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The future of isotope discovery is at the limits of the nuclear
chart
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What do these have in common?
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What do these have in common?

Palazzo
Borromeo

3 / 31



Near-dripline isotopes are strongly coupled to the continuum
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Why do we want to know about Borromean systems?

Reasons for interest in Borromean systems:

• Presence across nuclear chart

• Universal properties of loosely-bound
systems

• Importance of the continuum

Note

Borromean nuclei are not always halo nuclei,
e.g. 12C as three α particles

Two neutron halos:

• Insight into dipole strengths of
neutron-rich systems

• Support for upcoming experimental
campaigns

• Possibility of extension to increasing
complexity
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Ab initio methods struggle to predict clusterised structures
accurately

Ab-initio calculations treat all nucleons
equally: challenging to compute.
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Few-body methods are suited to nuclei near the dripline

Few-body representation: effective
interactions

VCN is the mean-field of the core
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We need a consistent model of four-body reactions to unveil
clusterised systems

Understanding halo and cluster structures are crucial to the progress of nuclear physics.
↓

Experimental probes of exotic systems are model-dependent studies using reactions.
↓

The models absolutely must treat bound and scattering states consistently.
↓

I have built a framework that does this.
↓

22C is an excellent case study.
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What can we ask for from a three-body model?

Wishlist:
• Bound and scattering states

• Non-resonant continuum

• Ability to extract detailed
information about partial waves

• Scalable to larger, more
complicated systems

• Fast, parallel code

Three-body models have been developed before:

• Faddeev calculations for structure and
quasi-bound states (Thompson, Nunes,
Danilin and Lazauskas, Carbonell)

• 3-body CDCC using Gaussian basis and
transformed harmonic oscillator
wavefunctions (Rodriguez-Gallardo, Casal,
Arias,...)

• Gaussian expansion method (applied to > 3
body systems) (Hiyama, Kamimura,...)

• Gamow-coupled channel approach using
complex momenta (Wang, Nazarewicz,
Michel, ...)
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Reaction observables can be calculated once we know about
states

General expression for an observable describing anything* we care about

A= ⟨Ψscat | Â|Ψbound⟩

*anything includes interaction with a target for breakup, knockout,...
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Computing states of the three-body system: what are the
ingredients?

• Neutron-neutron potential

• Core-neutron potential

• Three-body potential

• Inert core (plan to extend to core
deformation)
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Hyperspherical harmonics are a useful tool to describe
three-body dynamics

Core

Neutron
Neutronx

y

T-basis

Core

Neutron
Neutron

a b

Y-basis

ΨJMπ(ρ,Ω5ρ) = ρ−5/2
∞∑

K=0

∑
γ

χJπ
γK (ρ)YJM

γK (Ω5ρ)

− ℏ2

2mN

(
∂2

∂ρ2
− (K + 3/2)(K + 5/2)

ρ2

)
χJπ
γK (ρ)+

∑
K ′γ′

VKγ;K ′γ′χJπ
γ′K ′(ρ) = EχJπ

γK (ρ)

Kmax is finite so this is an approximation

Hyperradius:
ρ =

√
x2 + y2 =√

a2 + b2

Hyperangle:
α = arctan(y/x)

Ω5 = (α,Ωx ,Ωy )
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The three-body bound and scattering solutions are computed
using the R-matrix

Channel radius in terms of
ρ =

√
x2 + y2

Consistent treatment of the bound and scattering
states → crucial for Borromean systems
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R-matrix for bound states

Numerically solve for 0 < ρ ≤ a

(H+ L(B)− E )χint(ρ) = L(B)χext(ρ)

χext(E < 0, ρ) = (κρ)1/2
∑
K

cKKK+2(κρ)

where L(B) = ℏ2
2µδ(ρ− a)

(
∂
∂ρ − B

ρ

)
is a matching operator at the boundary a, Kn is a

modified Bessel function and κ =
√

2m|E |
ℏ2 . If we choose B(E ) = aχext′ (a)

χext(a) then this
becomes a homogeneous equation which we can solve:

(H+ L(B(E ))− E )χint(ρ) = 0

In practice we find eigenvectors of H+ L(B(E )) with negative eigenvalues and iterate
until converged.
For more details see Descouvemont & Baye, Rep. Prog. Phys. 2010
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R-matrix for scattering states

χext(E > 0, ρ) =
∑
Kγ

iK+1(
2π

k
)5/2

[
H−
K (kρ)δKK ′δγγ′ − UKγ;K ′γ′H+

K (kρ)
]

If we choose B = 0 the Bloch-Schrödinger equation becomes:

(H+
ℏ2

2µ
δ(ρ− a)

∂

∂ρ
− E )χint(ρ) =

ℏ2

2µ
χext′(a)

Using G (ρ, rho ′) as the Green’s function which is defined as the solution to

(H+
ℏ2

2µ
δ(ρ− a)

∂

∂ρ
− E )G (ρ, ρ′) = δ(ρ− ρ′)

Then

χint(ρ) =

∫ a

0
dρ′G (ρ, ρ′)

ℏ2

2µ
δ(ρ′ − a)χext′(ρ′)dρ′

For more details see Descouvemont et al., Nuc. Phys. A 2006
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R-matrix for scattering states (continued)

The R-matrix is the discrete form of G (a, a) when we choose a finite basis
χint(ρ) =

∑
i ciϕi (ρ),

Rij =
ℏ2

2ma

∑
ij

ϕi (a) (Hij + Lij(0)− E )−1 ϕj(a)

We now have an equation for χint(a)

ciϕi (a) = Rijka
∑
Kγ

iK+1(
2π

k
)5/2

[
H−′

K (ka)δKK ′δγγ′ − UKγ;K ′γ′H+′

K (ka)
]

which depends only on the scattering matrix U, and we also have the boundary condition

χint(a) = χext(ρ) → ciϕi (a) =
∑
Kγ

iK+1(
2π

k
)5/2

[
H−
K (ka)δKK ′δγγ′ − UKγ;K ′γ′H+

K (ka)
]

so we can compute U, and hence χint .
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Operator definitions

B(E1) ∼ ⟨Ψscat |Ê1|Ψbound⟩

dB(Eλ)

dE
=

(2λ+ 1)

2(2π)8
(2mN)

3E 2

ℏ6
∑
J

(2J + 1)
∑
K ′γ′

∣∣∣∣∣∣
∑

Kγ;K0γ0

δSS0(−1)L+S+K

{
L0 S J0
J λ L

}
√
2L0 + 1

√
2L+ 1

√
(2lx0 + 1)(2ly0 + 1)

∫
dρρλχJπ

Kγ(K ′,γ′)(ρ)χ
J0π0
K0γ0

(ρ)

λ∑
k=0

αλk Z̃
λk

∫
sin(2+k) α cos(2+λ−k) αϕKlx ly (α)ϕ

K0
lx0ly0

(α)dα


λ− k k λ
lx ly L
lx0 ly0 L0

√
(2(λ− k) + 1)(2k + 1)C lx0

lx00(λk)0
C

ly0
ly00k0

∣∣∣∣∣∣
2
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How we choose the neutron-neutron interaction
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Minnesota potential reproduces scattering
length of neutrons, has different interactions
for different partial waves.
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The core-neutron interaction needs some more constraints

• s-wave virtual state?

• d-wave resonance?

• spin-orbit splitting

• 22C bound state
properties

0s1/2

0p3/2

0p1/2

0d5/2

0d3/2,E =?, Γ =?

1s1/2,E =?, Γ =?

0p

0d

0s

1s
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Knockout and decay reactions tell us the structure of 21C

S. Leblond et al. NP1106-SAMURAI04 Mosby et al. 2013
Suggests 21C has a 1/2+ virtual state.
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Knockout reactions from 22C tell us a bit more

S. Leblond et al. NP1106-SAMURAI04

Tension!

There are also conflicting measurements → opportunity to find resolving experiment
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Using data we can fix some properties of core-neutron system

0s1/2,E = −15.15 MeV

0p3/2,E = −13.77 MeV

0p1/2,E = −9.27 MeV

0d5/2,E = −5.81 MeV

0d3/2,E = 0.83 MeV,Γ = 0.3 MeV

1s1/2, a0 = −2.8 fm

0p

0d

0s

1s

We can also use a
three-body force to fix the
2-neutron separation
energy.

Still a lot of freedom in the two-body interaction
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Why and how de we remove “forbidden” states?
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Original
Transformed

Supersymmetry: modifies the potential

P̂ = E∞

two-body state (neutron-core)︷ ︸︸ ︷
|uforbidden⟩ ⟨uforbidden| ⊗ 1̂︸︷︷︸

the other neutron

Projection: Adds a three-body non-local operator.
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Projecting out forbidden states is the right approach but it’s a
lot harder

0.0
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K
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)
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What is the supersymmetric approach?

Transformation of the potential that
preserves two-body phase shifts while
removing unwanted bound states.

The good: Projection gives nodes
corresponding to the forbidden states.

The bad: Projection operator is very difficult
to compute exactly and leads to convergence
difficulties.
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How do we know the code is working?
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Comparison is using supersymmetry to compare with E. Pinilla, P. Descouvemont PRC
2016
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We compare two different models of the structure of 21C
Model A:
21C ground state is 1/2+ resonance, excited
states are 5/2+ then 3/2+ resonance

0p3/2

0p1/2

0d5/2

1s1/2

0d3/2

Energy

Threshold

Model B:
21C ground state is 3/2+ resonance, 1s1/2 is
a virtual state
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Carbon-22 can look very different depending on what we
think Carbon-21 looks like
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Preliminary
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When we know about the structure and the scattering states,
we can predict observables
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Three-body force:

The binding energy in model A is
fixed to that of model B
(-0.43 MeV) using a three-body
force.

Model uncertainty

The models we chose are not
unique, we need to quantify the
uncertainty from our choice of
parameters.

Preliminary
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Conclusions

Fundamentally, structure and reactions cannot be separated

• Loosely bound (clusterised) systems couple continuum and bound states.

• Making use of the interplay between structure and reactions can help us understand
the extremes of the nuclear chart.

Future work:
• Related: describe mid-mass nuclei and 3+1 body reactions using three-body model,
and quantify uncertainties.

• Unrelated: investigate multinucleon transfer using beyond mean-field methods.

• Long term: unify few- and many-body methods for a more comprehensive picture of
nuclear physics.
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Extra slides
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How do we actually compute the projection operator?

Three-body inner product

⟨Ψ1(ρ, α)|Ψ2(ρ, α)⟩ =
∫ ∞

0
ρ5dρ

∫ π/2

0
dα sin2 α cos2 αρ−5Ψ1(ρ, α)Ψ2(ρ, α)

with states Ψ(ρ, α) =
∑

K χK (ρ)ϕK (α) (ϕK are basis functions for hyperangle). We want
to construct three-body states which contain a given two-body (core-neutron) state u(x).
We construct a (two-body) basis fn(y) where

∑
n |fn(y)⟩ ⟨fn(y)| = 1y and then the

three-body forbidden states are Un(ρ, α) = u(ρ cosα)fn(ρ sinα). Using a Gauss-Lagrange
expansion in ρ such that ψ(ρ) =

∑
i cigi (ρ) we obtain projector elements

PKi ,K ′i ′ = (λiλi ′)
1/2

∑
n

(

∫ π/2

0
dα sin2 α cos2 αu(ρi cosα)fn(ρi sinα)ϕK (α))

(

∫ π/2

0
dα sin2 α cos2 αu(ρi ′ cosα)fn(ρi ′ sinα)ϕK ′(α))
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The three-body system is built on top of the 0+ ground state
of the core.

Core excitation to be
investigated in future
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Binding energy and rms

L. Gaudefroy et al. 2012
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