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Career recap

I PhD at University of Buenos Aires (1987)

I post-doc at INFN, Pisa (1987-1989)

I researcher at INFN, Pisa (from 1989)
Initially I worked on the solution of the three- and four-nucleon problem

I At that time this argument was an intense subject of research:

In the 90’s the first high quality NN potentials appeared (Nijmegen, AV18,
CDBonn)

In parallel with those efforts, the first steps toward a description within the
framework of EFT’s appear

In this context, managing the solution of the three- and four-nucleon problem it
was possible to extend those studies in the description of the few-nucleon
dynamics
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Career recap

I Very little experience were in Pisa to attack this problem. Together with my
colleague M. Viviani we started from the beginning deciding which method we
prefer to use

I We decided to use the variational principle together with Hyperspherical Harmonic
basis

ΨN =
∑

[m,K ]

A[m,K ]fm(ρ)Y[K ](ΩN)

Bound states: H − EN = 0

Scattering states: [Sij ] = Sij − i < Ψi
N |H − E |Ψj

N >



3H and 4He Bound States and n − d scattering length

Potential(NN) Method 3H[MeV] 4He[MeV] 2and [fm]
AV18 HH 7.624 24.22 1.258

FE/FY Bochum 7.621 24.23 1.248
FE/FY Lisbon 7.621 24.24

CDBonn HH 7.998 26.13
FE/FY Bochum 8.005 26.16 0.925
FE/FY Lisbon 7.998 26.11
NCSM 7.99(1)

N3LO-Idaho HH 7.854 25.38 1.100
FE/FY Bochum 7.854 25.37
FE/FY Lisbon 7.854 25.38
NCSM 7.852(5) 25.39(1)

Potential(NN+NNN)
AV18/UIX HH 8.479 28.47 0.590

FE/FY Bochum 8.476 28.53 0.578
CDBonn/TM HH 8.474 29.00

FE/FY Bochum 8.482 29.09 0.570
N3LO-Idaho/N2LO HH 8.474 28.37 0.675

NCSM 8.473(5) 28.34(2)
Exp. 8.48 28.30 0.645±0.010



N-d scattering
- - - - nd —– pd
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Some recent developments
p-d scattering at 3 MeV fitting the subleading TNI terms obtaining a χ2 per datum ≈ 1.7
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The pd Correlation Function: comparison to experiment
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Some new aspects

I Doing these detailed calculations I missed some simple questions

I For example I did not know that the deuteron binding energy,
Ed = 2.224575(9) MeV is strictly related to the triplet scattering length,
a = 5.419(7) fm, and effective range, re = 1.753(8) fm:

Ed ≈ −
~2

ma2
= 1.412MeV

or, much better

Ed ≈ −
~2

mr2
e

(1−
√

1− 2re/a)2 = 2.223MeV

I The two-nucleon systems is inside the universal window

I A continuous scale invariance dominate in this region
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Nuclear spectrum A ≤ 4
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Helium drops and Nuclear spectrum A ≤ 4
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Using a scale to make the spectrum dimensionless
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Helium and Nuclear spectrum inside the universal window
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Helium and Nuclear spectrum inside the universal window
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What we have observed?

I Appearance of universal behavior
→ independence of the interaction details

I There is a window in which universal behavior can be observed
→ It is formed by the appearence of a shallow two-body bound state
→ Correlation between bound and scattering states

I Dynamics governed by a few parameters (control parameters)
→ Continuous (or discrete) scale invariance
→ The systems can move along the window

Interplay of two aspects

I Weakly bound systems are strongly correlated

I In the universal regime details of the interaction are not important
→ Effective interactions
→ Gaussian (or other) characterizations
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The two-body characteristic length r
(2)
0

I The path from the physical point to the unitary point is characterized by the
two-pole S-matrix representing one shallow state, virtual or bound

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

I The energy pole is described by the energy length aB

1/kd = aB −→ E2 = −~2k2
d/m = −~2/ma2

B

I E2 is a bound or virtual state when aB > 0 or aB < 0

I the second pole is described by the length rB = a− aB

I For example, for the deuteron at the physical point
a = 5.4 fm, aB = 4.3 fm
rB = a− aB = 1.1 fm



The two-body characteristic length r
(2)
0

I The two-pole S-matrix

S(k) = e2iδ =
e iδ

e−iδ
=

cos δ + i sin δ

cos δ − i sin δ
=

k cot δ + ik

k cot δ − ik
=

k + i/aB
k − i/aB

k + i/rB
k − i/rB

is equivalent to the second-order effective range expansion
k cot δ0 = −1/a + rek

2/2

I The two-poles are in the immaginary axes k = ikd , verifying the pole equation
kd = 1/a + rek

2
d/2

I they are (remember kd = 1/aB and rB = a− aB):

re
aB

= 1−
√

1− 2re/a → re/a < 0.5

re
rB

= 1 +
√

1− 2re/a



The two poles form the universal window
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Physical systems inside the universal window
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Moving along the window: r
(2)
0 ≡constant =⇒ rB ≡constant
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Effective description (scale invariance)

I The S-matrix

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

is exactly represented by the Eckart potential:

V (r) = −2
~2

mr2
0

βe−r/r0

(1 + βe−r/r0)2


a = 4r0

β
β−1

aB = 2r0
β+1
β−1


re = 2r0

β+1
β

rB = 2r0 → the second pole!



The universal window

I The figure shows the universal character of the window delimited by
−∞ < re/a < 0.5 and −∞ < re/aB < 1

I The systems can be related along the curve:
Systems with similar values of re/a, or equivalently similar values of β, are related
by scale transformation: r0 → λr0

I Many observables depend by the position on the curve:

helium dimer deuteron
exp. calc. exp. calc.

− ~2

ma2
B
≈ − ~2

mr2
e

(1−
√

1− 2re/a )2 1.3 mK 1.3mK 2.224MeV 2.223 MeV

< r2 >≈ a2

8

[
1 + ( rB

a )2
]

67.015a0 67.017a0 1.967fm 1.955fm

C 2
a ≈ 2

aB
1

1−re/aB
0.10898a

−1/2
0 0.10899a

−1/2
0 0.885fm−1/2 0.883fm−1/2



The universal window in terms of the Gaussian parameters
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Motivation of the movements along the window

I The nuclear system, as well many other systems, are inside the universal window

I The universal window is characterized by scale invariance

I Scale invariance is not a symmetry of the underlying theory but appears for
particular values of the interaction parameters

I Movements along the window help to see how scale invariance manifests and,
hopefully, how to incorporate it in the effective description of nuclei.

I For example, looking at nuclei, we have these two ingredients

I The microscopic theory for the nuclear interaction, chiral EFT

I The scale invariance
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The two-body scale r
(2)
0 → assigning dimensions → the deuteron trip
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Moving along the window with constant resolution
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The three-body scale r
(3)
0 and K∗, the three-body parameter
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The three-body scale r
(3)
0 using the gaussian characterization

The case of three bosons: V =
∑
ij

V0e
−(rij/r0)2
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The three-body scale r
(3)
0 using the gaussian characterization

V (1, 2, 3) =
∑
i<j

V (i , j) =
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(
V0e
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The three-nucleon Efimov effect
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The three-nucleon system: correlations

V (1, 2, 3) =
∑
i<j

V (i , j) =
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(
V0e
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The three- and four-body scales, r
(3)
0 and r

(4)
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The N-body scales, r
(N)
0 , for A ≤ 8
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Unifying the scales
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Unifying the scales: the LO potential

I The scale invariance is encoded in the two-pole S-matrix

I The trip to the unitary point has shown that two nuclear structures. They form
the thresholds from which the other nuclei emerge

I Accordingly we propose the following potential to be considered at the lowest
order

VN =
∑
i<j

V (i , j , r
(N)
0 , β0)P01 +

∑
i<j

V (i , j , r
(N)
1 , β1)P10 →

VN =
∑
i<j

V (i , j , r
(2)
0 , β0)P01 +

∑
i<j

V (i , j , r
(2)
1 , β1)P10 +

∑
i<j<k

W (i , j , k, r3, β3)

with β3, r3 fixed to reproduce E (3H) and E (4He)
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Mirroring the nuclear chart at the unitary limit



The LO potential at the physical point
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Conclusions

I The nuclear system is well inside the universal window, accordingly it shows scale
invariance

I Scale invariance manifests in particular correlations not well explained otherwise

I Moreover, this symmetry is independent of the microscopic theory as many
different systems are located inside this window

I It will be important to incorporate this symmetry in the Ab Initio description of
the nuclear structure

I From our trip we have seen important structures suggesting a modification in the
power counting that organizes the perturbative series

I We refer here either to chiral or to pionless EFT

I From our point of view the nuclear potential at lowest order should decribe the
two-pole S-matrix plus the triton and alpha-particle binding energies
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