblate (:=flattening); $\zeta=1$: spherical

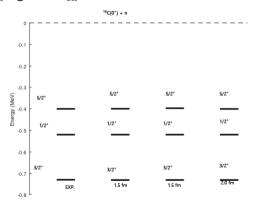
- → relates geometry (moment of inertia), binding, nb of nucleons
- \rightarrow this scenario happens for heavier halos (larger nb of nucleons):

eg: 17 C, 19 C (sd shell), 31 Ne (fp shell)

¹⁷C: halo excited states?

[PRELIMINARY]

- $\frac{3}{2}$ g.s.; S_{1n} =0.73 MeV; E_{2+} (16 C)=1.766 MeV
- $\frac{1}{2}$ e.s.; S_{1n} =0.52 MeV \rightarrow $p_{halo} \sim p_{rotor}$
- \bullet Tune C_0 , C_{sd} and C_{hf} against S_{1n} of the bound states

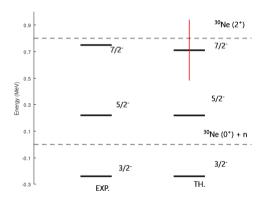


• Ok for position of each state **BUT** what about **transfer** data: ${}^{16}C(d, p)$?

³¹Ne: deformed p-wave halo

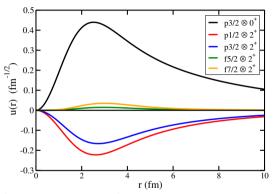
[PRELIMINARY]

- $\frac{3}{2}$ g.s.; S_{1n} =0.24 MeV; $E_{2^+}(^{30}Ne)$ =0.801 MeV \to $p_{halo} \sim p_{rotor}$
- Tune C_0 , C_{sd} and C_{hf} against S_{1n} , positions of the resonances



- We reproduce the position of each state
- No scattering data to compare to (no exp. widths)

Wave functions in each channel for β =0.56:



Other **models** available...but no scattering data:

Urata, et al. PRC 83, 041303(R) (2011); Minomo, et al. PRL 108, 052503 (2012) Hong, Bertulani, Kruppa, PRC 96, 064603 (2017)

Outlook: E1-dissociation/Coulomb breakup [Elkamhawy, Hammer JPG 50 02510 (2023)]

Conclusion

 We want to study reactions involving **one-neutron halo nuclei** :

- need of a realistic few-body model for reaction calculations
 - \rightarrow Halo-EFT

Our model of one-neutron halo nuclei [11Be] provides:

- explicit inclusion of core excitation within Halo-EFT
- ullet realistic description of both bound and low-lying resonant states in deformed halos [$^{11}\mathrm{Be}$]
- portable structure model including deformation for reaction codes

```
[L.-P. Kubushishi and P. Capel, (2025), PRC 111 054618]
```

- [L.-P. Kubushishi and P. Capel, (2025), arXiv:2406.10168]
- [L.-P. Kubushishi and P. Capel, (2025), (in preparation)]

Outlook:

- ullet same formalism to study structure and breakup of 17 C, 19 C (sd-shell), 37 Mg, 31 Ne
- short-range effective theory for deformed halo nuclei: ¹¹Be, ¹⁷C
 [L.-P. Kubushishi and D. R. Phillips, (2025), (in preparation)]
- include our model in reaction codes (breakup, transfer,knock-out...)

Thanks to my collaborators!

- Pierre Capel (JGU Mainz)
- Daniel R. Phillips (Ohio University)
- Hans-Werner Hammer (TU Darmstadt)

JOHANNES GUTENBERG
UNIVERSITÄT MAINZ

