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The future of isotope discovery is at the limits of the nuclear

chart
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What do these have in common?
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What do these have in common?

Palazzo
Borromeo
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Near-dripline isotopes are strongly coupled to the continuum
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Why do we want to know about Borromean systems?

Reasons for interest in Borromean systems:

® Presence across nuclear chart Two neutron halos:

® Universal properties of loosely-bound ® |nsight into dipole strengths of
systems neutron-rich systems

® Importance of the continuum ® Support for upcoming experimental

campaigns
Note _— . . .
| : ® Possibility of extension to increasing
Borromean nuclei are not always halo nuclei,

. complexity
e.g. 12C as three « particles

5/31



Ab initio methods struggle to predict clusterised structures
accurately

Ab-initio calculations treat all nucleons
equally: challenging to compute.
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Few-body methods are suited to nuclei near the dripline

VNN

Few-body representation: effective
interactions

Vep is the mean-field of the core
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We need a consistent model of four-body reactions to unveil
clusterised systems

Understanding halo and cluster structures are crucial to the progress of nuclear physics.

I

Experimental probes of exotic systems are model-dependent studies using reactions.

0

The models absolutely must treat bound and scattering states consistently.

I

| have built a framework that does this.

0

22C is an excellent case study.
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What can we ask for from a three-body model?

® Bound and scattering states
® Non-resonant continuum

® Ability to extract detailed
information about partial waves

® Scalable to larger, more
complicated systems

® Fast, parallel code

Three-body models have been developed before:

® [Faddeev calculations for structure and

quasi-bound states ( Thompson, Nunes,
Danilin and Lazauskas, Carbonell)

3-body CDCC using Gaussian basis and
transformed harmonic oscillator
wavefunctions (Rodriguez-Gallardo, Casal,
Arias,...)

Gaussian expansion method (applied to > 3
body systems) (Hiyama, Kamimura,...)
Gamow-coupled channel approach using

complex momenta (Wang, Nazarewicz,
Michel, ...)
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Reaction observables can be calculated once we know about
states

General expression for an observable describing anything* we care about

A= <wscat ‘ AA| wbound>

*anything includes interaction with a target for breakup, knockout,...
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Computing states of the three-body system: what are the
ingredients?

VNN

® Neutron-neutron potential

Core-neutron potential

Three-body potential

Inert core (plan to extend to core
deformation)
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Hyperspherical harmonics are a useful tool to describe
three-body dynamics

T-basis Y-basis

Neutron Neutron P
Neutron % Neutron Hyperradius:
a Va2 + b2

Core Core Hyperangle:
a = arctan(y/x)
UM (p, Qs,) = p~°/? Z > Xk () VIR (Qs,) Qs = (@, 2x, Q)

K=0 ~
2 (9% (K+3/2)(K+5/2) e

g (g RO Vi i) = B

K//

Kmax is finite so this is an approximation
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The three-body bound and scattering solutions are computed
using the R-matrix

0' ° | phas;e_ghiftésl
® o ( VVV VY Vo

Consistent treatment of the bound and scattering
states — crucial for Borromean systems

Channel radius in terms of
p=Vx+y?
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R-matrix for bound states

Numerically solve for 0 < p < a
(K + L(B) — E)X"™(p) = L(B)x*(p)

XTHE < 0,p) = (kp)"/? D ek Kiy2(rp)
K

where £(B) = h—;é(p —a) (8% - %) is a matching operator at the boundary a, K, is a

modified Bessel function and k = / 2"};|2E|. If we choose B(E) = a%((j)) then this

becomes a homogeneous equation which we can solve:
(H + L(B(E)) — E)x"™(p) = 0

In practice we find eigenvectors of H + L(B(E)) with negative eigenvalues and iterate
until converged.
For more details see Descouvemont & Baye, Rep. Prog. Phys. 2010
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R-matrix for scattering states

X . 27 _ .
XTE > 0,p) = D | ()2 [Hic (kp)dkar8yr — Urcsircry i (kp)]
Ky

If we choose B = 0 the Bloch-Schrodinger equation becomes:

12 d . R
(H+ Zé(p —a)=— — E)x™(p) = —x“ (a)

ap 2
Using G(p, rho’) as the Green's function which is defined as the solution to
O+ 2500 ).~ EY6(o.0)) = oo — )
2000 =35, pp)=0(p—p
Then
int ? / / & / ext'( 1 /
X" (p) = i dp'G(p,p )55@ —a)x* (p)dp

For more details see Descouvemont et al., Nuc. Phys. A 2006
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R-matrix for scattering states (continued)

The R-matrix is the discrete form of G(a, a) when we choose a finite basis

X" (p) = X2 cidi(p),
Rij = 2ma Z pi(a (Hu + ‘Cu(o) )71 ¢j(a)

We now have an equation for X,-,,t(a)
cioi(a) = Rykay /'K+1(277T)5/2 [ (ko) 3 — U Y (K2)|
Ky
which depends only on the scattering matrix U, and we also have the boundary condition
X(2) = X*(0) = cioila) = 0 KT

Ky

)5/2 [H;(ka)éKK/5W/ — UK,Y;K/A’,/ H;(ka)]

so we can compute U, and hence y'™
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Operator definitions

B(El) ~ <wscat|EAl|wbound>

dB(EX 2)\ + 1) (2mp)3E2 Lo S J
CSE ) _ (2(271')8)( gg SIFDY | DD dss(— L+5+K{J0 X LO}
J K'~" | Kv; Koo

V20 + 1V2L + 1\/(2/X0 +1)(2hy0 +1) / dpp™ XK k41 ()X ()

ZaMZ’\k/sm 26) o cos(2TAK) ad),x (a )¢/0/y0( a)da

2

A—k kA 1,0
I, l, L \/(2()\ —k)+1)(2k + )C/IX 00(AK)0 ClyyoOkO
ko Lo Lo
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How we choose the neutron-neutron interaction

V(r) (MeV)

100

80

60

40

20

-20

-40

m—\/ (s-wave)

V (p-wave)

Minnesota potential reproduces scattering

length of neutrons, has different interactions

for different partial waves.
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The core-neutron interaction needs some more constraints

s-wave virtual state?
d-wave resonance?
spin-orbit splitting
22C bound state
properties

15— oo N s E =7 T =7

TTc-—— 0d5)2

————— Opip2

Op -
————— Opsp
0s —mM8M8M-------- — Os1p2
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Knockout and decay reactions tell us the structure of 2'C

500 C(ZZN,ZOCJrn)

Efficiency (%)
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E. MeV)
S. Leblond et al. NP1106-SAMURAI04 Mosby et al. 2013

Suggests 21C has a 1/2% virtual state.
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Knockout reactions from 22C tell us a bit more

1d,,
251,
1d,,

1p,y),
1p;;,

C(3C,2°C+n)

A

E =0.7540.20 MeV

1s,,,

Counts

i

\L\— 1 d3/2

1 1

E,., (MeV)

S. Leblond et al. NP1106-SAMURAI04

Tension!

There are also conflicting measurements — opportunity to find resolving experiment
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Using data we can fix some properties of core-neutron system

1§ —————— - - - - - - -~
e 0 />, E = 0.83 MeV,l = 0.3 MeV

mmmmmmEmssmssmsEpémmsmmsmm-..

. We can also use a
-- three-body force to fix the
T 0452, E = —5.81 MeV 2-neutron separation

energy.
Opl/g, E = —9.27 MeV

Op -
T e— 0p3/27 E = —13.77 MeV
s — - —----- —_— 051/2, E = —15.15 MeV

Still a lot of freedom in the two-body interaction
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Why and how de we remove “forbidden” states?

= Original
Transformed

V(r) (MeV)

2 a 6 8 10
r(fm)

Supersymmetry: modifies the potential

two-body state (neutron-core)
A

P = Ey |Uorbidden) {Utorbidden] © 1

the other neutron

Projection: Adds a three-body non-local operator.

s 1S,
s 0d5),

Forbidden
states

0ds/,

Op1/2

Ops/2
0s1/>
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Projecting out forbidden states is the right approach but it’s a
lot harder
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What is the supersymmetric approach?

Transformation of the potential that
preserves two-body phase shifts while
removing unwanted bound states.

The good: Projection gives nodes
corresponding to the forbidden states.

The bad: Projection operator is very difficult
to compute exactly and leads to convergence
difficulties.
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How do we know the code is working?

* Setl
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ST v ., ., % Set3
*
*
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We compare two different models of the structure of 2!C

Model A:

21C ground state is 1/24 resonance, excited

states are 5/2+ then 3/2+ resonance
Energy

0ds/2

0000 |

Threshold

Model B:
21C ground state is 3/2+ resonance, 1s; , is

a virtual state
Energy

].51/2 EEEEEEEEEEEE

0d;, Q00

777777777777 Threshold
0d;,, 00000 |

0P1/2 LK

0p;, 2000 |
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Carbon-22 can look very different depending on what we
think Carbon-21 looks like

22C ground state (model B)

7 22C ground state (model A) 7
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When we know about the structure and the scattering states,

we can predict observables

= Model A
| === Model B

o = 2 &
IN] w IN ]

e
=

dB(E1)/dE (e~2 fm”~2 MeV~™-1)

o
o

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Energy (MeV)

Three-body force:

The binding energy in model A is
fixed to that of model B

(-0.43 MeV) using a three-body
force.

Model uncertainty

The models we chose are not
unique, we need to quantify the
uncertainty from our choice of
parameters.
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Conclusions

Fundamentally, structure and reactions cannot be separated

® |oosely bound (clusterised) systems couple continuum and bound states.

® Making use of the interplay between structure and reactions can help us understand
the extremes of the nuclear chart.

® Related: describe mid-mass nuclei and 341 body reactions using three-body model,
and quantify uncertainties.

® Unrelated: investigate multinucleon transfer using beyond mean-field methods.

® Long term: unify few- and many-body methods for a more comprehensive picture of
nuclear physics.
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Extra slides
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How do we actually compute the projection operator?

Three-body inner product
00 w/2
(W1 (p, ) W (p, ) = /0 FPdp /0 darsin? o cos? ap~>Ws (p, 0)Wa(p, )

with states W(p, o) = > xk(p)Pk () (¢k are basis functions for hyperangle). We want
to construct three-body states which contain a given two-body (core-neutron) state u(x).
We construct a (two-body) basis f,(y) where > |f,(y)) (fa(¥)] = 1, and then the
three-body forbidden states are U,(p, o) = u(p cos a)fp(psin ). Using a Gauss-Lagrange
expansion in p such that ¢(p) = > cigi(p) we obtain projector elements

w/2
Pxi kit = (Nidin)Y/? Z(/ dasin? o cos® au(p; cos o) fy(pi sin )i ()
0

n

w/2
(/ darsin? o cos® au(pir cos o) fy(pir sin )i ()
0
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The three-body system is built on top of the 0" ground state
of the core.

ZOC 22C

Core-excited resonance

2+ 1618 keV __._..-*
Core excitation to be
Eo .....rhreshold investigated in future
ZUC(0+)®
a(vds)*+B(vsy2)?
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Binding energy and rms
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