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@ Introduction



Efimov effect

a<0 Energy a>0
000 1 coo 1a , _
T > o Efimov trimers,
k Bgﬂ'/Bg’H_l = 627r/80 ~ 515, sg = 1.00624
L V. Efimov, PLB 33, 563 (1970)

@ At the unitarity limit, discrete scale
@° invariance (DSI) is exact.

3 @ DSI of observables are expected in systems
that exhibit limit cycles in their
renormalization group

https://physics.aps.org/articles/v3/9



Renormalization group limit cycle
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The anorma,hzat)on-group method nf Gell-Mann and Low is applied to field theories of strong inter-
actions. It is @ that renormali p equations exist for strong interactions which involve one
or several um-dependent i «-nnsmnts "The further nssumpnon that these coupling constants
approach fixed values as the momentum goes to infinity is discussed in detail. However, an alternative is
suggested, namely, that these coupling constants approach a limit cycle in the limit of large momes .
Some results of this paper are: (1) The e*-c~ annihilation experiments above 1-GeV energy may distinguish
a fixed point from a limit cycle or other asymptotic b . (2) If namics or weak interactions
become strong above some large um A, then the ization group can be used (in principle)
to determine the renormalized cuuphug constants of strong lnterzuct\nns, except for ¢/ (3) XU/ (3) symmetry-
breaking parameters. (3) Mass terms in the Lagrangian of strong, weak, and electromagnetic interactions
must break a symmetry of the combined interactions with zero mass. (4) The A/=1} rule in nonleptonic
weak interactions can be understood assuming only that a renormalization group exists for strong
interactions.

A limit cycle is a periodic solution of a nonlinear set of equations of motion. ..."

These are not the only possibilities but other possibilities are more difficult to
analyze. Studying the consequences of a fixed point or a limit cycle makes clear the
importance of the renormalization group for field theory"



Short-range EFT

The most general short-range dynamics allowed by assumed spacetime symmetries

Lyl (“’9“ " ) v (wie) -2 (v1e)

@ Unitarity limit: ag = oo, 79 =0, .... Corresponding to the non-trivial fixed
point of Cy
. _ 4
To reproduce the scattering length ag, Cy = =]

RGE for Co Addcl;0 = C()(l — é@), éo = —%Cg
@ The three-body LEC Dy displays a limit cycle behavior Bedaque et al. PRL 82 (1999)

A2Dg(A, A) o~ sin(sg In(A/AL) — dp)
6mC3(A) sin(soIn(A/AL) + dp)

Hyo(A/A,) = , A a three-body scale



The three-body limit cycle

Sharp-cutoff regulator: Ho(A/AL) = hyg Ziigg }Egﬁftg;:ﬁz%%zgg;
Bedaque et al. PRL 82 (1999): hg =1

Braaten & Hammer, Phys. Rept. 428 (2006): b() = A*/H* =261, ke = ’I?’LB3
Braaten et al. PRL 106 (2011): hg = 0.879

Chen & Zhang arXiv.2506.12531: analytical expressions for hy and by

This two-parameter equation was also used for other regulators
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L. Platter, thesis, 2005.



The three-body limit cycle
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Braaten & Hammer, Phys. Rept. 428 (2006): b() = A*/H* =261, ke = T)’LB3
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Chen & Zhang arXiv.2506.12531: analytical expressions for hy and by

This two-parameter equation was also used for other regulators

What is the general form for other regulators?

At the unitarity, for general separable regulators,

sin(so In(A/AL) — dp)
sin(so In(A/AL) + do)

Hy(A/A) = ho

A
o
T T T

i IR A

1 B or more generally, tan(soIn(A/A,)) is related
10’ 107 10° to Hy through a real Mébius transformation
A B, 3 parameters: hg, by, 0o
L. Platter, thesis, 2005.




© STM derivation



SREFT with dimer field

L= (130 + 62) y— 2 (vt) = 20 (yhy)”

2m
V2 d'd 1
— ot (s A o = (gt TopyT (A
=1 <z<90+2 >w+2 o 2\/_<d¢¢+dw¢>+hdd¢w+...,

Three-body LEC: Ho(A/A,) = AG—%AWA) = —A2h(A,, A)
0



SREFT with dimer field
L=yl <230+> p— 20 (sty)" — 20 (yty)’

_ o N did 1 (u ft gt
— <u90+ >¢+ SnCe 2\F<d¢w+dww>+hddw¢+

Three-body LEC: Ho(A/A,) = 222000 — _ g2p 0 A

6mCZ(A)
q+k/2 dimer propagator:
N D.(E,k) = [(2mCy)~! — %(E, k)] !
i e ()
At unitarity,
,qwg ) D, (E,k)™! = — v/ —mE; x(—mE,/A?),
self-energy: 2(F, k) f(2ﬂ)3 s é’:(i/é €>q+k/2 E.=FE; —k*/4m

E,=F+ zO+ and e = k2/2m x(z): high-order correction



STM with three-body force

Focus on the bound-state sector with total energy F < 0 and zero total momentum

2

—-q
o (/22N at k2P . k2 oL
92 Az 92 A2 93 Az ) B\ A2

Skorniakov-Ter-Martirosian equation with three-body force (STM3):

k(8 = — [ 22 (G )~ 15 o) (7 ) 00 (5 ) ) Do — o= a6t

where

dQq 92 (‘sz/Q'Q) 92 (Iqu/l\(z/Q‘Q)

dr m(ex + €q + €xpq — E)

Gr(k,q; E) = k‘q/



Focusing on the limit £ — 0 and introducing & = Aexp(—t), ¢ = Aexp(—s),

E(t) = ko(k), gs(t) = exp(—t) gs(exp(—2t)), x»(t) = x(3exp(—2t)/4), and
A= \/377/8, the STM3 equation can be recast as

| as(Gutts) = Hoga(0)30(5)) %5 (9160 = X€C0)
The function G,(t,s) = G,(k,q;0) approaches

1 cosh(t —s) +1/2
Gt —s) = §1n <cosh(t —8) — 1/2) ’

if both s and ¢ are large and positive. If either t < 0 or s < 0, G, (¢, s) goes to 0.



To eliminate x,(t), we make the redefinitions

B(t,s) = tS/\/Xrird} =¢ /\/Xr =g3(t)/VXxr(t) -
= /00 ds[B(t,s) — Hov(t)v(s)]¥(s) = M(t) .

The asymptotic behavior of 1 (t) is the same as that for a sharp cutoff regulator,
W(t) ~ cos(sot + @), with ¢ = soIn[A,/A], A, = exp(po/s0)As

Determining the running of Hj is equivalent to analyzing how the phase of the
solution ¢(k) depends on H
Choosing the normalization of ¥ as [*_dsv(s)i(s) =1, we get

/ T ds (Bt s) — A(s — 1] () = Hou(t) .

—0o0

Only possible when the three-body regulator is separable



/00 ds[B(t,s) — Ao(s — t)] ¥(s) = Hoyv(t)

—0o0

Yo(s), ¥1(s): the solutions for Hy = 0, 1
General solution:

¥(t) = (1 — Ho)vo(t) + Hot1(t)
This solution depends linearly on Hj

In the low-energy regime ¢ >> 1: ¢ (t) ~ Re[Aoe™!], 1y (t) ~ Re[(Ag + Ay)e™’]
Matching at the low-energy regime 1) (t) ~ cos(sot + @)

= tan@ = tan (al“g(Ao 4 HOAI)) _ ImEAO) + |m(A1)H0

Re(Ap) + Re(A1)Hy

A real Mobius transformation, involving three independent parameters
Conversely, Hy can be expressed as a real Mobius transformation of tan ¢



Real Mobius Transformation

A real Mébius transformation is a map on the extended real line R = R U {0} of the

form "
ax
f(x)—m7 a,b,c,d € R, ad — bc # 0.
It is represented (up to scalar) by the matrix M = (Z Z) € GL(2,R).

.

The set of all real Mébius transformations forms a group under composition.
It is naturally identified with the projective linear group

PGL(2,R) = GL(2,R)/{al : o € R*}.

dim PGL(2,R) = 3



A special parameterization

. |m(A0) + |m(A1)H0

Re(A()) + Re(Al)Hg’
The parametrization of this relation is arbitrary
Choosing arg(AgA1) = 2¢p and setting Re(exp(—igg)A1) = 1, we can write

tan @

@ = soIn[As/A] + ¢o

Ag = —hg (1 —itan d) €0
Ay = (1 +itandp) e

9

0o and hg are real and can be determined numerically

tan(pg — @) — tan d
Otan(goo — @) + tan dy
sin(so In(A/AL) — do)
Osin(so In(A/A) + o)

= Hy =

3 parameters: hg, by = As/Kx, o



Numerical demonstration

Consider (super-)Gaussian regulators: go(x2)
15

10f

> 0 o0 < |

m T
sharp, STM

n=1, STM
n=2, STM
n=3, STM

= g3(2?) = exp(—a?")

Hy=nh

sin(so In(A/A) — dp)

¥sin(so In(A/A) + o)

regulator do ho bo
sharp 0.7823 | 0.879 2.61
n=1 1.0463 | 1.8024 | 4.4436
n= 0.8869 | 1.4744 | 3.4930
n=23 |0.8361 | 1.2804 | 3.2042

The fit is excellent



An approximation for (super-)Gaussian regulators

[d(inA) (aln,\ f2W)392(|k+q/2|2/A2)92(|q+k/2|2/A2)GoDr¢(fI))
[ d(InA) (alnA J50s k2/A2)93(q2/A2)Dr¢(q))

To evaluate it analytically, we perform the approximations

gz(|k +A(§/22> 92(|q +AIZ/2|2) ~ exp [— (14272 (X)Qn}
n(3)o(f) - [-@)]
o~ —gp Do~ b ot ~re( (1))

) iso+1
This gives: §g ~ ;arg<(1 + 272n)zso/2n M)

. B

k<A

STM3 = h(A) ~

k<A

1/2n |F( 2n
|F(zso+1

ho =~ (1427°")

|
|



An approximation for (super-)Gaussian regulators

" " n n n " " " n n
( 20 40 60 80 100 20 10 60 80 100 20 40 60 80 100

@ As n increases, the approximation provides a good description of hg

@ The approximate dy converges to the sharp cutoff value, which is different from
the limit of the super-Gaussian regulators

@ The super-Gaussian regulators do not converge to the sharp cutoff ©(1 — g/A)



© The Faddeev formalism



Main idea of the derivation

STM3 equation:

ko(0) = = [ 24 (G000 ) = 12 oWy () 905 ) ) DB a0

sin(sg In(A/AL) — o)
sin(sg In(A/AL) + o)
Main idea: Faddeev equation — STM3 — Hy(A/A.)

= Hy(A/A,) = ho



Faddeev equation

Jacobi momenta: u; = (p; — p2) /2
; uy = 2[p3 — (p1 +p2) /2] /3

Potentials are obtained from SREFT

Two-body potential: Vo = Cy|g2) (g2), (u1lga) = g2(ui/A?)
Three-body potential: V3 = Dg () (|, (wyu2|¢) = ((u1,u2) = C((U1 4“2)/A2)

Faddeev equation: |{) = GotP [{) + 3GotGots |[P)

G: free three-body Green's function

P = P13 Py3 + P13Ps3. Total wave function |V) = (1 + P) | )

t(z) = |g2) 7(2) (g2, T(2) = Dy(2,0)/2m. D, is the dimer propagator.

t3(E) = Q) 7(E) (|, m3(B) = —Hy(E, A)/I3(E) with I3(E) = ((|Go(E)[¢) and
Ho(A)

Ho(A) — A2/6mC2I5(E)

H{(E,\) = . (another Mdgbius transformation)



Faddeev to STM3

Define a reduced Faddeev component F'(us) via
(wrus|b) = go(uf/A?) Go(Esur,u9) 7(E — $u3) F(ug) ,

du, Ul
= UQF(U2) = _/27_3 (Gr(u%UIQ’E) - /2\22 H(,)(E’A) gé(Eau2) gé(E7u,2)>

X DT(E - 6u’27 _u/2) U’IQF(U’/2) )

where

95(E,us) = —V3AI§ (B, up)/\/ —2mIS(E)

3 2
Ig(E,UQ) = /é:)l?’ 92 (X;) Go(E;u1,u2) ¢(u1,u2) .




STM3 equation:

ko(0) = = [ 2 (G ) 35 o) (7 ) 00 (‘) ) 1B = e =) 00t

The reduced Faddeev component F'(ug) satisfies

du!
wF (1) = - [522 (Gulun, s, B) - 252 Hy (5. 0) (B ) (B,
X DT(E — €uls _u2) u2F(u/2) )

It has the same structure of the STM3 equation
= H{(0,A) is related to tan(spIn(A/A)) through a real Mdbius transformation
= Hj is related to tan(soIn(A/A.)) through a real Mé&bius transformation

sin(so In(A/Ay) — dp)
sin(so In(A/A.) + o)

= Hy = hg



Numerical demonstration

Consider (super-)Gaussian regulators: go(z?) = ((2?) = exp(—z2")
15 T o T T T T T
i g i i ©  n=I, Faddeev ]
- 0 n=2, Faddeev i oA
10} Ji %’i A p=3, Faddeev ? é{? E
> b A
r 4 & @ ] ; _
L s
o o é’ 8] Sln(So IH(A/A*) + 50)
r g"ig@g‘ & gﬂA ]
R possonest®
QPM ag: regulator do ho bo
—5f IS § 4 n—=1 | 07094 | 0.7976 | 2.3965
; 2 8 1 n=2 | 04455 | 1.0189 | 2.6236
—10f P PA n=3 | 0.3766 | 1.0037 | 2.5985
: i ] N
L ! ) i\ l‘:‘? Lo ) L \i\ cah
BRI 107 103 The fit is also excellent



@ More discussions



More discussions

@ When DSl is weakly broken by a finite scattering length ag, numerical results show
that the ratios between adjacent poles and zeros of Hy gradually approach the
universal value exp(m/sg) =~ 22.69 as either the cutoff or the scattering length
increases, implying that the universal form we derived holds up to corrections that
are suppressed by inverse powers of agA.

@ For (non-separable) local regulators, preliminary results show that there could be
multi-branches.

100 [

n=1

50 b




© Summary and outlook



Summary and outlook

Summary

@ We prove that the running of the three-body interaction strength universally
follows a real Mdbius transformation, characterized by just three parameters.

@ Our findings broaden the class of three-body limit cycles and provide a solid
theoretical foundation for SREFT with general regulators.

Outlook

@ Corrections to the universal functional form due to large scattering length and
effective range

@ For non-separable (local) regulators, preliminary results indicate a more intricate
limit-cycle structure, warranting further investigation



Thank youl!

@ Langxuan Chen (Fudan University, Stanford University)
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